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Impact of Hashimoto’s thyroiditis
on the tumor microenvironment
in papillary thyroid cancer:
insights from single-cell analysis
Hongzhe Ma1†, Guoqi Li1†, Diwei Huo2†, Yangguang Su1,
Qing Jin1, Yangxu Lu1, Yanyan Sun3*, Denan Zhang1*

and Xiujie Chen1*

1Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin
Medical University, Harbin, China, 2Department of Urology Surgery, The Fourth Affiliated Hospital of
Harbin Medical University, Harbin, China, 3Department of General Surgery, The Fourth Affiliated
Hospital of Harbin Medical University, Harbin, China
This study investigates the impact of Hashimoto’s thyroiditis (HT), an

autoimmune disorder, on the papillary thyroid cancer (PTC) microenvironment

using a dataset of 140,456 cells from 11 patients. By comparing PTC cases with

and without HT, we identify HT-specific cell populations (HASCs) and their role in

creating a TSH-suppressive environment via mTE3, nTE0, and nTE2 thyroid cells.

These cells facilitate intricate immune–stromal communication through the

MIF–(CD74+CXCR4) axis, emphasizing immune regulation in the TSH context.

In the realm of personalized medicine, our HASC-focused analysis within the

TCGA-THCA dataset validates the utility of HASC profiling for guiding tailored

therapies. Moreover, we introduce a novel, objective method to determine K-

means clustering coefficients in copy number variation inference from bulk RNA-

seq data, mitigating the arbitrariness in conventional coefficient selection.

Collectively, our research presents a detailed single-cell atlas illustrating HT–

PTC interactions, deepening our understanding of HT’s modulatory effects on

PTC microenvironments. It contributes to our understanding of autoimmunity–

carcinogenesis dynamics and charts a course for discovering new therapeutic

targets in PTC, advancing cancer genomics and immunotherapy research.
KEYWORDS

single-cell analysis, thyroid-stimulating hormone, immune cell communication, cancer
genomics, TCGA-THCA
1 Introduction

As the most common endocrine malignancy in the world, the incidence of thyroid

cancer has been increasing over the last three decades (1). The global incidence rate in

women is three times higher than in men, and the global cancer burden in women is 5.1%

(2). Among them, papillary thyroid cancer (PTC) is the most common subtype of thyroid
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cancer (accounting for 70%~85.9%) (3). Although PTC progresses

slowly, a significant proportion of patients have metastases by the

time of diagnosis. In the case of metastasis, the combination of

surgery, radioactive iodine (RAI) ablation, and thyroid-stimulating

hormone (TSH) suppression can still get a favorable prognosis for

most cases. However, there are still some metastatic cases that do not

benefit from the above treatment strategies (4, 5). Based on traditional

genome and transcriptome sequencing techniques, several diagnostic

and progressive genes of PTC, such as BRAF and RAS, have been

discovered (6). However, this approach ignores the high

heterogeneity of PTC. Different tumor microenvironments around

PTC will affect the occurrence, development, and drug resistance of

tumors. Several studies have reported the effect of tumor-infiltrating

immune cells on prognosis in patients with thyroid cancer (7, 8).

Myeloid cells increase in proportion in cancer patients and reduce

survival time through immunosuppressive function (9). Tumor-

associated macrophages vary in frequency in different subtypes of

thyroid cancer (10). Natural killer (NK) cells also play a central role in

the immune surveillance of thyroid cancer (11). Lymphocyte density

was associated with the overall survival and recurrence rate of PTC

(12). These immune cells play their respective roles from different

aspects. Therefore, systematic evaluation of the tumor immune

microenvironment of PTC is helpful to understand the

pathogenesis of cancer and guide clinical rational treatment.

Hashimoto’s thyroiditis (HT), also known as chronic lymphocytic

thyroiditis (CLT), is a common autoimmune endocrine disease,

causing hypothyroidism or hyperthyroidism, and the incidence is

also increasing year by year. Approximately 18.9% to 23.2% of PTC

patients have been reported to have HT, and PTC patients with HT

have a better prognosis than PTC patients without HT. However, at

the same time, HT is considered to be a chronic inflammatory

response, and various inflammatory cells infiltrating around the

thyroid of patients with HT can damage the DNA of interstitial

cells, leading to erroneous DNA repair, thereby promoting the

occurrence of PTC. When HT and PTC occur at the same time,

experts at home and abroad have different opinions on whether the

former has a protective or promoting effect on the latter (13–17). This

indicates that the role of HT in the formation of the tumor immune

microenvironment of PTC is still unclear. Therefore, this research

will focus on HT development to promote or inhibit PTC.

In the past, the inferCNV algorithm was usually used to

distinguish malignant epithelial cells from non-malignant

epithelial cells, which is an effective method and widely used.

However, the existing problem is how to screen the results

obtained by the inferCNV algorithm. The usual selection of the

clustering coefficient K with copy number variation is subjective,

which will lead to inaccurate results. To solve this problem, we

proposed a method to determine the best clustering coefficient K

based on TCGA data, which can effectively solve the problem of

subjectivity in coefficient selection and provide a new strategy for

the clustering coefficient selection of the inference results of single-

cell copy number variation in the future.

With the development of single-cell RNA sequencing (scRNA-

seq), solving tumor heterogeneity from the perspective of cells has

become a hot spot at the forefront. Several studies have reported the

use of scRNA-seq in thyroid cancer, such as a recent study on gender
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differences in the tumor microenvironment in PTC patients (18), the

progression of follicular thyroid cancer and medullary thyroid cancer

(19, 20), and the dedifferentiation of anaplastic thyroid cancer and

PTC (21). To explore whether HT promotes or inhibits the generation

and development of PTC, we conducted a comprehensive analysis of

the paratumors, primary tumors, lymph nodes, and distant metastasis

sites of 11 PTC patients and systematically compared the differences

in tumor microenvironments of PTC patients with and without HT.

The developmental trajectories of malignant thyroid epithelial cells

(mTEs) and non-malignant thyroid epithelial cells (nTEs) and their

interaction with HASCs were indicated. This discovery can help us

better understand how HT inhibits the development of PTC by

affecting its tumor microenvironment. To expand the role of

HASCs, we found the relationship between HASCs and prognosis

at the single-cell level, and clinical features in TCGA-THCA were

further investigated to find the value of HASCs in clinical application.

Based on the HASC subtypes, studies have identified unique genomic

and drug sensitivity profiles of different molecular subtypes, and this

provides a new idea for the personalized treatment of PTC.
2 Methods

2.1 scRNA-seq data processing

We obtained the number GSE184362 from the Gene Expression

Omnibus (GEO) database (22) (https://www.ncbi.nlm.nih.gov/geo/),

and a total of 23 samples (6 paratumors, 7 primary tumors, and 10

metastatic tumors), which consisted of 8 samples with HT and 15

samples without HT, were used for analysis via the Seurat R package

(23). For each sample, genes were retained with detected expression

in more than three cells. Cells with less than 200 detected genes

were excluded. Finally, 171,524 cells were preserved. Before

correcting batch effects, we used the NormalizeData() function in

Seurat to normalize the raw gene expression value by the global-

scaling normalization method “Log-Normalize”:

ExpNormalized=log
ExpRaw
ExpTotal*10000+1

where Exp(Normalized), Exp(Raw), and Exp(Total) stand for

raw gene expression value, normalized gene expression, and the

total expression of all genes in one cell, respectively. Then, the “vst”

method of the FindVariableFeatures function was used to find the

highly variable genes (top 5,000) in each sample. In the process of

batch effect correction, we went through three steps. First of all, the

SelectIntegrationFeatures function was used to select the integrated

dataset required features, and then, the FindIntegrationAnchors

function was used to find each anchor point between two datasets.

In the end, the IntegrateData function completes the merge of the

dataset according to the anchor points identified in the previous

step. After batch effect correction, there were 14,0456 cells left over

here, and we selected the top 5,000 highly variable genes through

the FindVariableFeatures() function, and the top 20 principal

components (PCs) were selected based on the JackStraw()

function. According to the top 20 PCs, the FindNeighbors() and

FindClusters() functions were applied to cluster the cells. The
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cluster identified 14 cell clusters at a resolution of 0.1, which were

annotated into six cell types by marker genes of myeloid cells (LYZ,

FCER1G, LYZ, TYROBP), T/NK cells (CD3D, CD3E, IL7R, IL32,

TRAC), B cells (CD79A, CD79B, MS4A1, IGKC, CD74), thyroid

epithelial cells (TG, CLU, FN1, MGST1, S100A13), fibroblasts

(RGS5, IGFBP7, TAGLN, COL1A2, ACTA2), and endothelial

cells (TIMP3, RAMP2, CLDN5, TFPI, MGP) (24).
2.2 CNV analysis of epithelial cells

To distinguish malignant thyroid epithelial cells (mTEs) from

non-malignant thyroid epithelial cells (nTEs), we used the

inferCNV R package to predict the copy-number alterations

(CNAs) of cells and compared them to the reference “normal”

cells (this refers to paratumor cells) from scRNA-seq data (25). By

setting the cutoff parameter of the inferCNV package’s run function

to 0.1, the HMM_type parameter to i6, and the HMM_report_by

parameter to cell, we get the CNA score for each cell. According to

the CNA scores of cells on 22 chromosomes, all cells (including

paratumors, primary tumors, and metastatic tumors) were clustered

using K-means clustering, and the number of clustering K values

ranged from 6 to 15.
2.3 Developmental trajectory inference of
mTEs and nTEs

The Monocle2 R package was used to perform the trajectory

analysis for mTEs and nTEs (26). Function newCellDataSet()

converted the Seurat object to CellDataSet object, and function

estimateSizeFactors() and function estimateDispersions() were used

to standardize and normalize the gene expression data of cells,

respectively. The genes with average log2 fold change greater than

0.5 and adjusted P-values less than 0.05 between HT and non-HT of

T/NK cells were used as ordering genes in the trajectory analysis. The

DDRTree method of the reduceDimension function was used for

dimension reduction. Furthermore, the differentially expressed genes

(DEGs) (average log2 fold change >1, adjusted P-value<0.05, and q-

value<0.01) that changed along with the pseudotime were identified

by the differentialGeneTest() function. The BEAM function was used

to find genes that are regulated in a branching way.
2.4 Cell–cell interaction analysis of HASCs

Here, we defined the subset of cells that had a significantly higher

percentage of content in PTC samples with HT than in PTC samples

without HT as HT-associated specific cells (HASCs). At the same

time, the significant difference of this cell subset should be P<0.05,

while HASCs are more capable of exhibiting differences in the tumor

microenvironment between PTC samples with and without HT.

Cell–cell communications among HASCs were mapped using the

CellChat R package, a common repository of ligands, receptors,
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cofactors, and their interactions (27). For cell interaction analysis,

expression levels were calculated relative to the total read map of the

same set of coding genes in all transcriptomes. Expression values were

averaged across each single-cell cluster/cell sample.
2.5 Identification of molecular subtypes
based on HASCs in TCGA-THCA

Transcriptome data from The Cancer Genome Atlas (TCGA) of

THCA were downloaded from UCSC XENA (28) (https://

xena.ucsc.edu/). Consensus clustering is a method that provides

quantitative evidence for determining the number and membership

of possible clusters in a dataset. This approach has been widely used

in cancer genomics, where new disease molecular subtypes have

been discovered. To discover various molecular patterns based on

HASCs, the ConsensusClusterPlus R package was employed (29).
2.6 The characteristics of
molecular subtypes

The ESTIMATE algorithm, which comes true with the IOBR R

package, was applied to evaluate the immune score and stroma

score of the samples for validation of the molecular subtype

signatures found (30, 31). Between the molecular subtypes, the

variation in the distribution of genes was depicted by the maftools R

package (32). At the same time, the drug sensitivity (IC50 value) of

138 GDSC database drugs was predicted by the pRRophetic R

package (33).
2.7 Statistical analysis

All statistical analyses were performed using the R tool (v.4.1.1).

The Wilcoxon test was applied to compare the differences between

two groups, and the Kruskal–Wallis test was used to compare

differences between multiple groups of samples. Here, ns indicates

P >0.05, * indicates P<0.05, ** indicates P<0.01, *** indicates

P<0.001, and **** indicates P<0.0001. Among them, P<0.05

indicates a significant difference. The Kaplan–Meier survival

analysis was carried out using the R packages survival and survminer.
2.8 Workflow of the experimental design
and analysis

The workflow of this study was divided into four steps as

follows (Figure 1): the first step is the processing of single-cell

data, the second part is the copy-number variation analysis based

on the inferCNV algorithm to distinguish malignant and non-

malignant epithelial cells, the third step is the acquisition of HASCs,

and the fourth step is the molecular typing of TCGA-THCA

samples based on HASCs.
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3 Results

3.1 Landscape of PTC by scRNA-seq

After rigorous quality screening, a total of 140,456 cells were

retained for further analysis (Figure 2A). Six cell types, namely,

endothelial cells (TIMP3, RAMP2, CLDN5, TFPI, MGP),

fibroblasts (RGS5, IGFBP7, TAGLN, COL1A2, ACTA2), thyroid

epithelial cells (TG, CLU, FN1, MGST1, S100A13), B cells (CD79A,

CD79B, MS4A1, IGKC, CD74), T/NK cells (CD3D, CD3E, IL7R,

IL32, TRAC), and myeloid cells (LYZ, FCER1G, LYZ, TYROBP),

were obtained by using t-SNE dimension reduction clustering at

low resolution (Figure 2B). All these cell subtypes were shared

among tissue sources (Figure 2C), whether with or without HT

(Figure 2D), and among samples (Figure 2E). It has a mixed

biological origin and was not affected by data preprocessing.

Overall, compared with non-HT patients, the immune system was

significantly activated in HT patients, with more T/NK cells, B cells,

and myeloid cells at the cancer site and fewer fibroblast cells. HT, as

an autoimmune disease, leads to excessive activation of the immune

system, which may inhibit the development of PTC by alleviating

the immunosuppressive effect of tumors (Figure 2F). The chi-square

test revealed significant differences in the content of the six types of

cells between HT and non-HT (Figure 2G). Among them, the

content of immune cells was higher in patients with HT although T/

NK cells were excluded, which may be due to the low content of T/

NK cells in the HT samples of paratumor tissues. Either way, it is

clear that the immune systems of the HT samples were

better activated.
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3.2 Distinguishing between malignant and
non-malignant thyroid epithelial cells

Based on the fact that PTC has abundant copy number

variation, we infer chromosome copy number variation (CNV)

of cells based on RNA expression profile to distinguish mTEs and

nTEs. First, according to the results of cell-type annotation, all

thyroid epithelial cells were extracted and the CNV of each cell

was inferred by using the cells in the paratumors as the reference

standard (Figure 3B). Then, K-mean clustering was used to cluster

CNV profiles. To determine the optimal clustering coefficient K,

single sample gene set enrichment analysis (ssGSEA) was

conducted in the TCGA-THCA dataset with the gene set

composed of the top 50 genes that were differentially expressed

between mTEs and nTEs in the clustering results of each K value

(Figure 3A). This was the method that was created to determine

the best K-means clustering coefficient. When K = 11, the

difference in the enrichment fraction between tumor and

paracancer samples showed the smallest P-value. Therefore, we

used K = 11 to cluster CNV profiles. K-means clustering

subgroups 5 and 6 were nTEs, and the rest of the subgroups

were mTEs (Figure 3C). Overall, in the original mTEs, there were

8 distant metastases, 251 lymph nodes, and 701 primary tumor

mTE cells classified as paratumor nTEs, and in the original nTEs,

there were 346 paratumor nTE cells classified as primary

tumor mTEs.

To further investigate the function of mTEs and nTEs, these

two cell subsets were reclustered. mTEs were reclustered into 14

clusters (Supplementary Figure S1A), and the mTE3 clusters in
FIGURE 1

Workflow of the effect of HT on the PTC tumor microenvironment at the single-cell level.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1339473
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ma et al. 10.3389/fendo.2024.1339473
HT patients were significantly higher than those in non-HT

patients (Supplementary Figure S1B). Although all mTE clusters

were significantly different between HT and non-HT patients,

mTE3 clusters had a significant preponderance in HT patients

(Supplementary Figure S1C). To understand the function of each

mTE cluster, GO enrichment analysis was performed. The results

showed that the mTE3 cluster was mainly enriched in the thyroid

hormone metabolic process and thyroid hormone generation

pathways (Supplementary Table S1). Activation of these

pathways would produce more thyroid hormones, which would

inhibit the secretion of TSH and thus form a TSH-inhibited

environment. One of the effective treatment methods for thyroid

cancer is TSH inhibition, indicating that HT patients form a TSH-
Frontiers in Endocrinology 05
inhibited environment through the high proportion of mTE3

clusters. Moreover, the occurrence and development of thyroid

cancer is delayed. After that, nTEs were reclustered into 11

clusters (Supplementary Figure S2A). Similar to mTEs, the

proportion of nTE0 and nTE2 clusters in HT patients is

s i gn ifican t l y h i ghe r than tha t in non-HT pa t i en t s

(Supplementary Figures S2B, C), and these two clusters are also

enriched in the thyroid hormone metabolic process and thyroid

hormone generation pathways (Supplementary Figure S2D;

Supplementary Table S2). The above results indicate that the

TSH-inhibiting environment formed by a high proportion of

mTE3, nTE0, and nTE2 clusters in HT patients has an

inhibitory effect on PTC.
A B

D E

F G

C

FIGURE 2

Overview of scRNA-seq analysis across 11 PTC patients. (A) t-SNE plot visualizing 14 distinct clusters encompassing 140,456 cells from all samples
(n = 23), colored by cell type (n = 6). (B) Bubble plots showing the expression levels of marker genes for each cell type. (C) t-SNE plot visualizing cell
clusters colored by tissue of origin. (D) t-SNE plot visualizing cell clusters colored by HT and non-HT. (E) t-SNE plot visualizing cell clusters colored
by samples. (F) Horizontal bar charts showing the relative abundance of various cell types between HT and non-HT in each tissue of origin. (G) Post-
hoc analysis of each cell between HT and non-HT; *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.
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3.3 Pseudotime analysis of thyroid cells

We next explored the mTE3, nTE0, and nTE2 cluster

differentiation trajectories in HT patients by inferring the state

trajectories using Monocle2. This analysis showed that nTE0 and

nTE2 were at the beginning of the trajectory path, whereas mTE3 was

at a terminal state (Figures 4A, B). Furthermore, mTE3 is mainly

derived from mTE10, and nTE0 and nTE2 are mainly differentiated

into nTE6, nTE8, and nTE10 (Figure 4B). At time transition point 1,

the characteristic genes of mTE3 clusters were more likely to change

from low expression to high expression, while the characteristic genes

of nTE0 and nTE2 clusters were more likely to change from high

expression to low expression, which was also found at time transition

point 2, which further emphasized the results that nTE0 and nTE2

clusters were in the early stage of differentiation and mTE3 clusters

were in the late stage of differentiation (Figures 4C–H). These results

indicate that in HT patients, nTE0 and nTE2 clusters may

differentiate into mTE3 clusters, but some cells transform into

other nTE clusters, which does not affect the environment of TSH

inhibition, because mTE10 clusters will differentiate into mTE3

clusters, making up for the increase of TSH caused by the decrease

of nTE0 and nTE2. This dynamic transformation creates a TSH-

inhibiting microenvironment that effectively inhibits PTC in

HT patients.
Frontiers in Endocrinology 06
3.4 Different tumor immune
microenvironments between HT
and non-HT patients

Innate immunity and adaptive immunity play important roles

in the development of PTC (34). By clustering T/NK cells, B cells,

and myeloid cells and counting the differences in the proportion

of immune ce l l s , d i ffe rences in the tumor immune

microenvironment (TIM) between HT and non-HT patients

were discovered. First, T/NK cells were divided into nine cell

types: 1) CD4+ T-cell subsets (n = 3), including naive T (Tn),

regulatory T (Treg), and Tn_Treg; 2) CD8+ T-cell subsets (n = 5),

including effector T (Teff), exhausted T (Tex), effector memory T

(Tem), Tex_Teff, and Teff_Tem cells; and 3) NK cell subsets (n =

1), including NKT_NK cells (Figures 5A, B). The high proportion

of CD4_Tn_Treg and CD8_Tex_Teff in HT patients indicates the

activation of the immune system (Figures 5C, D). More CD8_Teff

and less CD8_Tex can effectively mobilize the immune system to

kill PTC, while the high percentage of CD4_Tn_Treg can prevent

the excessive activation of the immune system and thus maintain

immune homeostasis (35). Second, B cells were divided into five

cell types, namely, Plasma_B (MZB1, CD38), Native_B (MS4A1,

IGHD), Memory_B (MS4A1, CD27), Intermediate_B (IGHD,

CD27) and Germinal_center_B (MS4A1, NEIL1) (Figures 5E,
A

B C

FIGURE 3

The copy number variation (CNV) profile analysis distinguishing malignant thyroid epithelial cells (mTEs) and non-malignant thyroid epithelial cells
(nTEs). (A) The differentially expressed genes of mTEs and nTEs obtained at different K values were used as the ssGSEA results of the gene set in
TCGA-THCA tumor and paratumor samples. (B) Chromosomal CNV plots of thyroid epithelial cells. The above box was the control group. The lower
box shows the tumor groups. (C) Clustering heatmap of CNV on 22 chromosomes at K = 11.
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F). Intermediate_B was the only cell with a significantly high

proportion in HT patients (Figures 5G, H). Myeloid cells were

divided into three cell types, and macrophage cells are the primary

type (Figures 5I, J). However, high infiltration of conventional

dendritic cells (cDCs) in HT patients predicted stronger activation

of T cells. Although plasmacytoid dendritic cells (pDCs) could also

activate T cells, their activation capacity was smaller (Figures 5K, L).
Frontiers in Endocrinology 07
The above proportion of immune cells indicates that HT patients can

better activate their own immune system, and the presence of PTC

prevents excessive activation of the immune system to reach

homeostasis, which forms a dynamic balance between autoimmune

diseases and cancer. This finding enables us to clearly see that HT

inhibits the development of PTC by mobilizing CD4_Tn_Treg,

CD8_Tex_Teff, Intermediate_B, and cDC.
A

B

D

E F

G H

C

FIGURE 4

Trajectory analysis of mTE3, nTE0, and nTE2. (A, B) The trajectory analysis of mTE3, nTE0, and nTE2. mTE3 was from mTE10 and nTE0 and nTE2
were divided into nTE8, nTE10, and nTE6. (C) Heatmap showing two-gene clusters of mTE3 marker genes with different expression signatures at
pseudotime point 1. (D) Heatmap showing three-gene clusters of mTE3 marker genes with different expression signatures at pseudotime point 2.
(E) Heatmap showing three-gene clusters of nTE0 marker genes with different expression signatures at pseudotime point 1. (F) Heatmap
showing three-gene clusters of nTE0 marker genes with different expression signatures at pseudotime point 2. (G) Heatmap showing four-gene
clusters of nTE2 marker genes with different expression signatures at pseudotime point 1. (H) Heatmap showing four-gene clusters of nTE2
marker genes with different expression signatures at pseudotime point 2.
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3.5 Identification of diverse subtypes of
stromal cells

Stromal cells are mainly composed of fibroblasts and

endothelial cells. The fibroblasts were divided into 11 cell clusters

(Figure 6A), which were cell-type-annotated according to the

characteristic genes of the four cancer-associated fibroblasts

(CAFs) (36). The characteristic genes of myCAFs were highly

expressed in most cell subsets, but iCAFs and irCAFs were highly

expressed in cell clusters 4, 7, and 8 (Figure 6B). In particular, cell

cluster 4 is an important component of CAF in HT patients, and the

expression level of PDGFRA, a marker gene of iCAFs, is the highest

(Figures 6B–D). The inflammatory and immune environments

formed by iCAFs and irCAFs indicate that CAF in HT patients is

more benign, which is superior to myCAF’s role in tissue repair

during cancer development. Furthermore, endothelial cells were

divided into 15 cell clusters (Figure 6E), and endothelial cell cluster

13 almost only existed in HT patients (Figures 6F, G). In order to

understand its biological function, GO enrichment analysis was

conducted on all endothelial cell clusters, and consistent with nTE0,

nTE2, and mTE3 clusters, the marker gene of endothelial cell cluster

13 was mainly enriched in the thyroid hormone metabolic process

and thyroid hormone generation pathways (Figure 6H;

Supplementary Table S3). In conclusion, a high proportion of
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fibroblast cluster 4 and endothelial cell cluster 13 in stromal cells

is a major feature of HT patients, which will better inhibit the

development of PTC.
3.6 Multiple cell crosstalk reveals the
regulatory mechanism of
tumor microenvironment

Through the above systematic analysis, we found that nTE0,

nTE2, and mTE3 contents were abundant in HT patients, and the

environment that causes TSH inhibition can effectively control

the development of PTC. At the same time, it was noticed that the

tumor microenvironment of HT patients has a significantly high

proportion of CD4_Tn_Treg, CD8_Tex_Teff, Intermediate_B,

cDC, fibroblast cluster 4, and endothelial cell cluster 13,

indicating that there may be a cross-talk among these cells. We

refer to these cells as HASCs. To further understand the

underlying regulatory mechanisms, we used CellChat to infer

intercellular communication between nTE0, nTE2, and mTE3 and

other cell types based on the ligand–receptor (L–R). mTE3 and

nTE0 interact more closely with other cells, both in terms of the

number and intensity of interactions, and more as senders of cell

communication. On the other hand, immune and stromal cells
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FIGURE 5

The scRNA-seq landscape of immune cells. (A) t-SNE plot visualizing 28 distinct clusters of T/NK cells, colored by cell type (n = 9). (B) Bubble plots
showing the expression levels of marker genes for each cell type. (C) Horizontal bar charts showing the relative abundance of various cell types
between HT and non-HT. (D) Post-hoc analysis of each cell type between HT and non-HT. (E) t-SNE plot visualizing 20 distinct clusters of B cells,
colored by cell type (n = 5). (F) Bubble plots showing the expression levels of marker genes for each cell type. (G) Horizontal bar charts showing the
relative abundance of various cell types between HT and non-HT. (H) Post-hoc analysis of each cell type between HT and non-HT. (I) t-SNE plot
visualizing 20 distinct clusters of myeloid cells, colored by cell type (n = 3). (J) Bubble plots showing the expression levels of marker genes for each
cell type. (K) Horizontal bar charts showing the relative abundance of various cell types between HT and non-HT. (L) Post-hoc analysis of each cell
type between HT and non-HT. *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.
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interact with other cells more as receivers of cell communication

(Figure 7A). nTE0, nTE2, and mTE3 interact primarily with MIF

signaling pathways mediated by CD74 and CXCR4 receptors on

immune and stromal cells via MIF ligands (Figure 7B). In the MIF

signaling pathway network, nTE0, nTE2, and mTE3 showed a

similar interaction relationship with all other cells, that is, nTE0

and mTE3 had interactions with all other cells (Figure 7C), and

MIF–(CD74+CXCR4) was dominant in these interactions

(Figure 7D). Further studies showed that in the MIF–(CD74

+CXCR4) signaling pathway, CD4_Tn_Treg, CD8_Tex_Teff,

cDC, and Intermediate_B interact with many other cells in the

signaling network (Figure 7E), which can also be seen by the

expression value of the L–R pairs (Figure 7F). To further

determine the role of these cells in the MIF signaling pathway, a

cellular communication network system analysis was performed.

The results were consistent with the previous results: nTE0 and

mTE3 were mainly signal transmitters, while all the other cells

except E were receivers, and CD4_Tn_Treg and CD8_Tex_Teff
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were very active, playing the four roles of signal sending,

receiving, mediating, and influencing (Figure 7G). To more

intuitively define the role of all cells in the MIF signaling

pathway, we visualized the dominant sender (source) and

receiver (target) in 2D space (Figure 7H). There was no doubt

that nTE0 and mTE3 were the senders of the signal;

Intermediate_B, cDC, and fibroblast cluster 4 were the receivers

of the signal; CD4_Tn_Treg, endothelial cell cluster 13, and

CD8_Tex_Teff were both the sender and the receiver; and nTE2

was almost neither the sender nor the receiver.
3.7 Relationship between HASC infiltration
and clinical features in bulk RNA-seq

First, we investigated the association of HASC infiltration with

PTC prognosis. Patients in groups CD4_Tn_Treg, CD8_Tex_Teff,

and mTE3 with high infiltration had a better prognosis although
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FIGURE 6

The scRNA-seq landscape of stromal cells. (A) t-SNE plot visualizing 11 distinct clusters of fibroblasts, colored by cell type (n = 4). (B) Bubble plots
showing the expression levels of marker genes for each cell type. (C) Horizontal bar charts showing the relative abundance of various cell types
between HT and non-HT. (D) Post-hoc analysis of each cell type between HT and non-HT. (E) t-SNE plot showing endothelial cells colored by
clusters (n = 15). (F) Horizontal bar charts showing the relative abundance of various clusters between HT and non-HT. (G) Post-hoc analysis of each
cluster between HT and non-HT. (H) GO enrichment analysis of the top 50 marker genes in 15 clusters. *P< 0.05, **P< 0.01, ***P< 0.001,
****P< 0.0001.
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survival differences were not significant (P > 0.05) (Figures 8A, B,

G), which was consistent with previous intercel lular

communication results that CD4_Tn_Treg and CD8_Tex_Teff

play multiple roles in critical cell communication. Since the

environment of TSH suppression was mainly created by the high

infiltration of mTE3, nTE0, and nTE2, it was logical that patients in

the high infiltration group of mTE3 would have a better prognosis,

but we observed a paradoxical phenomenon that patients with high

infiltration of nTE0 and nTE2 would have a worse prognosis

(Figures 8H, I). Through the previous trajectory analysis, we

found that nTE0 and nTE2 were in the early stage of
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differentiation, while mTE3 was in the late stage of differentiation.

The high infiltration of nTE0 and nTE2 implies that cell

differentiation had not begun or was just beginning when the

characteristic genes of nTE0 and nTE2 were not immediately

functional and the TSH-suppressive environment had not yet

formed. In contrast, the high infiltration of mTE3 cells indicated

that cell differentiation was nearing completion, the signature genes

of mTE3 had completed their role in thyroid hormone production,

and the TSH-suppressed environment effectively prolonged patient

survival. The high infiltration of cDC, fibroblast cluster 4, and

Intermediate_B as receivers of cell communication meant that cell
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FIGURE 7

Cell–cell communication analysis of HASCs. (A) Net count map of HASC interactions. HASC interaction weight map. The thicker the line, the greater the
number of interactions and the greater the weight/intensity of interactions between the two cell types. (B) The significantly related ligand–receptor
interactions from the main thyroid epithelial cells to other immune and stromal cells. (C) Hierarchy plot of interactions between selected target cells and
other cells in the MIF signaling pathway network. (D) Relative contribution of each ligand–receptor pair to the overall communication network of
signaling pathways, which is the ratio of the total communication probability of the inferred network of each ligand–receptor pair to that of the signaling
pathways. (E) Hierarchy plot of interactions between selected target cells and other cells in the MIF–(CD74+CXCR4) signaling network. (F) Violin plot
showing the expression patterns of signaling genes involved in the inferred signaling network. (G) The network centrality index of each cell population
was calculated to identify the role of each type of cell in the MIF signaling pathway. (H) Scatter plot visualizing the dominant sender (source) and receiver
(target) in the MIF signaling pathway in 2D space.
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differentiation had fully started, the TSH-suppressive environment

had been established, and the patient’s prognosis was naturally

better (Figures 8C, E, F). As a group of tissues that can phagocytose

foreign bodies, bacteria, necrosis, and aging and participate in the

immune activities of the body, patients with high infiltration of

endothelial cell cluster 13 would have a better survival time

(Figure 8D). Then, we examined the association of HASCs with

clinical features. mTE3 was significantly enriched in patients

younger than 60, validating the results of the survival analysis

(Supplementary Figure S3A). Significant differences in terms of

gender were found in CD4_Tn_Treg and Intermediate_B, where

CD4_Tn_Treg was significantly enriched in female patients, while

Intermediate_B was significantly enriched in male patients

(Supplementary Figure S3B). In terms of tumor metastasis,

CD8_Tex_Teff and cDC were enriched in patients without

metastasis, revealing their role in preventing tumor metastasis

(Supplementary Figure S3C). Most of the HASCs were significantly

differentially enriched in the presence or absence of regional lymph

node metastasis, indicating that regional lymph node metastasis is an

important feature of PTC (Supplementary Figure S3D). The results of
Frontiers in Endocrinology 11
tumor T stage and AJCC stage showed the same enrichment trend of

HASCs. The changes of mTE3, nTE0, and nTE2 were not obvious,

but the immune cells CD4_Tn_Treg, CD8_Tex_Teff, and cDC

showed a fluctuating change trend, that was from high to low

(Supplementary Figures S3E, F), which reflected the dynamic

changes of immune cells in the development of cancer. However,

advanced patients usually have fewer immune cells, which is

consistent with some existing studies (37).
3.8 Consensus clustering of TCGA-THCA
based on HASCs

The HASCs were further utilized for consensus clustering

analysis. When the clustering coefficient K = 2, the clustering

effect was the best, and the internal consistency and stability of

the subgroups were good (Figures 9A–C). Cluster 1 was more

abundant in immune cells, in contrast to cluster 2, which was more

abundant in stromal cells (Figure 9D). This finding was validated by

the results of sample immune scoring and stromal scoring evaluated
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FIGURE 8

Survival analysis of HASCs in TCGA-THCA. (A–I) Kaplan–Meier curve of OS according to CD4_Tn_Treg (log-rank test: P = 0.14) (A), CD8_Tex_Teff
(log-rank test: P = 0.057) (B), cDC (log-rank test: P = 0.22) (C), endothelial cell cluster 13 (log-rank test: P = 0.047) (D), fibroblast cluster 4 (log-rank
test: P = 0.013) (E), Intermediate_B (log-rank test: P = 0.00043) (F), mTE3 (log-rank test: P = 0.13) (G), nTE0 (log-rank test: P = 0.024) (H), and nTE2
(log-rank test: P = 0.17) (I).
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by the ESTIMATE algorithm (Figures 9E, F). Previous studies have

confirmed that high infiltration of immune cells such as CD8+ T

cells and CD4+ T cells predicts better prognosis. Next, we compared

the mutation status of cluster 1 and cluster 2 and found that the

overall tumor mutation burden (TMB) of cluster 1 was higher,

indicating that cluster 1 could benefit better from immunotherapy

(38). At the same time, we found that the BRAF gene mutation

frequency was the highest in both subgroups, which was consistent
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with previous studies (6). However, we also found that cluster 1 and

cluster 2 showed different mutation patterns. Mutations in cluster 1

mainly occurred in TTN and MACF1 genes, while mutations in

cluster 2 mainly occurred in NRAS and HRAS genes of the RAS

gene family (Figures 9G, H). The IC50 value of 138 drugs in the

Genomics of Drug Sensitivity in Cancer (GDSC) database was

predicted based on the expression profile of TCGA-THCA. The

top 9 drugs with significant differences in drug sensitivity between
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FIGURE 9

Identification of different molecular subtypes based on HASCs. (A) Consensus clustering matrix when K = 2. (B) Consensus clustering CDF with K
values of 2 to 9. (C) Relative change in area under the CDF curve for K = 2. (D) Box plot of the HASC content between cluster 1 and cluster 2. (E, F)
Box plot of the difference between immune scores (E) and stromal scores (F) in subtypes based on the ESTIMATE algorithm. (G, H) SNV waterfall of
the top 20 (mutation frequency) genes in cluster 1 (n = 148) (G) and cluster 2 (n = 126) (H). *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.
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subgroups were shown here, which were BMS.536924 (Figure 10A),

parthenolide (Figure 10B), sunitinib (Figure 10C), AICAR

(Figure 10D), VX.680 (Figure 10E), paclitaxel (Figure 10F),

KU.55933 (Figure 10G), vinblastine (Figure 10H), and

BMS.509744 (Figure 10I). Among them, sunitinib, VX.680,

paclitaxel, and vinblastine are anticancer drugs, and cluster 1

showed a stronger drug sensitivity to these drugs, indicating that

this cluster had a better response to drug treatment, which was

consistent with the previous results of higher TMB. The

classification of molecular subtypes in TCGA-THCA samples
Frontiers in Endocrinology 13
allows us to more precisely target drug therapy, and this new

finding will help in the treatment of PTC patients.
4 Discussion

The present investigation addresses a critical gap in our

understanding of PTC by leveraging scRNA-seq, transcending the

limitations of conventional bulk RNA-seq methodologies that

inadequately delineate cellular heterogeneity (39, 40). By
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FIGURE 10

Variations in drug sensitivity between cluster 1 and cluster 2. (A–I) IC50 box diagram of the nine drugs with significant difference in drug sensitivity in
cluster 1 and cluster 2, respectively, in which red indicated cluster 1 and brown indicated cluster 2.
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harnessing the high-resolution capabilities of scRNA-seq, we align

with prior research highlighting its significance in PTC exploration

(41), offering a refined perspective on the disease. Given the

autoimmune nature of HT and its potential to modulate immune

cell activity—a pivotal factor in PTC management (42)—our study

underscores the necessity to elucidate HT’s impact on PTC.

Our work innovates in the approach to distinguish malignant

from non-malignant cells, a challenge traditionally addressed

through inferential CNV analyses in cancer research (25, 43–48).

To overcome the impediment of low CNV variability in PTC, we

employed K-means clustering informed by the statistical

significance of differential enrichment scores derived from TCGA

data. This novel methodology optimizes CNV-based classification,

contributing a robust tool for future scRNA-seq studies.

A pivotal discovery lies in the identification of HT-associated

specific cell populations (HASCs). Our findings resonate with the

therapeutic efficacy of TSH suppression in PTC management (49),

revealing that HASC subsets—marked by mTE3, nTE0, and nTE2

cells enriched in thyroid hormone pathways—are conducive to a

TSH-suppressive milieu, thereby affirming HT’s positive influence

on PTC progression through these cell clusters (50).

Additionally, our study elucidates the intricate interplay

between immune and stromal cells with thyroid cells,

pinpointing specific cell clusters such as CD4+ Tn Tregs, CD8+

Teff, and others, where the MIF–(CD74+CXCR4) axis emerges as

a crucial mediator. This pathway, previously implicated in PTC

immunotherapy (51), highlights immune cells’ centrality in TSH

milieu regulation, underscoring their potential as therapeutic

targets. Notably, CD4_Tn_Treg and CD8_Tex_Teff cell subsets

were found to play multiple roles in the cellular communication of

HASCs, which was consistent with previous studies on the role of

T cells in PTC (24).

A preceding meta-analysis has affirmed the differential

impacts of immune and stromal ce l l s in the tumor

microenvironment (50). Consequently, we ventured to elucidate

the prognostic implications of HASCs at the tissue level. Our

findings revealed heterogeneous effects of individual cell types on

disease prognosis, with CD4+ Tn Tregs, CD8+ Tex Teffs, and

mTE3 exhibiting elevated enrichment in M0, T1, and stage I,

concurrently associated with younger patient age. No discernible

variation was noted concerning gender or N-stage classification.

This cellular heterogeneity underscores the complexity of tumor

ecosystems, a characteristic well-documented in TCGA-THCA

cohorts (51). To further dissect this heterogeneity, molecular

stratification emerges as the premier strategy, endorsed

extensively in the literature. Thus, consensus clustering was

employed to segregate TCGA-THCA cases into two distinct

clusters (cluster 1 and cluster 2), where cluster 1 displayed

heightened HASC enrichment, indicative of a correlation with

HT, an observation corroborated by the ESTIMATE algorithm.

Additionally, our investigation of drug responsiveness revealed

cluster 1 to be more susceptible to chemotherapeutic agents like

sunitinib, VX-680, paclitaxel, and vinblastine, reinforcing the
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hypothesis that cluster 1 represents HT-positive PTC, with its

enriched immune landscape enhancing sensitivity to anticancer

therapies, a pivotal insight for therapeutic strategies.

In aggregate, our research constitutes a comprehensive

exploration of cellular subset disparities between HT-positive and

HT-negative PTC patients at the single-cell resolution. By isolating

HASCs from differential cell populations, we facilitated an in-depth

examination of intercellular communication dynamics, unearthing

regulatory mechanisms. Expanding upon prior studies, we

quantified HASC abundance in bulk transcriptomic datasets and

conducted cluster analysis on TCGA samples. This work

underscores the significance of HT in modulating PTC

progression and identifies the MIF–(CD74+CXCR4) axis as a

potential therapeutic target. While acknowledging limitations, our

study undeniably illuminates the favorable influence of HT on PTC

outcomes, thereby furnishing a fresh perspective and theoretical

foundation for subsequent inquiries.
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