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Objective: We compared peripheral blood (PBL) chemokine ligand/receptor

profiles in children and adolescents with type 1 diabetes mellitus (T1D) or

obesity (OB) (both involving inflammation and vascular complications) to

identify their associations with cardiometabolic risk factors.

Materials and methods: PBL samples from children and adolescents (12–18

years) included: healthy controls (n=29), patients with T1D (n=31) and OB

subjects (n=34). Frequency of mononuclear cell populations and chemokine

receptor expression (CCR2, CCR4, CXCR3, CXCR4) were determined by flow

cytometry. Chemokine levels of CCL2, CCL5, CXCL10 and CXCL11 were

measured by bead-based assay and CXCL12 by ELISA. Data were correlated

with cardiovascular, metabolic and inflammatory parameters.

Results: The proportion of CD14+ monocytes was higher in T1D, whereas the

proportion of CD19+ B lymphocytes was higher and CD3+ T lymphocytes was

lower in OB. The level of CCL2 was higher in T1D (241.0 (IQR 189.6–295.3) pg/mL

in T1D vs 191.5 (IQR 158.0–254.7) pg/mL in control, p=0.033), CXCL11 was lower

in OB (6.6 (IQR 4.9–7.7) pg/mL in OB vs 8.2 (IQR 6.9–11.3) pg/mL in control,

p=0.018) and CXCL12 was lower in both diseases (2.0 (IQR 1.8–2.5) ng/mL in

T1D, 2.1 (IQR 1.9–2.4) ng/mL in OB vs 2.4 (IQR 2.2–2.5) ng/mL in control,

p=0.016). Numerous significant associations were found for chemokine ligand/

receptor profiles and clinical data. Among these, we are suggesting the most

important indicators of cardiometabolic risk in T1D: positive associations of

CCR2+ monocytes with blood pressure and CCL12 levels with urine albumin-

to-creatinine ratio (ACR), inverse association of CXCR3+ B lymphocytes with AST

but positive with triglycerides; and OB: positive associations of CXCL12 levels

with triglycerides and AST/ALT, inverse association of CCR4+ and CXCR3+

monocytes with ACR. Both diseases share positive associations for CCR4+ T

lymphocytes and blood pressure, inverse associations of CXCR4+ subsets with

ACR and CXCR3+ T lymphocytes with lipid profile.
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Conclusion: Significantly changed chemokine ligand/receptor profiles were

found in both T1D and OB even at a young age. Although different associations

with cardiometabolic risk factors indicate disease-specific changes, overlapping

pattern was found for the associations between CCR4+ T lymphocytes and

vascular inflammation, CXCR4+ subsets and albuminuria as well as CXCR3+ T

lymphocytes and dyslipidemia. Thus, chemokine axes might present potential

therapeutic targets for disease-related morbidity.
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1 Introduction

A number of chronic conditions leading to serious metabolic

disturbances are often underlined by low-grade persistent

inflammation (1, 2). Therefore, targeting inflammatory mediators

in addition to disease-specific therapy may provide significant

benefits for pediatric patients with different autoimmune,

cardiovascular and metabolic disorders. Among others,

chemokines, released by the local endothelium, resident and

invading immune cells, are crucial for leukocyte infiltration into

target tissues (3, 4).

Type 1 diabetes mellitus (T1D) is one of the most prevalent

chronic autoimmune diseases in children (5). It is characterized by

insulin deficiency due to destruction of insulin-producing b-cells
and resulting disturbances of carbohydrate, protein and lipid

metabolism (6–8). It is estimated that more than a million

children (<20 years) are living with T1D worldwide, with almost

a third coming from Europe (5). None of the currently available

therapies can achieve ideal glycemic control and absolutely prevent

long-term vascular damage, necessitating additional insights into

diabetes pathophysiology and novel treatment options (3).

Childhood obesity (OB) has emerged as an important public

health problem worldwide, affecting >30% of school-age children in

the USA and Europe (9–11). The most common cause of pediatric

OB is a positive energy balance combined with a genetic

predisposition for weight gain. Its rising prevalence is linked to

serious comorbidities, including T2D, hypertension, metabolic

dysfunction-associated fatty liver disease (MAFLD), obstructive

sleep apnea and dyslipidemia, which increase the risk of

cardiovascular diseases (9, 12, 13). The adolescent OB population

additionally displays reproductive dysfunction and psychosocial

problems (9, 13, 14).

In both diseases, serious macrovascular and microvascular

complications may result from endothelial damage driven by

inflammation and metabolic dysfunction (15). While in OB

children, lipid overload plays a major role in the induction of

inflammation (16), in T1D, inflammation is triggered by the effects

of advanced glycation end-products and by the activation of Toll-
02
like receptors, both of which initiate inflammatory signaling

cascades (17, 18).

The role of chemokine activity in the course of T1D and OB has

recently attracted great interest (18–24). Chemokines are ubiquitously

produced in response tomicrobial products or tissue damage, aiming to

recruit cells expressing chemokine receptors. In addition to

chemoattraction, chemokines display activities influencing

angiogenesis, vascular endothelium activation, production of

vasoactive mediators and cytokines as well as modulation of

leukocyte functional properties. Chemokines thus have a crucial role

in inducing inflammatory processes and mediating vascular damage,

emerging as potential therapeutic targets (20, 25, 26). Elevated levels of

CXCL10 and CXCL11, and concomitant lower lymphocyte expression

of the corresponding receptor CXCR3 were found in T1D, suggesting a

role in endothelium remodeling (3, 27). Chemokines CXCL10 and

CXCL11 may also contribute to inflammation, insulin resistance and

atherosclerosis in OB (4, 28, 29). The angiogenic role of CXCL12 could

be detrimental in the context of diabetic nephropathy and retinopathy

(30). On the other hand, reports on CXCL12/CXCR4 signaling in

cardiovascular disease associated with OB suggest a protective role (20).

Numerous studies have investigated the role of CCL2 and CCL5 in the

development of metabolic complications and nephropathy in T1D (31–

33). Research demonstrated the association of CCL5 with metabolic

and regulatory mechanisms in OB, such as central energy control, food

intake and hypothalamic temperature regulation (4, 34).

As T1D and OB both include cardiometabolic abnormalities

that have been driven at least in part by underlying inflammatory

processes, the first objective of the study intended to compare

peripheral blood (PBL) samples from T1D and OB patients with

the matched healthy participants to confirm that cardiometabolic

and inflammatory parameters are changed with the disease, in

parallel with the immune cell subsets and chemokine levels.

Chemokines orchestrate the migration of immune cells expressing

corresponding chemokine receptors; therefore, the second objective

was to determine disease-specific changes in chemokine receptor

profile on major immune cell subsets compared to control. Final

objective aimed to assess within-disease association of chemokine

ligands/receptors and cardiometabolic risk factors in order to
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identify potential markers of cardiometabolic complications, as

indicators for early intervention as well as future therapeutic targets.
2 Materials and methods

2.1 Patients

The study included 94 children and adolescents (12–18 years)

recruited from the outpatient clinic or inpatient settings of the

Department of Pediatrics, University Hospital Center (UHC),

Zagreb. The study was approved by the ethics committees of the

School of Medicine, University of Zagreb (641–01/18–02/01) and

UHC Zagreb (02/21 AG). All patients and their parents provided

written informed consent for participation in the study.All procedures

were carried out according to the Declaration of Helsinki.

T1D was diagnosed using the current criteria of the

International Society for Pediatric and Adolescent Diabetes

(ISPAD) (35). OB was defined according to body mass index

(BMI) >95th percentile (36), calculated and presented as BMI Z

score using the growth charts by the US Centers for Disease Control

and Prevention (37). Subjects with any acute disease, other chronic

illness or immunomodulatory therapy were excluded. Participants

were divided into three groups: patients with T1D for ≥5 years

following diagnosis, OB patients with BMI >95th percentile (BMI Z

score >1.64 SD) and control healthy children of matching age and

sex (Supplementary Table 1).

The following demographic, clinical and laboratory data were

collected: age, sex, BMI Z score, diastolic/systolic blood pressure

(DBP/SBP), C-reactive protein (CRP), fibrinogen (FIB), lipid profile

(total cholesterol (TC), LDL-C, HDL-C, triglycerides (TG)), alanine

and aspartate transaminases (ALT, AST), urine albumin-to-

creatinine ratio in two consecutive first morning samples (ACR)

for all participants; T1D duration (T1DD), HbA1c, and insulin dose

(ID) for T1D patients; fasting blood glucose (FBG), blood insulin

(INS), and homeostatic model assessment for insulin resistance

(HOMA-IR) for OB patients (Supplementary Table 1).
2.2 Isolation of plasma and peripheral
blood mononuclear cells

PBL samples (3–4 mL) were obtained between 9:30 and 11:30

AM during routine clinical assessment in EDTA-coated tubes. PBL

mononuclear cells (PBMCs) and plasma were separated using

Histopaque (Sigma−Aldrich, Saint Louis, MO, USA). Plasma

samples were stored at -20°C for further analysis, whereas

PBMCs were immediately used for immunophenotyping.
2.3 Immunophenotyping of peripheral
blood cells

Immunophenotyping of PBMCs (T lymphocytes, B lymphocytes,

and monocytes) for chemokine receptor expression was performed by
Frontiers in Endocrinology 03
an Attune flow cytometer (Thermo Fisher Scientific, Waltham, MA,

USA) using commercially available monoclonal antibodies against

specific cell markers (anti-CD3 for T lymphocytes; anti-CD19 for B

lymphocytes; anti-CD14 for monocytes; anti-CCR2, anti-CCR4, anti-

CXCR3 and anti-CXCR4 for chemokine receptors) (details of

monoclonal antibodies used for flow cytometry analysis are shown in

Supplementary Table 2). Analysis was performed based on gates

defined according to unlabeled cells or “fluorescence minus one”

controls by FlowJo software (FlowJo, v10, Ashland, OR, USA).
2.4 Cytometric bead-based immunoassay

Plasma levels of CCL2, CCL5, CXCL10 and CXCL11 were

determined using the LEGENDplex Human Proinflammatory

Chemokine Mix and Match Subpanel cytometric bead-based

assay (BioLegend, San Diego, CA, USA) according to the

manufacturer’s instructions, using a BD FACSAria IIu flow

cytometer (BD Biosciences, San Jose, CA, USA). Briefly, plasma

samples were incubated with beads coated with specific capture

antibodies, which were identified by their scatter properties and

APC fluorescence intensity. Samples were then washed and

incubated with secondary antibodies conjugated with biotin and

detected by streptavidin-PE. The concentration of the bound

analyte was determined by the intensity of PE fluorescence using

the provided standards and LEGENDplex Data Analysis

Software (BioLegend).
2.5 Enzyme-linked immunosorbent assay

Plasma levels of CXCL12 were determined by enzyme-linked

immunosorbent assay (ELISA) (Human CXCL12/SDF-1a,

Quantikine Immunoassay; R&D Systems, Minneapolis, MN,

USA) according to the manufacturer's instructions. Briefly,

samples were incubated on pre-coated plates, washed and

incubated with horseradish peroxidase-conjugated specific

antibodies. Reactions were visualized with a substrate solution

(tetramethylbenzidine) and arrested with sulfuric acid. Optical

density was determined on a microplate reader set to 450 nm

(GloMax Explorer Multimode Microplate Reader, Promega,

Madison, WI, USA).
2.6 Statistical analysis

Most variables did not follow a normal distribution (determined

using the Kolmogorov−Smirnov test for normality); therefore, data

are presented as the median and interquartile range (IQR). Group

differences were assessed by the Mann−Whitney test or

Kruskal−Wallis with Conover post-hoc test using MedCalc

(version 19.1.6; MedCalc Software Ltd., Ostend, Belgium).

Associations between variables were assessed by the Spearman’s

rank correlation using SPSS (version 26; IBM Corp, Armonk, NY,

USA). Statistical significance was set to a < 0.05.
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3 Results

3.1 Metabolic, cardiovascular, and
inflammatory parameters in T1D and OB

The study groups of children and adolescents were characterized as

follows: nonobese T1D participants (n=31) had HbA1c 8.2 (7.4–9.2)%

(equal to 66 (57–77) mmol/mol), T1DD 10.0 (6.6–11.9) years, ID 0.80

(0.67–0.98) U/kg and BMI Z score -0.12 (-0.69–0.68) SD; OB

participants (n=34) had FBG 4.7 (4.4–5.0) mmol/L, blood INS 19.7

(14.9–27.4)mIU/mL,HOMA-IR 4.3 (3.0–6.2) andBMIZ score 2.4 (2.2–

2.5) SD. The control group (n=29) included sex- and age-matched

healthy participants with no history of T1D, OB, inflammatory,

autoimmune or metabolic disorders. Data were analyzed in three

steps: evaluation of clinical data and immune status in all three

groups; profiling of disease-specific chemokine receptor expression by

comparing individual disease with control; assessment of within-disease

associations between chemokine ligands/receptors and cardiometabolic

risk factors for each disease separately (T1D and OB) (Figure 1).

Clinical laboratory parameters related to cardiovascular (DBP,

SBP), metabolic (TC, HDL-C, LDL-C, TG, ALT, AST, ACR) and

inflammatory (FIB, CRP) status were recorded for all three groups to

assess the risk of cardiovascular and metabolic complications

(Supplementary Table 1). Overall, cardiometabolic risk factors were

higher in the OB group than in the other two groups, including DBP,

ALT and ACR. TG concentration was higher in both experimental

groups (OB and T1D) compared to the controls, whereas TC was

higher in T1D than in the other two groups (Figure 2A). The lipid

profile also showed higher LDL-C in both OB (2.2 (1.9–2.4) mmol/L)

and T1D (2.3 (1.9–2.6) mmol/L) groups compared to the controls (1.9

(1.6–2.2) mmol/L; p=0.023), and lower HDL-C in the OB group (1.1

(0.9–1.2)mmol/L) than in theother twogroups (1.3 (1.2–1.6)mmol/L in

controls; 1.5 (1.3–1.8) mmol/L in T1D; p<0.001). In OB, LDL-C was

positively associated with ALT (r=0.362, p=0.039), and TG were

positively associated with HOMA-IR (r=0.561, p<0.001) and ALT

(r=0.569, p<0.001). In T1D, LDL-C was positively associated with

CRP (r=0.460, p=0.011), and TG were positively associated with

HbA1c (r=0.543, p=0.002). Inflammatory parameters (FIB, CRP)

were elevated in the OB group compared to the other two groups,

whereas only CRP was elevated in the T1D group compared to the

control group (Figure 2A). Inflammatory markers showed significant

associations with parameters related to the metabolic syndrome,

including CRP with LDL-C and HDL-C, and FIB with ALT and ACR

(Figure 2B). These results confirmed that inflammationmay contribute

tometabolic dysfunction in T1D andOB; therefore, we further analyzed

immune cell subsets and chemokine axes in the study subjects.
3.2 Peripheral blood immune cell
distribution and plasma chemokine levels
in T1D and OB

PBL immunecell subsetswere identifiedbasedon the expressionof

CD3 (T lymphocytes), CD19 (B lymphocytes) and CD14 (monocytes)

by flow cytometry (Figure 3A). T1D patients had a significantly higher

proportion of CD14+ monocytes, whereas OB patients had a
Frontiers in Endocrinology 04
significantly higher proportion of CD19+ B lymphocytes and a

significantly lower proportion of CD3+ T lymphocytes (Figure 3B).

Among selected CC-chemokine ligands (CCL2 and CCL5) and

CXC-chemokine ligands (CXCL10, CXCL11, CXCL12), we observed

significantly lower CXCL12 concentrations in the T1D and OB groups

than in the controls (Figure 3C).We further identified subgroupsofT1D

andOBpatients at higher risk of complications (expecting them to have

more pronounced immune abnormalities), based on the criteria for

unsatisfactory glycemic control according to HbA1c and for severe

obesity translated toBMIZscore, respectively (36,38).T1Dpatientswith

HbA1c >8% (>64 mmol/mol) had significantly higher CCL2

concentrations (241.0 (189.6–295.3) pg/mL) than controls (191.5

(158.0–254.7) pg/mL, p=0.033), whereas OB patients with BMI Z

score >2 SD had significantly lower CXCL11 concentrations (6.6 (4.9–

7.7) pg/mL) than controls (8.2 (6.9–11.3) pg/mL, p=0.018) (graphs

not shown).

We concluded that those chemokinesmay participate in the disease

pathogenesis and, therefore, assessed the profile of selected

corresponding chemokine receptors on PBL immune cell subsets

(CCR2 and CCR4 receptors for CCL2 and CCL5; CXCR3 receptor for

CXCL10andCXCL11;CXCR4receptor forCXCL12) (gating strategy to

evaluate chemokine receptor expression on PBL immune cell subsets is

shown in Supplementary Figure 1). In general, CD14+ monocytes

expressed both CC- and CXC-chemokine receptors in high

proportions, whereas CD19+ B lymphocytes and CD3+ T lymphocytes

dominantly expressedCXC-receptors (Figures4, 5).Our furtheraimwas

to identify the disease-specific chemokine receptor profile as well as the

associations of chemokine receptor expression and chemokine levels

with cardiometabolic risk factors in each experimental group (Figure 1).
3.3 T1D-specific profile and association
with cardiometabolic risk factors

The total proportion of CD14+ monocytes was higher in T1D

patients and inversely associated with AST (r=-0.431, p=0.015)
(graph not shown). CD14+ monocytes exhibited significantly lower

expression of CCR2 in T1D patients than in controls (Figure 4),

which was paralleled by significantly elevated levels of CCL2 in T1D

patients with HbA1c >8% (>64 mmol/mol) (graph not shown). In

addition, in T1D group we found significantly lower expression of

CXCR3 on CD19+ B lymphocytes and significantly higher

expression of CCR4 on CD3+ T lymphocytes (Figure 4). The total

proportion of CD3+ T lymphocytes was positively associated with

HbA1c (r=0.383, p=0.040) (graph not shown).

Chemokine-receptor profiling in T1D group was marked by a

positive association between CCR2+ monocytes and CCR4+ T

lymphocytes with DBP, as well as between CCR2+ and CXCR3+ B

lymphocytes with TG (Figure 6A), linking endothelial inflammation,

atherosclerosis and dyslipidemia. CCR4+ subsets were positively

associated with T1DD. Negative associations were found for CXCR3+

monocytes with HbA1c, for CXCR3+ B lymphocytes with AST and for

CXCR3+ T lymphocytes with TC and HDL-C. CCR2+ and CXCR4+

subsets were negatively associated with ACR. Finally, striking negative

associationswere found formost subsetswithCRPandFIB,which could

indicate tissue recruitment under inflammatory conditions.
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In contrast to well associated expression of chemokine receptors

with disease parameters, only a few significant positive associations

were observed for the levels of chemokine ligands, including CCL2

with HbA1c, CXCL11 with ID and CXCL12 with ACR (Figure 6A,

Supplementary Figure 2).
3.4 OB-specific profile and association
with cardiometabolic risk factors

The total proportion of CD19+ B lymphocytes was higher in OB

patients and significantly associated with FBG (r=0.485, p=0.004)
(graph not shown). CD19+ B lymphocytes also exhibited
Frontiers in Endocrinology 05
significantly higher expression of CXCR4 in OB patients than in

controls (Figure 5), which was paralleled by significantly lower

levels of CXCL12 in OB patients (Figure 3). In addition, CD19+ B

lymphocyte expression of CCR4 was marginally elevated in OB

patients compared to controls (p=0.118) (Figure 5). The expression

of other chemokine receptors was similar in OB and controls,

except for a marginally lower expression of CCR4 on CD14+

monocytes (p=0.063) (Figure 5).

Chemokine-receptor profiling in OB group yielded only a few

positive associations, including CCR2+ monocytes with BMI Z

score and CCR4+ T lymphocytes with SBP (Figure 6B). The most

obvious significant inverse associations were found for CXCR4+

subsets and ACR. In addition, other monocyte subsets were
FIGURE 1

Flow–chart of data analysis. Data were analyzed in three steps: evaluation of clinical data (cardiometabolic and inflammatory parameters) in parallel
with the immune cell subsets and chemokine levels in peripheral blood (PBL) samples from patients with diabetes mellitus type 1 (T1) and obesity
compared to the matched healthy participants (using Kruskal–Wallis following by Conover post-hoc test for further group-to-group comparisons or
Spearman’s rank correlation); profiling of disease-specific chemokine receptor expression by comparing healthy participants and individual disease
group (using Mann–Whitney test); and, assessment of within-disease associations between chemokine ligands/receptors and cardiometabolic risk
factors for each disease separately (using Spearman’s rank correlation). Corresponding figures are noted on the chart. Created with BioRender.com.
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inversely associated with ACR. CXCR4+ monocytes, CCR4+ T

lymphocytes and CXCR4+ B lymphocytes were negatively

associated with HOMA-IR, FBG and CRP, respectively,

suggesting the role in adipose tissue inflammation. As in T1D

group, CXCR3+ T lymphocytes were inversely associated with

HDL-C.

In contrast to mainly negative associations of chemokine

receptor expression with disease parameters, mostly positive

associations were observed for the levels of chemokine ligands,

including associations of CCL5 and CXCL11 with inflammatory

markers (especially CRP), CCL2 and CXCL12 with TG, AST and

ALT, and CXCL12 with FBG (Figure 6B and Supplementary

Figure 2), linking inflammation with metabolic syndrome.
4 Discussion

Our study focused on the immune mediators underlying T1D

and OB, since chronic sustained inflammation has been linked to

metabolic disturbances and vascular complications in both diseases
Frontiers in Endocrinology 06
(15, 39–42). The proportions of basic PBL immune subsets differ

between T1D and OB patients, suggesting a distinct immuno-

pathophysiology. A significantly enlarged CD14+ monocyte

population may contribute to inflammation associated with T1D,

whereas humoral immunity with expanded CD19+ B lymphocytes

may have a more important role in OB. These subsets were

significantly associated with AST in T1D, and with FBG in OB.

Although different findings on blood leukocytes have been reported

in these diseases, several studies have found increased proportions

of monocytes in T1D and B lymphocytes in OB (42–44).

The inflammatory marker CRP was elevated in both T1D and

OB, with a positive association with LDL-C and a negative

association with HDL-C. Increased CRP levels were previously

reported in diabetic children, especially those with microvascular

complications (21, 45), as was the positive association of CRP

with BMI, LDL-C and T1DD (39). Increased CRP was also

observed in overweight children, with a positive association with

cardiometabolic risk factors and BMI, suggesting its usefulness as an

indicator of cardiovascular complications (46, 47). Another

inflammatory marker, FIB, which we found elevated in OB, was
B

A

FIGURE 2

Clinical and biochemical parameters related to cardiovascular, metabolic and inflammatory status in patients with type 1 diabetes (T1D), obese (OB)
patients and healthy control (CT) participants. Blood pressure was measured, and plasma biochemical parameters were determined from subjects
subdivided into three groups. (A) Comparison of cardiometabolic risk factors between CT, T1D, and OB subjects. Individual values are presented as
dots, and outlying values are presented as squares; horizontal lines represent the median, boxes represent the interquartile range (IQR), and whiskers
represent 1.5 times the IQR. Statistically significant differences were determined at p <0.05, Kruskal–Wallis test followed by Conover test for further
group-to-group comparisons (lines denote significant differences between groups). One outlying value for ALT and two outlying values for ACR are
not shown on the graphs for clarity reasons but are included in the statistical analysis. (B) Association of inflammatory parameters with parameters
related to metabolic syndrome including all subjects (groups are marked by different colors). Individual values and trend lines are presented with
Spearman’s rank correlation coefficient (r). Statistically significant difference was determined at p <0.05. SBP, systolic blood pressure; DBP, diastolic
blood pressure; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol: HDL-C, high-density lipoprotein cholesterol; TG, triglycerides;
ALT, alanine transaminase; ACR, albumin-to-creatinine ratio in urine; FIB, fibrinogen; CRP, C-reactive protein.
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previously associated with BDP, ALT and ACR (48, 49). Parallel FIB

elevation and albuminuria were observed in diabetic nephropathy

and peripheral vascular disease, proposing its role in endothelial

dysfunction (50).

The pathophysiology of vascular complications comprises

combined effects of inflammation, endothelial dysfunction and

metabolic abnormalities (46, 51, 52). We detected increased LDL-

C and TG in T1D and OB groups as well as lower HDL-C in OB

group, and such atherogenic patterns were commonly found in

these diseases (13, 53). Our data indicate that dyslipidemia is
Frontiers in Endocrinology 07
associated with insulin resistance and liver steatosis in OB, and

with inflammation and poor glycemic control in T1D. Overall, OB

children had more pronounced disturbances in cardiometabolic

parameters than T1D children, suggesting that even in the pediatric

population, overweight dramatically impacts metabolic processes.

Namely, DPB, TG, LDL-C, ALT and ACR were significantly

increased in OB patients together with HOMA-IR, INS and BMI,

whereas T1D patients mainly exhibited dyslipidemia (increased TC,

LDL-C and TG). A higher prevalence of cardiovascular risk factors

was proven for pediatric T2D compared with T1D, explaining
B

C

A

FIGURE 3

Peripheral blood immune cell distribution and plasma chemokine levels determined in patients with type 1 diabetes (T1D), obese (OB) patients and
healthy control (CT) participants. Peripheral blood mononuclear cells (PBMCs) were isolated and phenotyped using flow cytometry. (A)
Representative plots for major immune subsets within PBMCs showing CD14+ monocytes (M), CD19+ B lymphocytes (B) and CD3+ T lymphocytes
(T). Visual presentations of cell clusters were performed by a T-distributed stochastic neighbor embedding (tSNE) algorithm using compensated
fluorescence parameters for each marker (heatmap view of fluorescence intensity). (B) Frequencies of M, B and T subsets among total CD45+ cells
between the three groups. (C) Chemokine levels detected in plasma samples using cytometric bead-based immunoassay (CCL2, CCL5, CXCL10 and
CXCL11) and ELISA (CXCL12). (B, C) Individual values are presented as dots, and outlying values are presented as squares; horizontal lines represent
the median, boxes represent the interquartile range (IQR), and whiskers represent 1.5 times the IQR. Statistically significant differences were
determined at p <0.05, Kruskal–Wallis test followed by Conover test for further group-to-group comparisons (lines denote significant differences
between groups).
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FIGURE 4

Chemokine receptor profiling of immune cells in type 1 diabetes (T1D) patients. Peripheral blood mononuclear cells (PBMCs) were isolated and phenotyped
using flow cytometry. Frequencies of CD14+ monocytes (M), CD19+ B lymphocytes (B), and CD3+ T lymphocytes (T) expressing chemokine receptors CCR2,
CCR4, CXCR3 and CXCR4 are shown as proportions of M, B and T subsets, and compared to the control group (CT). Individual values are presented as dots,
and outlying values are presented as squares; horizontal lines represent the median, boxes represent the interquartile range (IQR), and whiskers represent 1.5
times the IQR. Statistically significant differences were determined at p <0.05, Mann–Whitney test (lines denote significant differences between groups).
FIGURE 5

Chemokine receptor profiling of immune cells in obese (OB) patients. Peripheral blood mononuclear cells (PBMCs) were isolated and phenotyped
using flow cytometry. Frequencies of CD14+ monocytes (M), CD19+ B lymphocytes (B) and CD3+ T lymphocytes (T) expressing chemokine receptors
CCR2, CCR4, CXCR3 and CXCR4 are shown as proportions of M, B and T subsets, and compared to the control group (CT). Individual values are
presented as dots, and outlying values are presented as squares; horizontal lines represent the median, boxes represent the interquartile range (IQR),
and whiskers represent 1.5 times the IQR. Statistically significant differences were determined at p <0.05, Mann–Whitney test (lines denote significant
differences between groups). Two comparisons with marginal significance are marked by asterisk (*).
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earlier cardiovascular disease in OB children, especially in those

with insulin resistance, metabolic syndrome, MAFLD and

microalbuminuria (13, 54).

Since the complex network of chemokines mediates effector

immune cell infiltration to target tissues (3), we performed profiling
Frontiers in Endocrinology 09
of selected chemokine ligands and receptors to reveal their

associations with disease severity and cardiometabolic risk factors.

However, we did not find an increase in chemokine levels, except for

CCL2 in poorly controlled T1D. Moreover, CXCL11 and CXCL12

were lower in OB patients, and CXCL12 in T1D. It was previously
B

A

FIGURE 6

Associations of immune cell subsets expressing specific chemokine receptors and chemokine levels with cardiometabolic status of type 1 diabetes
(T1D) and obese (OB) patients. Peripheral blood mononuclear cells (PBMCs) were isolated and phenotyped using flow cytometry. Chemokine levels
were detected in plasma samples using cytometric bead-based immunoassay (CCL2, CCL5, CXCL10 and CXCL11) and ELISA (CXCL12). Tables show
correlations of CD14+ monocytes (M), CD19+ B lymphocytes (B) and CD3+ T lymphocytes (T) expressing chemokine receptors (CCR2, CCR4, CXCR3
and CXCR4) as well as chemokine levels with clinical and biochemical parameters related to cardiovascular, metabolic, and inflammatory status for
(A) T1D group and (B) OB group. Individual values represent Spearman’s rank correlation coefficient (r), which is color-coded; the red spectrum
represents negative associations, and the green spectrum represents positive associations. Statistically significant differences were determined at p
<0.05 and highlighted in the table as bold black numbers. T1DD, T1D duration; ID, insulin dose; BMI, body mass index Z score; FBG, fasting blood
glucose; H-IR, homeostatic model assessment for insulin resistance; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; AST, aspartate transaminase;
ALT, alanine transaminase; ACR, albumin-to-creatinine ratio in urine; CRP, C-reactive protein; FIB, fibrinogen.
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shown that the production of chemokines may not be elevated in

long-lasting inflammatory conditions and that circulatory levels may

not adequately reflect their local production in visceral adipose

tissue, pancreas and other affected sites (3, 4, 27, 28). In addition,

cell phenotyping did not reveal striking differences in chemokine

receptor profiles between groups. Expression of chemokine receptors

is complexly regulated, especially in inflammation. Frequency of

receptor-expressing cells depends on enhanced tissue recruitment of

those cells, presence of decoy or atypical receptors, receptor

downregulation to increase chemokine bioavailability or ligand/

receptor complex internalization (with further degradation or

recycling) (22, 27, 54, 55). Thus, in data interpretation, we focused

more on the observed associations between chemokines/receptors

and clinical data, expecting that they can be used as indicators of

vascular complications.

A specific receptor for CXCL12, CXCR4 was expressed on a

higher proportion of B lymphocytes in OB patients, whereas

CXCL12 plasma concentrations were lower in OB and T1D

groups compared to controls, suggesting the involvement of

CXCL12/CXCR4 axis in these diseases. Several studies described a

protective role of CXCL12 by showing its negative effect on

angiogenesis in adipose tissue (20, 56) and regenerative properties

in pancreatic b-cell survival (57, 58). Other studies, however,

proposed a detrimental role of CXCL12 in adipose tissue

inflammation and insulin resistance as well as in microvascular

diabetic complications (19, 30). Moreover, CXCL12 may contribute

to b-cell functional decline during T1D progression, through the

stimulation of cytotoxic exhausted-like CD8+ T lymphocytes (59).

In agreement with these findings, we observed positive associations

for CXCL12 levels with FBG, TG, AST and ALT in OB group, but

only with ACR in T1D group. Liu et al. found serum CXCL12 to

positively correlate with BMI, SBP, ALT, AST, HOMA-IR, TC, TG

and LDL-C, as well as MAFLD in OB children (60). In addition, our

study revealed inverse associations of CXCR4+ subsets with ACR

and inflammatory markers in OB group and, even more strikingly,

in T1D group. These results may point to a different background of

albuminuria, being a microvascular complication of hyperglycemia

in T1D children, but a consequence of the metabolic syndrome in

non-diabetic OB children.

The chemokines CXCL10 and CXCL11 may both bind to the

CXCR3 receptor, which is expressed by a lower proportion of B

lymphocytes in T1D. Smaller proportions of T and B lymphocytes

expressing CXCR3 were observed in young adults with long-lasting

T1D (27, 61). The proportion of CXCR3+ B lymphocytes was

inversely associated with liver enzymes and inflammatory

markers in T1D but not in OB. Recent study by Reijm et al.

proposed that CXCR3+ activated B lymphocytes may represent an

autoreactive subset important for the pathogenesis of arthritis as

well as other autoimmune diseases (62). The mainly negative

associations between the proportion of CXCR3+ T lymphocytes

and cardiometabolic parameters in T1D and OB may be explained

by the reported role of the CXCR3 receptor in T lymphocyte

migration to the inflamed visceral adipose tissue (63). Moreover,

due to its scavenger function, reduced CXCR3 expression may lead

to increased ligand bioavailability (27). Levels of CXCL11 were

positively associated with ID in T1D and CRP in OB. Elevated levels
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of CXCL10 and CXCL11 in new-onset T1D, and a decrease in

CXCL10 level with disease duration were previously reported (3,

27). CXCL10 and its receptor CXCR3 are expressed in the

pancreatic b-cell microenvironment in early T1D (64), so

CXCL10/CXCR3 antagonists may potentially postpone T1D

development (3). Severely OB adults had elevated circulating

levels of CXCL10 and CXCL11, which positively correlated with

waist circumference, BMI and HOMA-IR (29). Kochumon et al.

reported higher adipose tissue expression of those chemokines and

the association of adipose tissue-derived CXCL11 with

cardiovascular risk factors (CRP, FBG, and HOMA-IR) in

nondiabetic OB adults (28).

Signature monocyte attractants, CCL2 and CCL5, bind to

CCR2+ and CCR4+ monocytes, but small subsets of T and B

lymphocytes express those receptors as well. A lower proportion

of CCR2+ monocytes and, inversely, a higher level of CCL2 in T1D

patients with poor glycemic control indicate possible cell

recruitment to the sites of tissue damage and inflammation. This

is additionally supported by the inverse association of CCR2+

monocytes with ACR in both T1D and OB. In T1D, positive

associations were found for CCR2+ monocytes and B

lymphocytes with DBP and TG, respectively. The proportion of

CCR4+ T lymphocytes was higher in T1D, with a positive

association with BP in both T1D and OB. Moreover, all CCR4+

subsets were positively associated with T1DD, linking CCR4

expression to disease progression. Several chemokines may bind

CCR4, including selective agonists CCL17 and CCL22, as well as

CCL2, CCL3 and CCL5 in high concentrations (65, 66). CCR4 is

expressed on Th2 lymphocytes, as opposed to CXCR3 that is

expressed on Th1 lymphocytes, and has a proven role in some

inflammatory diseases and hypersensitivity. CCL2 levels were

positively associated with HbA1c in T1D, and with ALT in OB,

in line with the studies describing the proinflammatory role of

CCL2 in these diseases (3, 31, 67, 68). Positive associations of CCL2

levels with BMI, proportion of fat tissue, waist circumference and

FBG were demonstrated in OB children (67–69). A recent study by

Kostopoulou et al. included parallel analysis of children and

adolescents (2–18 years) with T1D and OB compared to controls

and found a significant positive correlation for CCL2 with BMI Z

score by including all participants or only T1D (70). In contrast, no

associations were found for CCL2 with HbA1c or metabolic factors

in T1D (31, 71). There are reports of lower levels of CCL2 in T1D

patients, whereas increased levels were associated with diabetic

complications (31, 33). Finally, the positive association of CCL5

with CRP in OB group is in agreement with previous findings,

indicating its role in adipose tissue inflammation (72).

To the best of our knowledge, this is the first study profiling

chemokine ligands and receptors comparatively between pediatric

T1D and OB patients. We are aware that our study design is

burdened with certain limitations. Since our aim was to assess the

chronic effects of inflammation in T1D patients without serious

diabetic complications, we included children with long-lasting

disease (median duration 10 years). Therefore, we missed possible

initial inflammatory changes in chemokine levels as well as more

pronounced inflammatory disturbances associated with chronic

diabetic complications. Additional studies are required to further
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evaluate local and systemic chemokine activity at different stages of

T1D and OB. Another shortcoming was the large variance of data for

chemokine receptor expression that, in combination with a relatively

modest sample size (~30 per group), prevented significant differences.

Finally, by using a cross-sectional design we were not able to show

causality for the role of chemokine/receptor profiles in

cardiometabolic complications, which would require prospective

follow-up. However, we believe that our findings point to possible

candidates for further mechanistic studies and therapeutic targeting.
5 Conclusions

In summary, we revealed some overlapping findings for the role

of chemokines in T1D and OB. Inverse association of CXCR4+

subsets with albuminuria may indicate the role of CXCL12 in

kidney infiltration and damage. Additionally, the inverse

associations of CXCR3+ T lymphocytes with dyslipidemia suggest

their recruitment to adipose tissue by CXCL10 or CXCL11. Finally,

positive associations of CCR4+ T lymphocytes with hypertension

link this cell subset with vascular inflammation. Common

association pattern in both conditions suggests CCR4, CXCR3

and CXCR4 as promising candidates for further exploration, as

their blockade may prevent chemotaxis of pathogenic cells.

Inhibitors of these chemokine receptors (in the form of

neutralizing antibodies, modified ligands or small molecule

inhibitors) have been tested in different diseases, but only a few of

them showed approvable safety profiles and efficiency for clinical

usage (73). The CXCR4 antagonist (Plerixafor) and anti-CCR4

monoclonal antibody (Mogamulizumab) are clinically approved

for certain types of malignancies (74, 75). At the same time, they

have been suggested as possible anti-inflammatory strategies, with

the aim to block chemotaxis of inflammatory cells and to alleviate

target tissue damage (66, 76). Several small-molecule inhibitors of

CXCR3 have been tested in experimental studies, with AMG487

being clinically trialed for treatment of inflammatory and

autoimmune diseases (77, 78). Christen and Kimmel suggested

that combinatorial therapy that would include conventional

therapeutics together with neutralization of the chemokine axis

may prove beneficial due to targeting separate steps in

immunopathogenesis (3). Anti-chemokine therapy may be further

investigated for repurposing to treat T1D and OB pediatric patients

at risk of cardiometabolic complications. However, such attempts

should be considered with great caution, due to the complex and

redundant network of chemokines, as well as their important role in

tissue development and homeostasis.
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AŠU: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Writing – original draft, Writing –

review & editing. MF: Conceptualization, Formal analysis,

Investigation, Methodology, Visualization, Writing – original

draft, Writing – review & editing. AŠ: Formal analysis,
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