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Introduction: In clinical research on pituitary disorders, pituitary gland (PG)

segmentation plays a pivotal role, which impacts the diagnosis and treatment

of conditions such as endocrine dysfunctions and visual impairments. Manual

segmentation, which is the traditional method, is tedious and susceptible to

inter-observer differences. Thus, this study introduces an automated solution,

utilizing deep learning, for PG segmentation from magnetic resonance

imaging (MRI).

Methods: A total of 153 university students were enrolled, and their MRI images

were used to build a training dataset and ground truth data through manual

segmentation of the PGs. Amodel was trained employing data augmentation and

a three-dimensional U-Net architecture with a five-fold cross-validation. A

predefined field of view was applied to highlight the PG region to optimize

memory usage. Themodel’s performance was tested on an independent dataset.

The model’s performance was tested on an independent dataset for evaluating

accuracy, precision, recall, and an F1 score.

Results and discussion: The model achieved a training accuracy, precision,

recall, and an F1 score of 92.7%, 0.87, 0.91, and 0.89, respectively. Moreover,

the study explored the relationship between PG morphology and age using the

model. The results indicated a significant association between PG volume and

midsagittal area with age. These findings suggest that a precise volumetric PG

analysis through an automated segmentation can greatly enhance diagnostic

accuracy and surveillance of pituitary disorders.
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Introduction

One of the important endocrine organs located at the base of the

brain is the pituitary gland (PG). It is responsible for the regulation

of secretion of various hormones that control many vital functions

of the body, such as growth, metabolism, reproduction, and stress

response (1–3). The PG consists of two main lobes: the anterior lobe

(adenohypophysis) and the posterior lobe (neurohypophysis),

which possess different embryological origins and endocrine

functions (1, 4).

Pituitary disorders are a heterogeneous group of conditions that

affect the structure or function of the PG or its associated organs

such as the hypothalamus (5). They can induce various clinical

manifestations depending on the type and severity of hormone

deficiency or excess, including a mass effect from pituitary tumors

or lesions (6–9). These conditions can significantly impact physical

health and quality of life including patients’ psychological well-

being (10).

Magnetic resonance imaging (MRI) is the most widely used

imaging modality to diagnose and monitor PG-related diseases such

as tumor or mood disorders (11–13) as MRI can provide

high-resolution images of the PG including its surrounding

structures, such as the optic chiasm, cavernous sinuses, and

carotid arteries (8, 14, 15). Through this modality, small changes

in signal intensity or enhancement patterns that reflect different

pathological processes of the PG can be detected (15–17).

Previous studies have reported variations in the pituitary gland

(PG) volume measured via MRI among individuals with different

health conditions (18), with it being smaller in patients with

hypochondriasis or Prader–Willi syndrome compared to healthy

individuals (19, 20) thus indicating distinct stress-induced

responses of PG. The PG volume typically increases until early

adulthood, followed by a decline, with some increase observed in

women aged 50-59 (21). During puberty, especially in girls, the PG

volume significantly increases (22). It can also undergo a drastic

increase during pregnancy, returning to its normal size within 6

months (23, 24). Some evidence suggests an association between PG

morphometry and function. Wu et al. reported a positive

correlation between PG volume and hormones in the idiopathic

central precocious puberty group (22), while Low et al. found that

patients with isolated growth hormone deficiency have a smaller PG

volume than controls due to abnormalities in the hormone system

(25). Thus, structural characteristics of the PG, such as the volume,

shape, location, and intensity features of the regions (26) using MRI

became candidates of crucial biomarkers for evaluating the

endocrine-related psychotic and physiologic function of the PG

(27, 28).

Segmentation is a prerequisite for the evaluation of the

structural characteristics of the PG, which render the quantitative

analysis of the characteristics possible. Segmentation can also allow

integration of structural and functional information by enabling

signal extraction from specific regions of interest (ROIs) in

functional MRI (fMRI) analysis (26). Thus, segmentation is vital

for valuable insights into the normal and abnormal physiology of

the PG and its related networks (26, 29).
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Majority of the previous studies used manual segmentation;

however, it is time-consuming, tedious, and prone to human errors

(30–32), and a semi-automatic method using MRI data resampling,

image filtering, and region-growing was adopted to segment the PG

efficiently (33, 34). However, even a semi-automatic segmentation is

a daunting task due to several factors (26): 1) The small size and

complex shape of the PG; 2) the anatomical and pathological

variations among individuals; 3) the low contrast between

different tissues; and 4) the lack of standardized criteria or

protocols for segmentation.

Recently, deep-learning-based methods for segmentation of the

PG, which could cope with those challenging factors, have been

developed (9, 35, 36). Deep learning is a branch of machine learning

that uses artificial neural networks with multiple layers to learn

complex patterns or features from a large amount of data (37, 38).

Deep learning has demonstrated remarkable performance in

various image processing tasks such as classification, detection,

and especially segmentation (38). These deep-learning-based

segmentation methods have exhibited robust performances for an

abnormal PG such as pituitary adenomas with varying architectures

(9, 35, 36). However, those methods are not applicable to normal

PG segmentation although the morphometry of the normal PG is

equally important for the evaluation of health conditions such as

obesity, growth disorders, and abnormal morphometry such as

adenomas (2, 5, 17, 25). A recent report indicated that obese

patients exhibited a larger PG volume compared to both normal

and overweight subjects (5). This suggests that the morphometry of

the PG could serve as a biomarker for predicting dysfunction in the

pituitary system. The segmentation of the normal PG morphometry

can provide a distribution within a specific control group, serving as

a baseline for calculating abnormalities.

In this study, we aimed to develop and evaluate a deep-learning-

based method for automated segmentation of the normal PG from

MRI scans, which is referred to as deepPGSegNet. We trained a

dataset of normal university student MRI images employing a

three-dimensional (3D) UNet architecture with a limited ROI

strategy. The proposed model was robustly evaluated using dice

coefficient (DICE) loss, Interaction of Union (IoU), and DICE

during five-fold cross-validation. Additionally, we estimate the

association between PG morphologies and chronological ages

using an external dataset of MRI images of normal participants.
Methods

Participants for model construction
and evaluation

A total of 153 right-handed university students (55 male, 98

females; age range: 20–23 years) participated in this study. They had

no neurological or medical problems and provided informed

consent. We used 143 out of 153 participants as participants for

the creation and evaluation of the PG segmentation model. The ten

participants randomly selected from a pool of 153 were used to test

the segmentation model.
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Participants for regression of PG length
with chronological age

A total of 29 participants (11 males, 18 females; age range: 21–

68 years) were included in this study, with four or more participants

for each age group when the age interval was set at 10 years. They

had no neurological or medical problems and provided informed

consent. The study was approved by the Institutional Review Board

of Tohoku Fukushi University. We used 29 participants for the

evaluation of PG morphometry on chronological ages.
MRI parameters

All 182 participants were scanned using a 3T Skyra-fit MRI

scanner with a 20-channel head coil. We acquired T1-weighted

(T1w) images through a magnetization prepared rapid acquisition

with gradient echo sequence (repetition time = 1900 ms, echo time

= 2.52 ms, flip angle = 80°, number of slices = 192, slice thickness

= 1 mm, matrix = 256 × 256, and in-plane voxel resolution = 1

× 1 mm2).
Training data preparation

A dataset of MRI brain images from 153 participants using

ITK-SNAP software (http://www.itksnap.org) that has been widely

used in medical imaging analysis was manually segmented. The

dataset was divided into two sets: a training set of 143 participants

and a test set of 10 participants. An augmentation using random

affine and random elastic deformation methods was employed to

the training dataset to expand the sample size of the training data

(Figure 1). To determine the location of the center voxel for the

training ROI, we calculated the average x, y, and z-axis coordinates

of the manually segmented PG images.
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Model training

The size of the training ROI for the PG was constrained to a

32 × 32 × 32 voxel cube (Figure 2), centered around predefined

coordinates. The predefined coordinates were estimated by

averaging 143 MRI images of manually segmented PGs (Figure 3).

To train our model, we utilized the 3DU-Net architecture (39), with a

batch size of 16, for a total of 50 epochs, and an initial learning rate of

0.001 (Figure 4). The performance of the training model was

evaluated through DICE loss, IoU, and DICE during the five-fold

cross-validation.
Model evaluation

Using an independent test dataset comprising of 10 participants,

we assessed our model. We generated a confusion matrix and an

average receiver operating characteristic curve (ROC) curve using the

scikit-learn Python package. Furthermore, we calculated the average

accuracy, precision, recall, and F1-score of the trained model.
Regression analysis of PG morphologies
with chronological age

We employed the proposed model to an external dataset

consisting of 29 participants of varying chronological ages to

examine the effect of age on PG morphometry. We computed two

morphometric measures: the area of the mid-sagittal PG and the

volume of the entire PG. One participant was excluded due to an

abnormal brain size among 29 participants via interquartile range

method (40). Subsequently, a linear regression analysis was

performed, adjusted for sex, to assess the relationship between

chronological ages and the PG morphologies. The statsmodels

python package was used for the analysis (41).
FIGURE 1

Data augmentation using random affine transformation and random elastic deformation. Red cluster indicates a manually segmented pituitary gland.
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Results

Our model showed a robustly high performance, as evidenced

by the high average DICE and IoU scores and low DICE losses

during the five-fold cross-validation (Table 1). The average DICE
Frontiers in Endocrinology 04
losses gradually declined from 0.14 in the first fold to 0.02 in the

final fold. Concurrently, both the average IoU and DICE scores

increased from the first fold to the final fold, reaching 0.95 and 0.98

respectively. The final model that demonstrated the lowest loss and

highest DICE and IoU scores was evaluated using independent test
FIGURE 3

Selected patch with 32 × 32 × 32 size from predefined coordinates (x = 128, y = 137, z = 131). A probability map of pituitary gland segmentation.
White line indicates the boundary of an averaged pituitary gland and the colormap reflects the probability map derived from all training datasets.
FIGURE 2

Selected patch with 32 × 32 × 32 size from predefined coordinates (x = 128, y = 137, z = 131).
FIGURE 4

Three-dimensional U-Net architecture.
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datasets of 10 participants. The model revealed an accuracy of

92.7%, a precision of 0.87, a recall of 0.91, and an F1 score of 0.89,

representing an ROC area of 0.97 (Figure 5).

In PG morphometry analysis, significant differences were

found between male and female groups in both the area of the

mid-sagittal PG and the volume of the entire PG (p < 0.005 for

the area and p < 0.001 for the volume) (Figures 6A, 7A). The

female group showed a significantly larger PG in terms of both

area and volume compared to the male group.

The linear regression adjusted for sex showed statistical

significance in both the area of the mid-sagittal PG and the

volume of the entire PG (p = 0.018 for the area and p = 0.003 for

the volume) (Figures 6B, 7B). Both the area and volume revealed

significant negative relationships with the chronological ages

(coefficient = -0.02 for the area and coefficient = -0.46 for

the volume).

Discussion

Our model revealed robustly high performances in PG

segmentation, as shown from the accuracy, precision, recall, and

F1 scores. The high performance of the proposed model could be

achieved via several strategies designed to overcome the limitations

of the 3D U-Net architecture, which requires high-specification

GPUmemory. First, we constrained the training data size to 32 × 32

× 32 with a predefined location of the center voxel. The PG is a
Frontiers in Endocrinology 05
small brain structure of <10 mm (21) and located at the base of the

brain near the optic chiasm with minimal variability in its location

(Figure 3). Patching the training data can decrease the time for

training the model to acquire the best performances and the GPU

memory requirements, as suggested in a previous study (42).

Secondly, data augmentation overcame the small sample size of

the training model and enhanced the model performance. We

adopted a random affine transformation and elastic deformation

that have been widely used to train models (43). Our augmented

data revealed a slightly different shape and size without

unanticipated changes (Figure 1). It was expected that our data

augmentation would allow us to better represent realistic data

patterns leading to high segmentation performance for new data.

The proposed model accurately segmented the PG from new

data, and the segmented PG morphology from the external dataset

demonstrated a significant association with the chronological age.

Two PG morphologies, one is an area of the mid-sagittal PG, and

the other is the volume of the entire PG, were associated with sex

and age, that is, both the area and volume exhibited significant

differences between the female and male groups. This is supported

by previous studies that reported that sex-specific morphometry

was derived from different hormone systems (5, 44, 45).

Furthermore, the negative association of those morphologies with

chronological age was also consistent with previous reports

(44, 46, 47) in which the height and cross-sectional area of the

PG were greater in young adults than in old adults, which reflected

the chronological changes of the endocrine activity. The area and

volume demonstrated similar results although significant

associations of the height in the PG may not be found due to the

smaller sample size of the regression analysis than previous studies

(44, 47).

This study has some limitations. First, we did not compare the

performances of the segmentation model among various deep-

learning architectures such as the fully convolutional network or

VNet (48). The proposed model could be improved by adopting

other deep-learning strategies with optimal hyperparameters

although the current model revealed excellent performance.

Secondly, our model was trained by a limited participant group of
TABLE 1 The averaged performance of the training model during the
five-fold cross-validation.

Fold Averaged Loss Averaged IoU Averaged DICE

1 0.14 0.72 0.83

2 0.07 0.85 0.92

3 0.04 0.90 0.95

4 0.03 0.93 0.96

5 0.02 0.95 0.98
A B

FIGURE 5

Model performance. (A) Receiver operating characteristic curve of the proposed model with precision, recall, f1 score, and accuracy. (B) Pituitary
gland segmentation using the proposed model.
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normal adults. The proposed model’s robustness in segmenting a

wide range of new data types can be enhanced through further

training with new datasets, such as those from the elderly and

children. The inclusion of various MRI images of the PG with

different resolutions, contrasts, and orientations may contribute to

the validity of the segmentation in terms of qualitative and

quantitative aspects.

Overall, despite the study limitations, our novel model

demonstrates significant potential for the estimation of health

conditions (49). The evaluation of a health condition is crucial for

patients to maintain or improve their quality of life through early

prevention and intervention. For example, individuals concerned

about obesity could undergo an MRI scan to assess any

abnormalities in the volume or height of the PG. Patients

exhibiting greater abnormalities compared to controls could

undergo interventions to prevent worsening health conditions.

Furthermore, the capability of our current model, which has been

trained using data from normal adults, can robustly and efficiently

segment a large volume of PG data, which could potentially be

utilized to construct a normal distribution of PGs (21). This type of

distribution can render the identification of a biomarker for obesity,

which is one of the most significant societal challenges (5), and a

biomarker for the growth hormone system for child development
Frontiers in Endocrinology 06
that makes detection of hormonal changes possible through the

evaluation of the PG morphometry.

In summary, our novel method makes automatic segmentation

of the PG possible while demonstrating high performance and

significant potential for precise volumetric analysis of the PG. The

proposed model can be used to derive a crucial biomarker from

anatomical MRI data for various endocrine-related health

conditions, which may lead to the development of an accurate

assessment tool to enhance the quality of life by facilitating early

detection and intervention for endocrine disorders.
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FIGURE 6

Evaluation of the area of the mid-sagittal pituitary gland involved: (A) A comparison between the female and male groups, and (B) an assessment of
the association between the area and chronological ages.
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FIGURE 7

Evaluation of the volume of the entire pituitary gland involved: (A) A comparison between the female and male groups, and (B) an assessment of the
association between the volume and chronological ages.
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