
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Chunjie Jiang,
University of Texas MD Anderson Cancer
Center, United States

REVIEWED BY

Jinyong Pang,
University of South Florida, United States
Essam Mohamed Elmatbouly Saber,
Benha University, Egypt

*CORRESPONDENCE

Hongbei Xu

xuhongbei2013@sina.cn

RECEIVED 18 November 2023
ACCEPTED 05 April 2024

PUBLISHED 18 April 2024

CITATION

Ouyang F, Yuan P, Ju Y, Chen W, Peng Z
and Xu H (2024) Alzheimer’s disease as a
causal risk factor for diabetic retinopathy:
a Mendelian randomization study.
Front. Endocrinol. 15:1340608.
doi: 10.3389/fendo.2024.1340608

COPYRIGHT

© 2024 Ouyang, Yuan, Ju, Chen, Peng and Xu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 18 April 2024

DOI 10.3389/fendo.2024.1340608
Alzheimer’s disease as a causal
risk factor for diabetic
retinopathy: a Mendelian
randomization study
Fu Ouyang1, Ping Yuan1, Yaxin Ju2, Wei Chen1, Zijun Peng1

and Hongbei Xu1*

1Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang,
Guizhou, China, 2Department of Neurology, The First Affiliated Hospital of Chongqing Medical
University, Chongqing, China
Objectives: This study aims to investigate the causal relationship between

Alzheimer’s Disease (AD) and Diabetic Retinopathy (DR).

Methods: Employing Mendelian Randomization (MR), Generalized Summary-

data-based Mendelian Randomization (GSMR), and the MR-Steiger test, this

study scrutinizes the genetic underpinnings of the hypothesized causal

association between AD and DR, as well as its Proliferative DR (PDR) and Non-

Proliferative DR (NPDR) subtypes. Comprehensive data from Genome-Wide

Association Studies (GWAS) were analyzed, specifically AD data from the

Psychiatric Genomics Consortium (71,880 cases/383,378 controls), and DR,

PDR, and NPDR data from both the FinnGen consortium (FinnGen release R8,

DR: 5,988 cases/314,042 controls; PDR: 8,383 cases/329,756 controls; NPDR:

3,446 cases/314,042 controls) and the IEU OpenGWAS (DR: 14,584 cases/

176,010 controls; PDR: 8,681 cases/204,208 controls; NPDR: 2,026 cases/

204,208 controls). The study also incorporated Functional Mapping and

Annotation (FUMA) for an in-depth analysis of the GWAS results.

Results: The MR analyses revealed that genetic susceptibility to AD

significantly increases the risk of DR, as evidenced by GWAS data from the

FinnGen consortium (OR: 2.5090; 95% confidence interval (CI):1.2102-

5.2018, false discovery rate P-value (PFDR)=0.0201; GSMR: bxy=0.8936,

bxy_se=0.3759, P=0.0174), NPDR (OR: 2.7455; 95% CI: 1.3178-5.7197,

PFDR=0.0166; GSMR: bxy=0.9682, bxy_se=0.3802, P=0.0126), and PDR (OR:

2.3098; 95% CI: 1.2411-4.2986, PFDR=0.0164; GSMR: bxy=0.7962,

bxy_se=0.3205, P=0.0129) using DR GWAS from FinnGen consortium. These

results were corroborated by DR GWAS datasets from IEU OpenGWAS. The

MR-Steiger test confirmed a significant association of all identified

instrumental variables (IVs) with AD. While a potential causal effect of DR

and its subtypes on AD was identified, the robustness of these results was

constrained by a low power value. FUMA analysis identified OARD1, NFYA,

TREM1 as shared risk genes between DR and AD, suggesting a potential

genetic overlap between these complex diseases.
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Discussion: This study underscores the contribution of AD to an increased risk of

DR, as well as NPDR and PDR subtypes, underscoring the necessity of a holistic

approach in the management of patients affected by these conditions.
KEYWORDS
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1 Introduction

Alzheimer’s Disease (AD), the most common form of dementia,

is a progressively worsening neurodegenerative condition.

Characterized by neurotic plaques and neurofibrillary tangles, AD

results from the accumulation of amyloid-beta peptide (Ab) in the

brain (1). Diabetic Retinopathy (DR), a common microvascular

complication of Diabetes Mellitus (DM), is a leading cause of

preventable vision loss in the elderly (2). According to the Global

Burden of Disease Study, DR is the fifth primary cause of blindness

and moderate to severe visual impairment in adults over 50 (3).

Early signs of Non-Proliferative Diabetic Retinopathy (NPDR)

include vascular endothelial damage, microaneurysm formation,

and dot intraretinal hemorrhages. Increasing ischemia can lead to

Proliferative DR (PDR), which poses a high risk of vision loss due to

complications like vitreous hemorrhage or retinal detachment, as

blood vessels grow into the vitreous (4). Previous studies have

suggested shared genetic risk factors between AD and DR, with

extensive epidemiological research exploring this potential link (5–

7). However, the direct causal relationship between AD, DR, and its

subtypes NPDR and PDR, remains unclear, partly due to

confounding factors.

Mendelian Randomization (MR) is a statistical methodology

that aids in exploring cause-effect relationships between variables by

leveraging genetic variations that influence the exposure of interest

(8). Recently, MR has become a powerful tool for assessing causal

relationships in epidemiology and genetics. By using genetic

variants as instrumental variables, MR provides evidence of

causality that is less prone to bias from confounding factors and

reverse causation (9). We further used Generalized Summary-data-

based Mendelian Randomization (GSMR), which excludes SNPs

that demonstrate pleiotropic effects, enhances the confidence of the

MR results (10). Moreover, MR-Steiger filtering was used to ensure
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that the IVs were strongly correlated with the exposure rather than

the outcome (11). Additionally, the Functional Mapping and

Annotation (FUMA) method, a widely-used computational tool,

integrates genetic association data with functional annotations, gene

expression data, and pathway analyses (12). This integration helps

identify relevant genetic variants and their possible biological

mechanisms. In our study, we apply both MR and FUMA

methods to uncover new insights into the potential cause-effect

relationship between AD and DR. Our approach also enhances the

existing knowledge base about the shared genetic underpinnings of

these conditions and sheds light on the biological mechanisms that

may underlie this connection.
2 Methods

2.1 Study design and data source

We employed the MR technique in this study, which is an

instrumental variable (IVs) analysis leveraging genetic variants like

single-nucleotide polymorphisms (SNPs) as exposure proxies. To

validate the chosen SNPs as IVs, three core assumptions must be

met: (1) the Association assumption, asserting the relevance of

SNPs with the exposure; (2) the Independence assumption, which

holds that genetic variants affect outcomes solely via their impact on

exposure, excluding other causal pathways; (3) the Exclusion

assumption, requiring the genetic variants to be conditionally

independent of the outcome given the exposure and confounders

(13). Figure 1 illustrates the schematic diagram of this MR study.

The AD dataset used was derived from a large-scale Genome-Wide

Association Study (GWAS) provided by the Psychiatric Genomics

Consortium. The datasets for DR, PDR, and NPDR were gathered

from two sources: the FinnGen consortium (FinnGen release R8)

and the IEU OpenGWAS database, respectively. Table 1

summarizes these datasets.
2.2 Selection of IVs

The IVs were selected for AD and each DR subtype. This selection

was based on the hypothesis that the IVs must exhibit a robust

correlation with the exposure. SNP IVs were initially identified from
frontiersin.org
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the Genome-Wide Association Studies (GWAS) summary statistics

related to exposure, with the correlation threshold relaxed to P<5×10−6

(14). Subsequently, a clumping algorithm was employed to choose

independent SNP IVs, applying an r2 threshold of 0.001 within a 5000

kb linkage disequilibrium (LD) window (15). This approach effectively

reduced the risk of overestimating the number of independent tests

(16). SNPs that demonstrated an F value exceeding 10 in the GWAS of

exposure were chosen as potential IVs, thereby diminishing the risk of

weak instrument bias (17). To eliminate potential horizontal

pleiotropy, SNPs directly associated with outcomes or confounding

factors were excluded (18). SNPs significantly linked to confounders

were sourced from the Phennoscanner database (http://

www.phenoscanner.medschl.cam.ac.uk/). R2 and F-statistic for each

SNP were calculated using the formulas R2 = 2×EAF×(1-EAF)×b2 and
F=(b)2/(SE)2 respectively (19). The specific characteristics and F value

of selected SNPs were presented in Supplementary Tables S1, S2.
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2.3 MR analysis

A bidirectional two-sample MR analysis was conducted using the

TwoSampleMR R package (20) and the MR-PRESSO package (21),

both powerful tools for inferring the potential causal relationship

between exposure and outcome. The forward MR analysis considered

AD as the exposure and each DR subtype as the outcome, while the

reverse analysis switched these roles. The primary MR analysis

employed the inverse-variance weighted (IVW) method within a

random effects model to evaluate the causal impact of exposure on

the outcome (22). The IVW method combines SNP-specific causal

estimates to obtain a weighted average, considering the inverse of the

variance of these estimates. To test the robustness of our findings,

four supplementary MR methods were used: weighted median, MR-

Egger method, weighted mode, and simple mode (23). Each of these

methods is designed to address various forms of pleiotropy and

potential biases, offering a comprehensive view of the potential causal

relationship. In cases where only a single IV SNP is available, the

Wald ratio method was used (24). Multiple testing adjustments and

false discovery rate (FDR) corrected P-value calculations were

performed using the Benjamini-Hochberg method. This approach

effectively minimizes the risk of false-positive outcomes arising from

multiple comparisons.
2.4 Generalized summary-data-based
Mendelian randomization analysis

To estimate credible causal associations using the IVW

regression method in MR analysis, we incorporated the GSMR

estimates. Implemented via the GSMR R package, this method

evaluates causal associations (bxy=bzx/bzy) between a risk factor

(bzx) and an outcome (bzy), utilizing summary-level data from

GWASs. In this context, z represents the genotype of an SNP

(coded as 0, 1, or 2), x denotes the exposure in standard deviation

(SD) units, and y signifies the outcome on the logit scale(logarithm

of the odds ratio, logOR). The method calculates bzy as the effect of z

on y on the logit scale, bzx as the effect of z on x, and bxy as the effect
TABLE 1 Detailed information of the studies and datasets used for Mendelian randomization analysis.

Phenotype
Sample size

(cases/controls)
Population Consortium Year Journal

AD 71,880/383,378 Mixed Psychiatric Genomics Consortium 2019 Nat Genet

DR 5988/314,042 Mixed FinnGen 2022 –

PDR 8383/329,756 Mixed FinnGen 2022 –

NPDR 3446/314,042 Mixed FinnGen 2022 –

DR 14,584/176,010 European IEU OpenGWAS 2021 –

PDR 8,681/204,208 European IEU OpenGWAS 2021 –

NPDR 2,026/204,208 European IEU OpenGWAS 2021 –
fro
DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, background diabetic retinopathy; AD, alzheimer's disease.
FIGURE 1

An overview of the study design.
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of x on y, free from confounding by non-genetic factors.

Additionally, GSMR accounts for LD between multiple correlated

SNPs used as IVs and excludes SNPs that demonstrate pleiotropic

effects, as evidenced by the heterogeneity in dependent instruments

outlier analysis (HEIDI-outlier test <0.01) (10).
2.5 The analysis of MR Steiger and MR
Steiger filtering

Furthermore, we employed MR Steiger and MR Steiger filtering,

as implemented in the TwoSampleMR R package, to investigate the

causal direction between exposure and outcome. This methodology

calculates the variance explained in both exposure and outcome by

the instrumental SNPs and tests whether the variance in the outcome

is less than that in the exposure. The MR Steiger directionality test

determines the validity of the chosen SNPs as IVs. A “TRUE” MR

Steiger result implies causality in the anticipated direction, whereas a

“FALSE” result indicates causality in the opposite direction. SNPs

yielding “FALSE” results were excluded, signifying their primary

effect on outcomes rather than exposures (11). Finally, the mRnd

online power calculator (https://shiny.cnsgenomics.com/mRnd/) was

utilized for power calculation (25), a critical step to ensure the study’s

design is sufficiently robust to discern the causal estimate.
2.6 Sensitivity analysis

In the sensitivity analysis, the leave-one-out approach was used

to determine the impact of individual SNPs on the study outcomes.

To confirm the robustness of the second and third core MR

assumptions, Cochran’s Q statistic and the MR-Egger regression

method were applied. These methods played a key role in

identifying heterogeneity and pleiotropy (20). Particularly, the

MR-Egger regression was crucial for assessing the potential effects

of directional pleiotropy on risk estimates via intercept tests.

Recognizing the possible limitations of the MR-Egger method, the

MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) test was

also implemented. This approach proved essential in pinpointing

outlier SNPs and evaluating potential horizontal pleiotropy (26).
2.7 Statistical analyses

Statistical analyses were performed using R software, version

4.2.1. In the MR analysis, associations with P values below 0.05

(including both raw P and PFDR=0.05) were deemed too strongly

indicate causal relationships. In contrast, associations exhibiting

raw P values under 0.05 but with PFDR exceeding 0.05 were

considered to provide only suggestive evidence of associations.
2.8 Analysis of FUMA

The current investigation employed FUMA platform, an

integrative, web-based tool that leverages a multitude of biological
Frontiers in Endocrinology 04
data sources. This platform was instrumental in the functional

annotation of GWAS results, the prioritization of genes, and

facilitating interactive visualization (12). Gene and gene-set analyses

were performed using the Multi-marker Analysis of GenoMic

Annotation (MAGMA) version 1.6, seamlessly integrated within

FUMA (27). MAGMA facilitates multi-marker analysis by

correlating gene-level statistics with GWAS summary statistics,

offering a gene-centric view of genetic associations. We imported a

comprehensive analysis of preprocessed GWAS data for AD and each

DR subtype into FUMA 1.5.3. SNPs were considered independently

significant if they had a P-value below 5×10-8 and an r2 value under 0.6

in the GWAS results. Among these significant independent SNPs, lead

SNPs were determined based on a pairwise r2 below 0.1. Our analysis

further identified genomic risk loci containing SNPs in strong LD

(r2>0.6) with these independently significant SNPs. These lead SNPs

are crucial in capturing the genetic association signal specific to each

locus. We continued this analysis by pinpointing genomic risk loci that

included SNPs in robust LDwith the significant independent SNPs. LD

blocks were merged into a single genomic locus if they were within a

250 kb range. For these LD analyses, we used reference genetic data

from European populations, as outlined in the 1000 Genomes Project

phase 3 database. Finally, SNPs with functional annotations were

linked to specific genes. Notably, protein-coding genes were

pinpointed through positional mapping, expression quantitative trait

loci (eQTL) mapping, and chromatin interaction mapping (28). These

methods are crucial for linking genetic variants to specific, functionally

relevant genes.
3 Results

3.1 Genetically predicted AD with DR,
NPDR and PDR

In exploring the causal relationship of AD on DR, AD was

utilized as the exposure, while DR and its subtypes, as identified in

the FinnGen GWAS database, were considered the outcomes. For

AD, a total of 21, 19, and 31 SNPs were selected, respectively. The

IVW method revealed that genetically predisposed AD causally led

to a 1.509-fold increase in the risk of DR(OR 2.5090; 95% CI:

1.2102-5.2018, P=0.0134, PFDR=0.0201, power=99%), a 1.3098-fold

increase in the risk of PDR (OR 2.3098; 95% CI: 1.2411-4.2986,

P=0.0082, PFDR=0.0164, power=99%), and a 1.7455-fold increase in

the risk of NPDR (OR 2.7455; 95% CI: 1.3178-5.7197, P=0.0069,

PFDR=0.0166, power=100%). Moreover, sensitivity analysis

employing the GSMR method corroborated these associations

(DR: bxy=0.8936, bxy_se=0.3759, P=0.0174; PDR: bxy=0.7962,

bxy_se=0.3205, P=0.0129; NPDR: bxy=0.9682, bxy_se=0.3802,

P=0.0126) (Table 2, Figure 2).

Further analysis using the IEU openGWAS database, which

included 28 SNPs for AD, 35 for NPDR, and 31 for PDR, supported

these observations. Both the IVW and GSMR analyses

demonstrated a significant link between AD and an increased risk

of DR (OR 1.9263; 95% CI: 1.2418-2.9882, P=0.0034, PFDR=0.0102,

power=99%; GSMR: bxy=0.6039, bxy_se=0.2279, P=0.0080), NPDR

(OR 2.8233; 95% CI: 1.1916-6.6892, P=0.0184, PFDR=0.0201,
frontiersin.org
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power=99%; GSMR: bxy=0.4404, bxy_se=0.3650, P=0.2276), and

PDR (OR 1.9535, 95% CI: 1.1622-3.2834, P=0.0115, PFDR=0.0197,

power=98%; GSMR: bxy=0.6051, bxy_se=0.2696, P=0.0248) (Table 2,

Figure 2). Additional results from four other MR methods - the

weighted median, MR-Egger, weighted mode, and simple mode -

are provided in the Supplementary Table S3. Lastly, the MR Steiger

test validated the SNP selection, affirming the hypothesized causal

direction of AD’s impact on DR (Table 3).
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3.2 No causal association of DR, NPDR and
PDR on AD

In the reverse MR analysis, AD was considered the outcome,

with 22 and 11 SNPs included for DR, 6 and 1 SNPs for NPDR, as

well as 10 and 4 SNPs for PDR, sourced from the FinnGen and IEU

openGWAS databases, respectively. Utilizing the FinnGen GWAS

database, no conclusive causal effects of DR (OR 1.0144, 95% CI:
TABLE 2 Main results of the Mendelian randomization analysis.

Exposure Outcome

IVW GSMR

nSNPs Method
OR

(95% CI)
P

value
PFDR Power bxy bxy_se bxy_pval

OR
(95% CI)

DR and its subtypes database from FinnGen consortium

AD

DR 21 IVW
2.5090
(1.2102,
5.2018)

0.0134 0.0201 99% 0.8936 0.3759 0.0174
2.44

(1.17, 5.11)

PDR 19 IVW
2.3098
(1.2411,
4.2986)

0.0082 0.0164 99% 0.7962 0.3205 0.0129
2.22

(1.18, 0.16)

NPDR 31 IVW
2.7455
(1.3178,
5.7197)

0.0069 0.0166 100% 0.9682 0.3802 0.0126
2.58

(1.23, 5.44)

DR and its subtypes database from IEU OpenGWAS

AD

DR 28 IVW
1.9263
(1.2418,
2.9882)

0.0034 0.0102 99% 0.6039 0.2279 0.0080
1.83

(1.17, 2.86)

PDR 31 IVW
1.9535
(1.1622,
3.2834)

0.0115 0.0197 98% 0.6051 0.2696 0.0248
1.83

(1.08, 3.11)

NPDR 35 IVW
2.8233
(1.1916,
6.6892)

0.0184 0.0201 99% 0.4404 0.3650 0.2276
1.55

(0.76, 3.18)

DR and its subtypes database from FinnGen consortium

DR

AD

22 IVW
1.0144
(1.0028,
1.0261)

0.0150 0.02 20% 0.0134 0.0055 0.0147
1.01

(1.00, 1.02)

PDR 10 IVW
1.0413
(1.0150,
1.0684)

0.0020 0.012 41% 0.0193 0.0133 0.1472
1.02

(0.99, 1.05)

NPDR 6 IVW
1.0247
(1.0083,
1.0415)

0.0031 0.0124 25% 0.0202 0.0094 0.0313
1.02

(1.00, 1.04)

DR and its subtypes database from IEU OpenGWAS

DR

AD

11 IVW
1.0240
(1.0041,
1.0443)

0.0176 0.0211 15% 0.0107 0.0103 0.2956
1.01

(0.99, 1.03)

PDR 4 IVW
1.0568
(1.0230,
1.0918)

0.0008 0.0096 36% – – – –

NPDR 1 Wald ratio
1.0347
(1.0000,
1.0706)

0.0497 0.0497 17% – – – –
fr
nSNPs, number of single-nucleotide polymorphisms; IVW, inverse-variance weighted; OR, odds ratio; CI, confidence interval; GSMR, Generalized Summary-data-based Mendelian
Randomization; FDR, false discovery rate; DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, background diabetic retinopathy; AD, alzheimer's disease.
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1.0028-1.0261, P=0.0150, PFDR=0.02, power=20%; GSMR:

bxy=0.0134, bxy_se=0.0055, P=0.0147), NPDR (OR 1.0247, 95% CI:

1.0083-1.0415, P=0.0031, PFDR=0.0124, power=25%; GSMR:

bxy=0.0202, bxy_se=0.0094, P=0.0313), or PDR (OR 1.0413, 95%

CI: 1.0150-1.0684, P=0.0020, PFDR=0.012, power=41%; GSMR:

bxy=0.0193, bxy_se=0.0133, P=0.1472) on AD were established,

primarily due to low statistical power. This uncertainty persisted

when employing the IEU OpenGWAS dataset. Here, no definitive

causal effects were found for DR (OR 1.0240, 95% CI: 1.0041-

1.0443, P=0.0176, PFDR=0.0211, power=15%; GSMR: bxy=0.0107,
Frontiers in Endocrinology 06
bxy_se=0.0103, P=0.2956), PDR (OR 1.0568, 95% CI: 1.0230-

1.0918, P=0.0008, PFDR=0.0096, power=36%), and NPDR (OR

1.0347, 95% CI: 1.0000-1.0706, P=0.0497, PFDR=0.0497,

power=17%), attributed to the notably low power values.

Furthermore, due to a limited number of SNPs, GSMR analysis

was not conducted for causal estimation of PDR or NPDR on AD.

The MR-Steiger test further substantiated these results by

confirming the absence of horizontal pleiotropy among the SNPs

(Table 3). Details of the power calculations are provided in the

Supplementary Table S4.
TABLE 3 Main results of the bi-directional MR-Steiger test.

Exposure Outcome
nSNPs MR analysis (all SNPs) MR analysis (valid SNPs)

Total Invaild OR IVW (95% CI) P value OR IVW (95% CI) P value

DR and its subtypes database from FinnGen consortium

AD

DR 21 0 2.5090 (1.2102, 5.2018) 0.0134 2.5090 (1.2102, 5.2018) 0.0134

PDR 19 0 2.3098 (1.2411, 4.2986) 0.0082 2.3098 (1.2411, 4.2986) 0.0082

NPDR 31 0 2.7455 (1.3178, 5.7197) 0.0069 2.7455 (1.3178, 5.7197) 0.0069

DR and its subtypes database from IEU OpenGWAS

AD

DR 28 0 1.9263 (1.2418, 2.9882) 0.0034 1.9263 (1.2418, 2.9882) 0.0034

PDR 31 0 1.9535 (1.1622, 3.2834) 0.0115 1.9535 (1.1622, 3.2834) 0.0115

NPDR 35 0 2.8233 (1.1916, 6.6892) 0.0184 2.8233 (1.1916, 6.6892) 0.0184

DR and its subtypes database from FinnGen consortium

DR

AD

22 0 1.0144 (1.0028, 1.0261) 0.0150 1.0144 (1.0028, 1.0261) 0.0150

PDR 10 0 1.0413 (1.0150, 1.0684) 0.0020 1.0413 (1.0150, 1.0684) 0.0020

NPDR 6 0 1.0247 (1.0083, 1.0415) 0.0031 1.0247 (1.0083, 1.0415) 0.0031

DR and its subtypes database from IEU OpenGWAS

DR

AD

11 0 1.0240 (1.0041, 1.0443) 0.0176 1.0240 (1.0041, 1.0443) 0.0176

PDR 4 0 1.0568 (1.0230, 1.0918) 0.0008 1.0568 (1.0230, 1.0918) 0.0008

NPDR 1 0 1.0347 (1.0000, 1.0706) 0.0497 1.0347 (1.0000, 1.0706) 0.0497
fro
A

B

FIGURE 2

Mendelian randomization results of causal effects between AD and DR. (A) MR analysis with AD as exposure. (B) MR analysis with DR, NPDR and PDR
as exposure.
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3.3 Sensitivity analysis

The bidirectional MR analysis revealed an absence of

pleiotropy, as evidenced by the non-significant MR-Egger

intercept. Further, the analysis demonstrated a lack of

heterogeneity, corroborated by Cochran’s Q statistic (Table 4).

The leave-one-out method indicated that the causal association

remained robust with the exclusion of each individual SNP

(Supplementary Figure S1), suggesting no influential SNPs.

Additionally, the funnel plot, scatter plot, and forest plot showed

no significant outliers. The effect estimate of each SNP on AD and

DR is visualized in the forest plot, displayed in Supplementary

Figures S2-S12.
3.4 Post-genome-wide association study
annotation by FUMA

Given the larger total sample size of the FinnGen consortium

compared to the IEU openGWAS, along with a similar control

sample size as the AD GWAS data, the FUMA analysis was

conducted using the FinnGen consortium database to ensure

more accurate results. The Manhattan plot of the input GWAS

summary statistics and the gene-based test, as computed by

MAGMA based on input GWAS summary statistics, is provided

in Figure 3.

Functional annotation of the summary statistics of AD and DR

GWAS databases using the FUMA platform identified 252
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independent significant SNPs and 94 lead SNPs across 28

genomic risk loci for AD. In addition, for DR, 9 genomic risk

loci, 461 independent significant SNPs, and 145 lead SNPs were

identified. For NPDR, there were 307 independent significant SNPs

and 94 lead SNPs identified, along with 6 genomic risk loci, and for

PDR, 79 independent significant SNPs, 29 lead SNPs, and 6

genomic risk loci were detected (Figure 4; Supplementary Tables

S5-S8). Furthermore, 666 protein-coding risk genes were identified

for AD, 408 for DR, 270 for NPDR, and 210 for PDR

(Supplementary Table S9).

The FUMA platform enabled the conduct of MAGMA tissue-

specificity analysis on 54 tissues obtained from GTEx V8 (Figure 5).

Our findings suggest a nominally significant association between

AD, DR, PDR, and NPDR with gene associations in whole blood,

brain regions, and the pituitary (P<0.05). Further analysis on tissue-

specific expression highlighted significant enrichment of AD

GWAS hits in lung tissue, whole blood, and the spleen, while DR

GWAS hits were primarily enriched in the lung. Interestingly, no

substantial tissue enrichment was detected for NPDR and PDR. In

subsequent investigations, we focused on 13 brain regions and the

pituitary, discovering that disease-gene associations related to AD

and DR were enriched in brain areas such as the pituitary, brain

cortex, hippocampus, and cerebellum. Through this in-depth

analysis, we identified four differentially expressed genes common

between AD, DR, NPDR, and PDR: OARD1, NFYA, CHI3L2, and

CD48. A noteworthy observation was the down-regulation of

OARD1, NFYA, and CD48, while CHI3L2 was up-regulated.

Importantly, we identified OARD1, NFYA, and TREM1 as shared
TABLE 4 Heterogeneity and pleiotropy tests for the associations of AD and DR.

Exposure outcome
Cochrane’s Q test MR-Egger intercept test MRPRESSO global test

Q-value PQ Intercept P intercept P value

DR and its subtypes database from FinnGen consortium

AD

DR 6.9966 0.9967 0.0014 0.9272 0.998

PDR 7.4207 0.9861 0.0110 0.5313 0.989

NPDR 23.2106 0.8065 0.0124 0.4839 0.828

DR and its subtypes database from IEU OpenGWAS

AD

DR 20.2689 0.8193 0.0078 0.4266 0.824

PDR 28.3745 0.5506 0.0104 0.3673 0.536

NPDR 26.4170 0.8202 0.0162 0.4531 0.812

DR and its subtypes database from FinnGen consortium

DR

AD

25.0194 0.2463 -0.0026 0.1807 0.279

PDR 5.4445 0.7940 0.0020 0.7765 0.781

NPDR 2.9638 0.7056 0.0016 0.7113 0.759

DR and its subtypes database from IEU OpenGWAS

DR

AD

3.2225 0.9757 0.0019 0.5241 0.975

PDR 4.2235 0.2383 0.0041 0.6538 0.378

NPDR – – – – –
DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, background diabetic retinopathy; AD, alzheimer's disease.
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risk genes between AD and DR. These risk genes were all found to

be located on Chromosome 6, providing intriguing insights into the

potential genetic intersection of these complex diseases

(Supplementary Table S10, Supplementary Figure S13).
4 Discussion

The potential causative link between DR and AD has been a

focal point in epidemiological and clinical research fields. In our

current study, we utilized a bidirectional MR approach, offering a

comprehensive perspective on this causal relationship. Our results

strongly indicate that AD may contribute to DR, including both

NPDR and PDR. However, the influence of DR on AD, while

evident, showed a lesser degree of association, calling for careful

interpretation of these findings. Shared risk factors, identified via

FUMA analysis, such as OARD1, NFYA, and TREM1, point to

potential biological pathways connecting these two disorders.

AD and DR are complex conditions presenting significant global

public health concerns. The complex factors underlying the association

between DR and AD risks remain to be fully clarified. AD patients with

cognitive impairments have exhibited specific retinal changes,

including amyloid plaque formation (29, 30), neuronal loss (31), and

optic neuropathy (32). Human retinal autopsies have revealed

concurrent hyperphosphorylated tau and Ab accumulation, key

indicators of AD in the brain (33, 34). Early retinal neurovascular

abnormalities could potentially act as markers for future cognitive

decline (35). Given the remarkable similarity between the

microvasculature of the retina and brain, changes in retinal blood

vessels may indirectly reflect similar alterations in the cerebral

microvasculature (36). The accelerated cognitive aging associated

with diabetes might partly stem from the combined effects of blood-

brain barrier disruption and/or ischemic damage, leading to various

brain tissue changes (36). Crucially, our study endorses the view of AD

as a causal risk factor for DR, as well as both NPDR and PDR, as

deduced from our highly reliable MR methodology.
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Previous research has acknowledged DR as a significant risk

factor for dementia (36–38). Patients with DM and DR have a 34%

increased risk of developing AD compared to those without DR

(38), positioning DR as a potential key biomarker for dementia risk,

alongside glycemia and renal complications (39). However, this

association must be considered with caution due to potential bias

from non-random missing data. Another cohort study, involving

29,961 individuals with Type 2 DM, found that sight-threatening

DR was associated with an increased risk of incident dementia, even

after adjusting for vascular risk factors and diabetes severity (37).

This analysis, though, did not account for DR duration or APOE

genotype and relied on ICD codes for dementia diagnoses, rather

than expert consensus or research criteria (39). In our study, we

identified a potential causal link between DR and AD. However, due

to the relatively low power value of our findings, they should be

interpreted cautiously and warrant further investigation.

The study revealed a stronger association between AD and

NPDR compared to AD and PDR in both the FinnGen and IEU

datasets. DR, a complication of diabetes, progresses through two

stages: NPDR and PDR (40). NPDR, the initial stage, is

characterized by mild microvascular changes and often presents

minimal symptoms (41). These changes mainly result from

inflammatory responses under hyperglycemic conditions and

direct glucose-induced damage to retinal microcirculation.

Progression to PDR is typically influenced by factors such as poor

blood sugar control and increased VEGF expression, leading to pre-

retinal neovascularization (42). Interestingly, AD is characterized

by enhanced immune responses and microglial activation, which

contribute to neurodegeneration (36). There is growing evidence

that the neuroinflammatory mechanisms in AD are similar to those

in DR (5). Considering these similarities, the study suggests a closer

link between AD and NPDR than with PDR. However, further

research is necessary to more clearly understand these relationships

and mechanisms.

Our study identified three shared genetic risk factors between

DR and AD - OARD1, NFYA, and TREM1 - using FUMA analysis.
A B

C D

FIGURE 3

Manhattan plot of the gene-based test as computed by MAGMA based on input GWAS summary statistics of AD (A), DR (B), NPDR (C) and PDR (D).
Genome wide significance (red dashed line in the plot) was defined at P = 0.05/N.
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These factors offer intriguing avenues for understanding the

biological interactions between these diseases and may shed light

on potential shared disease mechanisms. OARD1 (O-acetyl-ADP-

ribose deacetylase 1) is a gene involved in the metabolism of O-

acetyl-ADP-ribose, a molecule implicated in cellular processes like

DNA repair (43) and cell cycle progression (44, 45). Considering

that both AD and DR involve disturbances in cellular homeostasis

and integrity, OARD1’s association with these diseases could reflect

disruptions in DNA repair or cell cycle regulation. NFYA (Nuclear

Transcription Factor Y Subunit Alpha) regulates various genes

associated with cellular growth and differentiation (46–48).

Dysregulation in these processes could lead to the pathological

changes seen in both AD and DR, including neuronal degeneration

and abnormal angiogenesis, respectively. TREM1 (Triggering

receptor expressed on myeloid cells 1) is an immunoglobulin

superfamily transmembrane protein (49) related to immune
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response and inflammation (50). Studies have shown increased

TREM1 expression in microglia around amyloid-beta plaques in

ADmice, and inhibiting TREM1 could alleviate neuroinflammation

and amyloid-beta pathology (51). Moreover, genetic variations in

TREM1 are linked to an increased risk of AD (52). Altered immune

responses and cell interactions, implicated in both DR and AD, may

contribute to chronic inflammation, neuronal loss, and capillary

degeneration. While our study identified these shared risk factors,

the exact role of each gene in AD and DR pathogenesis remains to

be fully understood. Investigating how these genes contribute to the

diseases’ development and progression at a molecular level is

crucial. Future experimental studies on these genes could provide

valuable insights into the shared pathological mechanisms between

DR and AD, highlighting the intricate relationship between

metabolic, immune, and neurodegenerative processes and the

multidimensional nature of these diseases.
A

B

C

D

FIGURE 4

Genetic risk loci identified by FUMA analysis. (A) Genetic risk loci for AD. (B) Genetic risk loci for DR. (C) Genetic risk loci for NPDR. (D) Genetic risk
loci for PDR. Genomic risk loci was displayed in the format of “chromosome: start position–end position”. Each genomic locus was represented by a
series of histograms, arranged from left to right to display the size of the locus, the number of candidate SNPs, the number of mapped genes, and
the number of known genes located within it.
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Despite these findings, our study has certain limitations. First,

the MR analysis demonstrated a low power value in establishing the

causal relationship between DR and AD. This issue might stem

from an insufficient cohort sample size and the limited availability

of suitable datasets enriched with comprehensive genetic and

phenotypic information. These factors could affect the statistical

robustness and reliability of our results. Second, the selection of

instrumental variables (IVs) for MR analysis might not have been

optimal, potentially due to confounding factors. Third, the role of

genetic predisposition in disease outcomes could be limited, as

genetic factors only contribute a small portion to the total variance

in complex diseases like AD and DR. Fourth, environmental and

behavioral factors play a significant role in the development and
Frontiers in Endocrinology 10
progression of DR, along with genetic factors (53). Major risk

factors include the duration of diabetes, levels of glycated

hemoglobin (HbA1c), and blood pressure. High HbA1c levels,

indicative of poor blood glucose control, can damage retinal

microvessels and lead to DR (44). Effective blood glucose

management is essential to reduce DR risks and its progression.

Hypertension also contributes to DR by exacerbating microvascular

damage (54). Additionally, harmful lifestyle choices such as

smoking and alcohol consumption increase DR risks (55, 56).

While these factors are crucial, the genetic aspect of DR

development shouldn’t be overlooked (57). Lastly, although our

study identified OARD1, NFYA, and TREM1 as shared risk factors,

the exact role of these genes in the development and progression of

AD and DR at the molecular level is still unclear. Future research

focusing on these genes could offer valuable insights into the shared

pathological mechanisms between DR and AD.
5 Conclusions

In conclusion, the extensive MR study’s results robustly support

the theory that AD significantly contributes to the development of

DR. Furthermore, the study discovered common risk genes,

suggesting a potential link between these two intricate diseases.

These findings emphasize the possibility that targeting AD could be

an effective therapeutic strategy to slow down DR’s pathological

progression. Consequently, this warrants further exploration within

a clinical setting.
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