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Background: The gut microbiota plays a pivotal role in various metabolic

disorders. Orlistat has shown beneficial effects on weight loss and metabolism,

but its direct impact on the gut microbiota has not been extensively reported.

Thus, this study aimed to explore the effects of orlistat on the gut microbiota in

mice with high-fat diet-induced obesity.

Methods: Thirty male C57BL/6J mice were randomly divided into a normal

control group (fed a standard diet, N), and a model group (fed a 60% fat diet). A

body weight exceeding the basal body weight by 130% defined a successfully

established obesity model. The model group was further divided into a positive

control group (fed a 60% fat diet, F), and an orlistat group (fed a 60% fat diet and

treated with orlistat at 30 mg/kg, bid, A), with 10 mice in each group. The

parameters assessed included weight loss, fasting plasma glucose (FPG) levels,

and intestinal hormones. Gut microbiota diversity was analyzed using high-

throughput sequencing.

Results: Orlistat treatment significantly reduced body weight and FPG levels, and

increased glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP)

levels in obese mice. High-fat diet-fed mice exhibited increasedmicrobial diversity

and richness, which were significantly diminished by orlistat administration.

Additionally, orlistat treatment led to a significant decrease in the proportion of

Bacteroidetes and an increase in the proportion of Helicobacter and Allobaculum.

Notable shifts in the abundances of Bacteroideteswere observed, correlating with

changes in several functional metabolic pathways, including “cell motility” and

“neurodegenerative diseases.” Co-occurrence network analysis suggested a more

complex bacterial network in orlistat-treated mice, alongside a reduction in the

density of bacterial correlation networks.

Conclusions: Our study demonstrates that orlistat’s beneficial effects on body

weight, FPG, GLP-1, and GIP are likely mediated through modifications in the gut

microbiota composition.
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Introduction

Obesity is a metabolic syndrome influenced by various factors,

including diet and environment. Since 1980, the incidence of

obesity has been escalating rapidly; nearly 2 billion adults are

overweight, with more than half qualifying as obese (1). World

Health Organization statistics indicate that overweight and obesity

are linked to over 280,000 deaths annually (2). The “Report on the

Nutrition and Chronic Disease Status of Chinese Residents” reveals

that over 50% of Chinese adults are overweight or obese. Projected

trends suggest that by 2050, the prevalence could rise to 40% among

adult females, 60% among adult males, and 25% among children

(3). Obesity is a principal contributor to other metabolic disorders,

such as type 2 diabetes, cardiovascular diseases, and non-alcoholic

fatty liver disease, all associated with increased mortality risk (4–6).

Consequently, it is imperative to devise effective strategies to

manage overweight and obesity to prevent chronic non-

communicable diseases.

The gut microbiota is involved in obesity development, as it

significantly affects the metabolic health of the human host. Gut

microbiota dysbiosis can lead to various metabolic disorders,

including type 2 diabetes, lipid abnormalities, obesity, and non-

alcoholic fatty liver disease (7). In mammals, most microorganisms

are integral to a complex microbial ecosystem essential for host

immunity, metabolism, and productivity (8, 9). Obesity-related

microbial dysbiosis is characterized by a decline in overall

microbial diversity, an upsurge in sulfate-reducing bacteria and

pathogens, and a reduction in beneficial SCFA-producing bacteria

that promote health (10). The metabolic activities of the gut

microbiota, such as influencing fat deposition, intestinal

permeability, and chronic low-grade inflammation, may

significantly contribute to obesity-related pathogenesis (11).

Previous research has indicated a change in the ecological

makeup of the gut microbiota in obese individuals, with an

increased Firmicutes/Bacteroidetes ratio (12, 13). Akkermansia

muciniphila has been identified as a pivotal component of the gut

microbiota, playing a vital role in metabolic disorders, including

obesity (14). Extensive research studies have been performed to

identify interventions that can modulate the gut microbiota and

yield positive effects on obesity (15–18).

The link between gut microbiota and obesity as well as other

metabolic syndromes is becoming increasingly clear. Natural

products are valued for their beneficial health effects in humans.

An increasing number of studies have shown that the anti-obesity

bioactivities of many natural products are dependent on the gut

microbiota (19–22). Orlistat, a reversible inhibitor of gastric and

pancreatic lipases, is extensively employed in the clinical

management of obesity and its related complications. Long-term

usage of Orlistat for over 12 months has been associated with an

average weight reduction of approximately 2.9% (23). The

hypothesized mechanism of Orlistat’s action includes impeding

triglyceride hydrolysis, which leads to a decrease in fat absorption

by about 30% (24). Given Orlistat’s commendable safety profile, it

has gained approval for prolonged use in the weight management of

individuals with obesity (25, 26). However, the effects of Orlistat on

gut hormones and microbiota require further investigation. The
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primary hypothesis of this study is that Orlistat administration will

modulate the gut microbiota composition in obese mice, leading to

beneficial effects on body weight, fasting plasma glucose (FPG)

levels, and intestinal hormones such as glucagon-like peptide-1

(GLP-1) and gastric inhibitory polypeptide (GIP). To test this

hypothesis, we evaluated the changes in gut microbiota diversity

and composition, as well as their correlation with metabolic

parameters, in mice with high-fat diet-induced obesity.
Methods

Animals and treatments

Eight-week-old male C57BL/6J mice, weighing 18–20 g and

classified as specific-pathogen-free (SPF), were housed in an SPF

animal facility. The facility maintained a controlled environment

with a room temperature of 22–24°C, 60% humidity, and a 12-hour

light/dark cycle. Mice were health-screened before the start of the

experiment to ensure they were free from any significant diseases or

abnormalities. All mice were provided by The Animal Center at the

Second Hospital of Harbin Medical University (Harbin, China).

The experimental procedures adhered to the guidelines set forth by

the Harbin Medical University’s Guide for the Care and Use of

Laboratory Animals, and all protocols were approved by the

Institutional Animal Care and Use Committee (IACUC). For one

week, the mice were acclimatized and fed a complete diet

comprising 40–43% corn, 26% bran, 29% bean cake, 1% salt, 1%

bone meal, 1% lysine, 1% vitamins, and trace elements. During this

period, their basal body weights were recorded to establish a

baseline. After acclimatization, the mice were randomly divided

into three groups: a normal control group (N, n=10) and a model

group (n=20). The normal control group continued to receive the

standard diet, while the model group was switched to a high-fat diet.

The high-fat diet consisted of 60% fat and was composed of 2 kg of a

mixture that included 1.2 kg of lard, 100 g of milk powder, and 0.8

kg of maltose, along with other components to ensure a balanced

but high-fat intake. Following the establishment of the model, the

20 model mice were further randomly allocated into two subgroups:

a positive control group (F, n=10) and an orlistat treatment group

(A, n=10). The positive control group (F) received the high-fat diet

without any additional treatments, while the orlistat group (A)

received the high-fat diet supplemented with orlistat, a known anti-

obesity drug, to evaluate its effects on weight gain and

metabolic parameters.

Initially, the A received a 60% fat diet along with orlistat (30mg/kg,

twice daily, bid). The orlistat, provided by Hangzhou Zhongmei

Huadong Pharmaceutical Co. Ltd. (China), was thoroughly

pulverized and mixed with 0.5% carboxymethylcellulose (CMC) to

ensure a uniform suspension. The mixture was subjected to repeated

pipetting and ultrasonication to achieve a homogenous orlistat

suspension, ensuring consistent dosing throughout the treatment

period. The F group received a 60% fat diet and an equivalent

volume of 0.5% CMC, which served as a vehicle control. This

ensured that any observed effects in the orlistat group could be

attributed to the drug itself rather than the vehicle. The N received a
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standard basic feed and an equivalent volume of distilled water,

maintaining consistency in the experimental design. The treatment

period spanned 9 weeks, during which all groups had unrestricted

access to water and food.
Body weight, fasting plasma glucose,
intestinal hormones

Body weights were recorded weekly at the same time to ensure

consistency and minimize variability. Initially, all mice underwent a

16-hour fast to standardize their metabolic state, followed by a 9-

week feeding regimen according to their respective dietary groups.

Capillary blood samples were collected from the distal third of the

mice’s tails at baseline and after 9 weeks. Blood collection was

performed under rapid ether anesthesia to minimize stress and

discomfort. FPG levels were measured using a blood glucose meter

(Jiangsu Yuyue Medical Equipment & Supply Co. Ltd., China).

At the conclusion of the experiment, anesthesia was induced

with 3% isoflurane mixed with 30% oxygen and 70% nitrous oxide

using an anesthetic chamber. Anesthesia was maintained with 1.5%

isoflurane via a facemask to ensure that the mice remained fully

anesthetized throughout the procedure. Under full anesthesia,

cardiac blood collection was performed to obtain a sufficient

volume of blood for further analysis. The mice were then

promptly sacrificed by cervical dislocation to ensure a quick and

painless death, minimizing any potential distress and ensuring the

accuracy of the experimental results. Heart blood samples were

collected, and serum was isolated by allowing the blood to clot at

room temperature for 4 hours. The clotted blood was then

incubated at 4°C for 12 hours and subsequently centrifuged at

3,000 rpm for 15 minutes to separate the serum. The isolated serum

was stored at -80°C until further analysis to maintain the integrity of

the samples. Serum GLP-1 and GIP levels were determined using an

enzyme-linked immunosorbent assay (ELISA) kit (Bioswamp,

Wuhan, China).
DNA extraction of fecal bacteria

From the onset of the study (week 0) to its conclusion (week 9),

mice from the three groups were placed into respective metabolic

cages at predetermined intervals each week. Fresh feces from 10

mice across the groups were collected within 2 hours using sterile

forceps, then stored in aseptic centrifuge tubes. The tubes were

sealed and labeled with sealing film, and the samples were

immediately frozen at -80°C to preserve the integrity of the

microbial DNA. Fecal samples collected at weeks 0, 3, 6, and 9

were used for DNA analysis. DNA was extracted from the fecal

samples using the QIAamp® Fast DNA Stool Mini Kit (QIAGEN

Biotechnology) according to the manufacturer’s instructions. The

purity of the extracted DNA was assessed by measuring the

absorbance of 12 randomly selected DNA samples using a

Thermo NANODROP 2000C DNA detector. The DNA samples

were then stored at -20°C in labeled centrifuge tubes to prevent

degradation. The Qubit 2.0 DNA test kit was employed to quantify
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the isolated genomic DNA, which was subsequently used for PCR

amplification. The PCR utilized primers fused with V3-V4 universal

primers compatible with the MiSeq sequencing platform.

The specific primers used were: i) 341F primer: CCCTA

CACGACGCTCTTCCGATCTG CCTACGGGNGGCWGCAG;

805R primer: GACTGGAGTTCCTTGGCACCCGAGAA

TTCCAGACTACHVGGGTATCTAATCC. PCR products from

bacterial and archaeal DNA, with amplicon sizes over 400 bp,

were treated with 0.6x volume of Agencourt AMPure XP magnetic

beads to purify and size-select the DNA fragments. For fungal PCR

products and other PCR products with amplicon sizes under 400

bp, 0.8x the volume of magnetic beads was used. This step ensures

the removal of primer dimers and other non-specific PCR products,

resulting in high-quality DNA for sequencing. The Qubit 2.0 DNA

detection kit was used to accurately quantify the recovered DNA.

The purified PCR products were then equally mixed at a 1:1 ratio to

achieve a total of 10 ng of DNA per sample. This pooled DNA was

prepared to a final sequencing concentration of 20 pmol,

ensuring optimal conditions for subsequent sequencing on the

MiSeq platform.
High-throughput sequencing analysis

First, sample sequences were differentiated using barcodes. Each

sample sequence then underwent a rigorous quality control process

to remove non-specific amplifications and chimeric sequences

(27, 28). Next, the raw reads were demultiplexed and allocated to

their respective samples based on the barcode information. Vsearch

(Version 2.10.4) was then utilized to merge paired-end reads from

the initial DNA fragments. The merging process helps to

reconstruct the full-length sequences from the shorter reads,

which is essential for accurate downstream analysis. The merged

raw tags were further refined into clean tags through the Vsearch

quality control process. This refinement includes filtering out low-

quality reads, trimming adapter sequences, and removing any

remaining artifacts. The resulting clean tags are of high quality

and suitable for subsequent analyses. To eliminate chimeric

sequences, USEARCH (version 5.2.236) was employed using the

de novo method. This approach identifies and removes chimeras

that may have been formed during the PCR amplification process.

Additionally, the Silva database was used to further screen and

remove any remaining chimeric sequences (29).

Operational taxonomic units (OTUs) were analyzed by

clustering sequences based on sequence similarity. Sequences

were grouped into OTUs using a ≥97% similarity threshold,

which is a common criterion for defining identical OTUs (30). A

Venn diagram was used to display the number of shared and unique

OTUs across the three groups, providing a clear illustration of their

similarities and overlaps. This visual representation helps in

understanding the distribution and uniqueness of OTUs among

the different sample groups. The diversity of OTUs and their

similarity indices were also evaluated to provide a quantitative

measure of the microbial community structure. Additionally, a

sample clustering tree diagram (dendrogram) was generated to

provide a visual representation of the similarity and disparity
frontiersin.org

https://doi.org/10.3389/fendo.2024.1337245
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xue et al. 10.3389/fendo.2024.1337245
among the samples. The dendrogram, depicted through its

branching structure, shows how closely related the samples are to

one another.

The alpha (within samples) and beta (among samples)

diversities were analyzed using in-house Perl scripts, and the

ggplot2 package in R (Version 3.2) was used for visualization. For

each OTU, representative sequences were selected, and the

GreenGenes database (Release gg_13_5) was used for taxonomic

annotation. Dominant species classification based on abundance in

each sample was performed using GraPhlAn 0.9.7 and iTOL 3.2.1

(31, 32). The predicted functional genes were categorized into

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

and Kyoto Orthology (KO) groups. The differences in these

functional profiles among the three groups were compared using

STAMP (33). To determine the association between enriched taxa

and significant functional metagenomes, Spearman’s correlation

coefficients were calculated.

Principal Component Analysis (PCA) was employed to reduce

the dimensionality of the dataset while preserving the most

influential features that account for the variation. This method

helps to discern key elements and structures, streamlining the

complexity and elucidating underlying patterns. The PCA was

implemented using the vegan package in R (Version 3.2).

Additionally, a co-occurrence network analysis was conducted to

explore the relationships and interactions between different

microbial taxa. The nine microbiota OTUs with the highest

relative abundances were selected and consolidated based on the

lowest common taxonomy assignments at the genus level.

Spearman correlation analysis was performed using non-rarified

sequence data to identify significant associations between bacterial

genera. An edge (connection) was created between two bacterial

genera if the Spearman correlation coefficient met the criteria of P <

0.05 and |r| > 0.7. These thresholds ensure that only strong and

statistically significant correlations are included in the network. The

network analysis was conducted using R software (Version 3.2),

which provides robust tools for visualizing and interpreting the

complex relationships within the microbial community.

To trace the biological evolutionary sequence and comprehend

potential mechanisms, a phylogenetic tree was constructed to

analyze sequence differences at the taxonomic level. The multiple

sequence alignment was performed using MUSCLE (Version

3.8.31) (34), which is a widely used tool for aligning multiple

sequences with high accuracy and speed. Boxplots were generated

to compare the distance distributions within and among groups.

This visualization, created using R (Version 3.2), helps to illustrate

the variability and central tendency of the distances, making it

easier to identify any significant differences in the distribution of

sequence distances between and within the sample groups. Lastly,

the Linear Discriminant Analysis Effect Size (LEfSe) method was

employed to identify differences in the relative abundance of taxa

across the groups (35). LEfSe is a powerful tool that combines

statistical significance with biological relevance by using linear

discriminant analysis (LDA) to detect features (taxa) that are

significantly different between groups.
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Statistical analysis

Body weight and metabolic indices are presented as mean ±

standard deviation. One-way ANOVA was applied to compare the

levels of body weight, FPG, intestinal hormones among different

groups, Post-hoc pairwise comparisons were conducted using the

Bonferroni correction method to control for the family-wise error

rate and to identify specific differences between groups. All P values

reported are two-tailed, with a significance threshold established at

0.05. Quantitative statistical analyses were executed using R

software (Version 3.2).
Results

Body weight, fasting plasma glucose,
intestinal hormones

The average weekly weight gain in the A group (0.48 ± 0.13 g vs

0.21 ± 0.12 g, P<0.0001) and the F group (0.78 ± 0.14 g vs 0.21 ±

0.12 g, P<0.0001) was significantly higher compared to the N group.

In addition, the weight gain in the A group was significantly lower

than that in the F group (0.48 ± 0.13 g vs 0.78 ± 0.14 g, P<0.0001;

Figure 1). A significant elevation in FPG levels was observed in both

F and A groups, with the A group showing a comparatively lower

increase in FPG than the F group (Figure 1). Moreover, the levels of

GLP-1 and GIP in the F and A groups were significantly reduced

compared to the N group. Notably, the A group showed increased

levels of GLP-1 and GIP relative to the F group, independent of

weight changes (Figure 2).
High-throughput sequencing analysis for
gut microbiota

From 12 fecal samples (four from each group), a total of 360,612

valid sequences were procured. After data trimming and quality

control, 343,894 high-quality sequences were retained, averaging

28,658 sequences per sample. Figure 3A displays the similarity and

overlap in the number of OTUs across the three groups, while the

clustering tree diagram shown in Figure 3B demonstrates a high

similarity between the F0 and N0 groups. The microbial diversity

and richness were higher in the F group compared to the N group.

Nevertheless, orlistat treatment led to a decline in both diversity and

richness, as determined by the Shannon index (Figure 4A) and

Richness index (Figure 4B). Echoing the trends seen in Figure 3A,

the Rarefaction curve suggested lower Shannon index values

(Figure 4C) and a reduced count of OTUs (Figure 4D) in the

orlistat-treated mice. These findings suggest that a 60% fat diet

correlates with increased microbial diversity and richness, while

orlistat administration can diminish these parameters. The

microbial composition of fecal samples from the A, F, and N

groups was comparatively analyzed, and bacteria of relatively high

abundance are illustrated in Figure 5. A notable decrease in
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FIGURE 1

Average weekly weight change in three mice groups (left). N: Normal Control; F: Nutritional Obesity-Treatment Group; A: Nutritional Obesity Drug
Treatment Group. F vs. N ***p<0.0001; A vs. F ###p<0.0001; A vs. N ^^^p<0.0001. Fasting plasma glucose (FPG) level comparison between week 0
and week 9 within the same group (right) N: Normal Control; F: Nutritional Obesity-Treatment Group; A: Nutritional Obesity Drug Treatment Group.
G0: the first week, G9: the ninth week. ▲p<0.05, ▲▲▲▲p<0.0001. One-way ANOVA was used to evaluate the variations in body weight across
different groups, followed by post-hoc pairwise comparisons using the Bonferroni method.
FIGURE 2

Comparison of various intestinal hormones between the three groups in the ninth week. N: Normal Control; F: Nutritional Obesity-Treatment
Group; A: Nutritional Obesity Drug Treatment Group. F vs. N ***p<0.0001; A vs. F #p<0.01, ##p<0.001; A vs. N ^^^p<0.0001. One-way ANOVA was
applied to compare the levels of intestinal hormones among different groups, followed by post-hoc pairwise comparisons using the
Bonferroni method.
FIGURE 3

Venn diagram (A) and clustering tree (B) showing the similarity and overlap of operational taxonomic units (OTUs). The Venn diagram and clustering
tree were generated using R software (Version 3.2).
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Bacteroidetes proportion was noted in mice fed on a 60% fat diet,

which was further reduced by orlistat treatment. In contrast, the

Helicobacter proportion declined in the F group, whereas orlistat

treatment was linked to a higher abundance of Helicobacter.

Additionally, the proportion of Allobaculum increased in

response to a 60% fat diet, with a subsequent increase upon

orlistat administration.

Figure 6 illustrates the taxonomic tree of gut microbial

composition, revealing shifts in the abundance of Bacteroidetes,

which bifurcate into two branches. These branches include genera

such as Macellibacteroides, Tannerella, Odoribacter, Barnesiella,

Coprobacter, Alloprevotella, Alistipes, and Bacteroides.

Functional variations in the gut microbiota across the

groups are depicted in Figure 7. Notably, the “cell motility” and

“Neurodegenerative Diseases” pathways were substantially enriched

in the orlistat-treated mice, whereas the “Glycan Biosynthesis and
Frontiers in Endocrinology 06
Metabolism” and “Transport and Catabolism” pathways were less

expressed in these mice.

The PCA outcomes, shown in Figure 8, indicate alterations in

the OTU similarity in the F group, which appeared to normalize

following orlistat treatment. Spearman’s rank correlations were

employed to examine the co-occurrence patterns of microbial

communities at the phylum level, aiming to discern shifts in

bacterial ecosystem structure (Figure 9). A relatively intricate

network of correlations was observed in the microbiota of

orlistat-treated mice, in contrast to a more simplified network in

mice fed on a 60% fat diet. Orlistat was also correlated with a

reduced density in the bacterial correlation network.

The phylogenetic tree results are displayed in Figure 10. Distances

between multiple samples within the three groups were computed,

and the variance in these distances was assessed within as well as

across groups (Figure 11). The findings indicated an expanded
FIGURE 4

Impact of orlistat on the gut microbial composition in obese mice. Pairwise comparisons of a-diversity, including (A) Shannon index and
(B) Richness index, across the N, F, and A groups. (C) Rarefaction curves for species diversity in the three groups. (D) Rarefaction curves for species
richness (observed OTUs) in the three groups. The plateau of the curves indicates sufficient sequence sampling. One-way ANOVA was applied to
compare the a-diversity indices among different groups, followed by post-hoc pairwise comparisons using the Bonferroni method.
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FIGURE 5

Taxonomic composition of microbial communities in fecal samples across three groups. The taxonomic composition was determined using R
software (Version 3.2).
FIGURE 6

Phylogenetic tree representing the gut microbial composition of fecal samples across three groups. The phylogenetic tree was constructed using
MUSCLE (Version 3.8.31) for multiple sequence alignment, and the resulting tree was visualized using R software (Version 3.2).
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sample distance within the model group, while the range of

fluctuation in the A group was akin to that of the N group. The

LEfSe results highlighted the significance of Coprobacter,

Parabacteroides, Acetatifactor, Lachnospiraceae, Romboutsia, and

Peptostreptococcaceae in mice on a 60% fat diet. After orlistat

treatment, differences were observed in Actinobacteria ,

Macellibacteroides, Parasutterella, Sutterellaceae, Burkholderiales,

and Betaproteobacteria (Figure 12).
Discussion

Obesity is mediated by chronic inflammation, stemming from

an imbalance in the body’s energy homeostasis—where energy

intake surpasses energy expenditure. In this study, obesity was

successfully induced in mice fed on a 60% fat diet. The

administration of orlistat, however, significantly curtailed the

average weekly weight gain and normalized FPG levels. It was

observed that a 60% fat diet resulted in decreased levels of GLP-1

and GIP, whereas orlistat use led to an increase in these hormones,
Frontiers in Endocrinology 08
regardless of body weight changes. Notably, an imbalance in gut

microbiota is intricately linked to obesity (36). Our research

investigated the effects of orlistat on the gut microbiota in obese

mice. Key findings include: (1) orlistat significantly reduced the

enhanced microbial diversity and richness caused by the high-fat

diet; (2) the proportion of Bacteroidetes decreased with the high-fat

diet and was further reduced by orlistat; (3) Helicobacter, which

decreased with the high-fat diet, increased with orlistat treatment;

(4) Allobaculum increased with the high-fat diet and was further

augmented by orlistat; (5) orlistat use correlated with enrichment in

“cell motility” and “Neurodegenerative Diseases” pathways; (6)

orlistat normalized the altered OTU similarity observed in high-

fat diet mice; and (7) co-occurrence network analysis showed a

more complex but less dense bacterial network in orlistat-

treated mice.

Several studies have highlighted the modified role of gut

microbiota in mice following a high-fat diet (37–39). Ke et al.

aimed to evaluate the influence of orlistat on the gut microbiota of

C57BL/6J obese mice fed with a high-fat diet. Their findings

suggested that orlistat improved body weight, plasma cholesterol,

and glucose tolerance, while also reducing microbial abundance

(37). Jin et al. investigated the anti-obesity effects of orlistat and

ezetimibe, revealing that these drugs exert distinct anti-obesity

effects by modulating the gut microbiota in different ways (38).

Deng et al. reported an association between increased water intake,

serum triglyceride levels, lower glucose tolerance, and the genus-

level abundance of Roseburia, Bacteroides, Faecalibacterium,

Coprobacillus, and Akkermansia, noting differences between the

effects of psyllium husk and orlistat (39). Despite these valuable

insights, the specific mechanisms by which orlistat affects the gut

microbiota and subsequently influences intestinal hormones in

obese mice have not been fully elucidated. Our study addresses

this gap by demonstrating that orlistat modulates the gut
FIGURE 7

Heatmap illustrating enriched KEGG metabolic pathways from the
clustering of the three groups. The heatmap was generated using R
software (Version 3.2), and the enrichment analysis was performed
using the clusterProfiler package.
FIGURE 8

Principal component analysis (PCA) for the similarity of OTUs. PCA
was performed using the vegan package in R (Version 3.2) to reduce
the dimensionality of the dataset while preserving the most
influential features.
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microbiota, leading to beneficial effects on body weight, FPG levels,

and the hormones GLP-1 and GIP.

Our study confirmed that orlistat intake correlated with

reduced body weight and FPG levels, aligning with findings from

published research studies. This correlation might be attributed to

enhanced insulin sensitivity following weight loss (40).

Additionally, we noted a decrease in intestinal hormone levels in

mice fed on a 60% fat diet but observed an increase in GLP-1 and

GIP levels with orlistat administration. Several factors could be

responsible for these outcomes. First, GLP-1 can suppress appetite

via the central nervous system, slowing down gastric emptying and

promoting satiety. Furthermore, elevated GLP-1 levels can improve

the function of islet cells, contributing to body weight reduction.

The association of increased GLP-1 levels with orlistat usage implies

a significant role for the GLP-1 pathway in orlistat’s impact on body

weight (41). Second, GIP downregulation is linked to diminished

insulin secretion. However, orlistat may modulate GIP’s biological

activity, influencing FPG outcomes (42).

Regarding the composition of gut microbiota, an increase in

microbial diversity and richness was observed in mice fed on a 60%

fat diet. This observation is in contrast to findings from a previous

study (37). The relationship between microbial diversity, richness, and

high-fat diets is complex; our study utilized a specific 60% fat diet

(including 2 kg of complete diet, 1.2 kg of lard, 100 g of milk powder,

0.8 kg of maltose, etc.), which varied from the diet employed in the
Frontiers in Endocrinology 09
referenced study (37). Consistent with the prior study (37), orlistat

administration was linked to a reduction in microbial diversity and

richness. Additionally, obese mice treated with orlistat showed an

increased presence of Actinobacteria and Proteobacteria. The

administration of orlistat also led to a decrease in the proportion of

Bacteroidetes, known for their immunomodulatory effects on the host.

The dysbiotic microbiota in obesity may enhance energy harvest,

possibly through the suppression of angiopoietin-like protein 4,

contributing to increased adiposity in the host (8, 43). We identified

members of Bacteroidetes such as Macellibacteroides, Tannerella,

Odoribacter, Barnesiella, or Coprobacter, as well as Alloprevotella,

Alistipes, or Bacteroides in our samples. Additionally, obese mice

administered with orlistat showed functional shifts in the gut

microbiota, with gene enrichment in pathways related to “cell

motility” and “Neurodegenerative Diseases.” These changes may be

linked to orlistat’s effect on fatty acid synthase levels, crucial for

orlistat’s positive outcomes (44). Moreover, as orlistat inhibits gastric

and pancreatic lipases without being absorbed, it is associated with

diminished vitamin D absorption, which has a significant role in lipid

metabolism and is relevant to obesity (45, 46).

The LEfSe analysis indicated that orlistat usage could alter the

composition of various bacterial taxa, including Actinobacteria,

Macellibacteroides, Parasutterella, Sutterellaceae, Burkholderiales,

and Betaproteobacteria. Actinobacteria are known to influence

metabolism by modulating intestinal cholesterol absorption,
FIGURE 9

Bacterial co-occurrence network analysis highlighting the relationships associated with a high-fat diet and orlistat treatment. Spearman correlation
analysis was performed using non-rarified sequence data, and edges were created between bacterial genera if P < 0.05 and |r| > 0.7. The network
was visualized using the igraph package in R (Version 3.2).
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FIGURE 11

Boxplot of sample distances for multiple comparisons across three
groups. One-way ANOVA was applied to compare the distances
among the different groups, followed by post-hoc pairwise
comparisons using the Bonferroni method. All P values are two-
tailed, with a significance threshold of 0.05.
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FIGURE 12

Linear discriminant analysis effect size (LEfSe) for multiple samples
among the three groups. The analysis includes two main steps: (1)
Kruskal-Wallis rank sum test to detect features with significantly
different abundances between groups, and (2) Linear Discriminant
Analysis (LDA) to estimate the effect size of each feature. Features
with LDA scores greater than 2.0 were considered significant. The
LEfSe analysis was performed using the lefse tool in the
Galaxy platform.
FIGURE 10

Phylogenetic tree detailing the gut microbial composition of fecal samples. The phylogenetic tree was constructed using MUSCLE (Version 3.8.31)
for multiple sequence alignment, and the resulting tree was visualized using R software (Version 3.2).
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enhancing triglyceride synthesis, and diminishing glycogenesis in

the liver (47). The impact of w3-fatty acids on host physiology

might be mediated by Parasutterella (48), which is also associated

with triggering inflammatory responses in the intestinal mucosa

and systemic metabolic irregularities; moreover, Parasutterella

dysbiosis may lead to low-grade metabolic inflammation (49, 50).

Additional research is necessary to confirm the potential role of

these and other bacterial genera in obesity.

While our study provides valuable insights into the effects of

orlistat on the gut microbiota in obese mice, several limitations

should be acknowledged. First, our study was conducted in a

murine model, and the results may not be directly translatable to

human subjects. Second, the duration of the orlistat treatment was

limited, and long-term effects of orlistat on the gut microbiota were

not evaluated. Third, while we observed changes in microbial

diversity and specific bacterial taxa, the functional implications of

these changes were inferred through pathway analysis. Finally, the

co-occurrence network analysis, although informative, is based on

correlation and does not establish causality. Further experimental

validation is needed to confirm the interactions and functional

relationships within the bacterial communities.
Conclusion

This study revealed that orlistat induces beneficial effects on body

weight, fasting blood plasma glucose, and the hormones GLP-1 and

GIP via modulating gut microbiota. Additionally, the proportions of

Actinobacteria and Proteobacteria were higher in obese mice treated

with orlistat. Conversely, the proportion of Bacteroidetes, including

the two branches—Macellibacteroides, Tannerella, Odoribacter,

Barnesiella, and Coprobacter; Alloprevotella, Alistipes, and

Bacteroides—was reduced. Future research should investigate the

specific mechanisms by which orlistat affects the gut microbiota in

obese mice, induced via a high-fat diet.
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