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Integrating machine learning and
nontargeted plasma lipidomics
to explore lipid characteristics
of premetabolic syndrome and
metabolic syndrome
Xinfeng Huang1,2†, Qing He1†, Haiping Hu1,2†,
Huanhuan Shi1,2, Xiaoyang Zhang1,2* and Youqiong Xu1,2*

1The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University,
Fuzhou, China, 2School of Public Health, Fujian Medical University, Fuzhou, China
Objective: To identify plasma lipid characteristics associated with premetabolic

syndrome (pre-MetS) and metabolic syndrome (MetS) and provide biomarkers

through machine learning methods.

Methods: Plasma lipidomics profiling was conducted using samples from healthy

individuals, pre-MetS patients, and MetS patients. Orthogonal partial least

squares-discriminant analysis (OPLS-DA) models were employed to identify

dysregulated lipids in the comparative groups. Biomarkers were selected using

support vector machine recursive feature elimination (SVM-RFE), random forest

(rf), and least absolute shrinkage and selection operator (LASSO) regression, and

the performance of two biomarker panels was compared across five machine

learning models.

Results: In the OPLS-DA models, 50 and 89 lipid metabolites were associated

with pre-MetS and MetS patients, respectively. Further machine learning

identified two sets of plasma metabolites composed of PS(38:3), DG(16:0/18:1),

and TG(16:0/14:1/22:6), TG(16:0/18:2/20:4), and TG(14:0/18:2/18:3), which were

used as biomarkers for the pre-MetS and MetS discrimination models in

this study.

Conclusion: In the initial lipidomics analysis of pre-MetS and MetS, we identified

relevant lipid features primarily linked to insulin resistance in key biochemical

pathways. Biomarker panels composed of lipidomics components can reflect

metabolic changes across different stages of MetS, offering valuable insights for

the differential diagnosis of pre-MetS and MetS.
KEYWORDS

machine learning, nontargeted lipidomics, premetabolic syndrome, metabolic
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1 Background

MetS comprises a cluster of “cardiometabolic risk” factors,

including high blood sugar, hypertension, hypertriglyceridemia,

low high-density lipoprotein cholesterol, and abdominal obesity.

Pre-MetS denotes a set of clinical and biochemical features

manifesting metabolic irregularities in specific aspects, albeit not

fully meeting the diagnostic criteria for MetS (1–4). The combined

impact of these components and ongoing metabolic disruptions

significantly increase the risk of cardiovascular disease (CVD) (3)

and cancer (4). According to previous research (5), the risk of CVD

in pre-MetS is 1.5 to 2.3 times higher than that in individuals

without MetS components, while MetS increases the risk by 3.44 to

4.42 times.

As of now, the most widely accepted diagnostic criteria for MetS

include those established by the National Cholesterol Education

Program Adult Treatment Panel III (NCEP ATP III) (6), the

International Diabetes Federation (IDF) (7), and the Joint

Commission of the China Adult Dyslipidemia Control Guide

(JCDCG) (8) in China. Among these, the IDF criteria stipulate

abdominal obesity as a prerequisite, while the JCDCG criteria

incorporate postprandial blood glucose into the definition of

hyperglycemia. Furthermore, the revised ATP III criteria enhance

screening for individuals at high risk by lowering the diagnostic

threshold for fasting blood glucose to 5.6 mmol/L. Compared to

other criteria, the revised ATP III criteria are more straightforward

and efficient, offering advantages in capturing individuals with

metabolic abnormalities in large-scale community screening.

Global prevalence rates for MetS (IDF criteria) and pre-MetS

(IDF criteria) were reported to be 16.46% and 14.72%,

respectively (9). Prior investigations indicated that the incidence

of MetS stabilized after the age of 46 (10), and the contribution of

each metabolic factor associated with MetS was not equal (5). A

cross-sectional study showed that the most common risk factors for

pre-MetS and MetS are hypertension and abdominal obesity (11),

while another small-scale study revealed a higher prevalence of high

triglycerides and hypertension (12). A recent cohort study assessed

the relative contributions of four major MetS risk factors in a large

population, ranked from highest to lowest as high blood sugar,

hypertension, dyslipidemia, and obesity (13). Metabolic phenotypes

observed in MetS patients with hyperglycemia are similar to those

with all four risk factors, indicating that individuals with

hyperglycemia and hypertension are more predisposed to

developing cardiovascular and cerebrovascular diseases.

Many studies combined machine learning with lifestyle-related

and anthropometric features to detect and prevent MetS (11), yet

the mechanisms underlying the development of MetS remain

incompletely understood (6). However, research suggests that

insulin resistance, disturbances in glucose and lipid metabolism,

and chronic inflammation interact through multiple signaling

mechanisms, with abnormal lipid metabolism being a common

denominator (14, 15). The clustered metabolic disruptions in MetS

lead to worsening lipid metabolism abnormalities, eventually

culminating in significant cardiovascular disease. Thus, apart

from clinical markers, lipidomics is employed to discover

diagnostic and prognostic biomarkers associated with MetS,
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enhancing our understanding of its etiology. For instance, a

Dutch study found that approximately 100 lipids, mainly

triglycerides, were positively correlated with MetS, while 10 lipids

were negatively correlated (16).

Given the escalating global prevalence of MetS, early

identification of at-risk individuals and predicting patient

responses to treatment is vital. The development of novel

biomarkers for MetS has potential for use in diagnosis and

treatment of this disorder. Researchers have extensively screened

population and clinical features for predicting MetS (17) and

identifying related factors (18). However, no study has deeply

investigated changes in lipid metabolites across different

physiological states of pre-MetS and MetS. Thus, gaining a deeper

understanding of lipid changes could aid in establishing monitoring

programs for pre-MetS and MetS, ultimately reducing the incidence

of cardiovascular disease. This study aims to construct optimal pre-

MetS and MetS identification models through a combination of

machine learning techniques and nontargeted lipidomics,

contributing to preventive health care in the population.
2 Materials and methods

2.1 Study design and participants

Between March 2021 and June 2021, a multistage stratified

cluster random sampling method was used to select residents

undergoing routine health check-ups from 18 villages in 6 towns

in Jin’an District, Fuzhou City. A preliminary survey was

conducted with a response rate of 95.75%, involving 1,800

permanent residents who had lived in the area for at least 6

months. The inclusion criteria were as follows: (1) age ≥ 18 years;

and (2) exclusion of individuals with coronary heart disease,

myocardial infarction, angina pectoris, stroke, malignancy,

chronic obstructive pulmonary disease, chronic urinary system

diseases (e.g., stones, prostatitis, chronic nephritis), or missing

baseline data. A total of 8,715 individuals met these criteria.

28 MetS patients were enrolled and matched 1:1 and 2:1 by sex

and age with pre-MetS and normal individuals, respectively,

resulting in a final study cohort of 70 participants.
2.2 Variable definitions and survey content

MetS diagnosis followed the revised ATP III (6), where

participants were defined as having MetS if they had any three of

the following five phenotypes: (1) systolic blood pressure (SBP) ≥

130 mmHg and/or diastolic blood pressure (DBP) ≥ 85 mmHg; (2)

triglycerides (TG) ≥ 1.7 mmol/L; (3) fasting plasma glucose (FPG) ≥

5.6 mmol/L; (4) high-density lipoprotein cholesterol (HDL-C) <

1.03 mmol/L for men or < 1.29 mmol/L for women; and (5)

abdominal obesity defined as waist circumference (WC) ≥ 90 cm

for men or ≥ 85 cm for women. Pre-MetS was defined as having one

or twoMetS components. A self-designed unified questionnaire was

used to collect information on personal health status, medical

history, and lifestyle behaviors (exercise, smoking, alcohol
frontiersin.org
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consumption, sleep). Physical examinations included height,

weight, waist circumference (measured twice and averaged), and

blood pressure measurements (measured thrice using UR-9000F).

Laboratory biochemical tests were conducted on venous blood

collected from participants in a fasting state. Serum total

cholesterol (TC), low-density lipoprotein cholesterol (LDL-C),

HDL-C, TG, and FBG were measured using enzymatic

colorimetric methods. Serum uric acid (SUA), creatinine (Cre)

and blood urea nitrogen (BUN) levels were measured using a

co lor imet r i c method on a Hi tach i 7100 au tomat i c

biochemistry analyzer.
2.3 Nontargeted lipidomics analysis

After fasting for at least 12 hours, morning venous blood

samples were collected from all participants using venipuncture,

and the samples were stored at -80°C until further nontargeted

lipidomics analysis. The lipidomics contents were measured at

Shanghai Applied Technology Co., Ltd., China (http://

www.aptbiotech.com/). The project utilizes a nontargeted

lipidomics analysis platform based on the UPLC-Orbitrap mass

spectrometry system from China New Life Technology Co., Ltd.

Lipid identification and data preprocessing are carried out using

LipidSearch software by Thermo Scientific™.

Preparation of quality control (QC) samples involves

combining equal amounts of samples from each group to create

the QC mixture. QC samples serve not only to assess instrument

status and chromatography−mass spectrometry system

equilibration before injection but also to evaluate the overall

experimental system stability.

Sample preprocessing involved thawing samples on ice, vortex-

mixing, and transferring 100 mL to a 1.5 mL centrifuge tube.

Subsequently, 200 mL of 4°C water was added, followed by vortex

mixing. Next, 240 mL of prechilled methanol was added and mixed

by vortexing, and then 800 mL of MTBE was added and mixed by

vortexing. The mixture was subjected to 20 minutes of

ultrasonication in a low-temperature water bath, followed by 30

minutes of room-temperature incubation. Afterward,

centrifugation at 14,000 g and 10°C for 15 minutes was

performed, and the upper organic phase was collected. The

samples were dried using nitrogen gas and stored at -80°C.

Chromatographic separation employed the UHPLC Nexera LC-

30A ultrahigh-performance liquid chromatography system. The

column temperature was set at 45°C, and the flow rate was 300

mL/min. The mobile phase consisted of two components: A - 10

mM ammonium formate in acetonitrile-water solution

(acetonitrile:water = 6:4, v/v) and B - 10 mM ammonium formate

in acetonitrile-isopropanol solution (acetonitrile:isopropanol = 1:9,

v/v). The gradient elution program was as follows: 0-2 minutes, B

was held at 30%; 2-25 minutes, B linearly changed from 30% to

100%; and 25-35 minutes, B was held at 30%. Throughout the

analysis, samples were kept in an autosampler at 10°C. To mitigate

the impact of instrument signal fluctuations, samples are analyzed

in a randomized sequence.
Frontiers in Endocrinology 03
Mass spectrometric separation was conducted using both

electrospray ionization positive and negative ion modes. After

UHPLC separation, analysis was performed using a QExactive

Plus mass spectrometer (Thermo Scientific™).
2.4 Data analysis

Data were double-entered using EpiData 3.1 software, and

statistical analysis was performed using SPSS 26.0 and R 4.2.2

software. For normally distributed data, the mean ± standard

deviation (x̄ ± s) is used, while for non-normally distributed data,

the median (upper quartile, lower quartile) is used, represented as

Median (M), quartile range (P25, P75). Group differences are

compared using analysis of variance (ANOVA) or non-parametric

tests. Count data are presented as composition ratios and rates (n,

%), and group differences are analyzed using chi-square tests. Lipid

identification, peak extraction, and lipid characterization were

performed using Lipid Search. Univariate analysis was conducted

on the extracted data, and volcano plots were used for visualization.

Prior to evaluating the predictive performance of various machine

learning methods, data from each group underwent exploratory

multivariate statistical analysis using seven-fold cross-validation and

OPLS-DA, including normalization, logarithmic transformation,

and autoscaling, to examine potential outliers or systematic

variations (FDR < 0.05). The variable importance for the

projection (VIP) values were used to measure the influence

strength and explanatory power of each lipid molecule on sample

classification discrimination in each group. Lipid molecules with

VIP > 1 significantly contribute to the model interpretation. Lipid

molecules with VIP > 1.5, P < 0.05, and FC > 1.5 were selected as

significantly different based on the criteria. The machine learning

models in this study included generalized linear model (glm),

recursive partitioning and regression (rpart), random forest (rf),

linear discriminant analysis (lda), and prediction analysis for

microarrays (pam). Before evaluating the predictive performance

of various machine learning methods, exploratory multivariate

statistical data analysis using OPLS-DA was conducted on

normalized, logarithmically transformed, and autoscaled data from

each group to check for potential outliers or systematic changes

(FDR < 0.05). The variable intersection of support vector machine

recursive feature elimination (SVM-RFE), rf, and least absolute

shrinkage and selection operator (LASSO) regression was applied

to each pairwise comparison (control vs. pre-MetS and pre-MetS vs.

MetS) to identify the most discriminative variables. After selecting

variables, five machine learning models were established. Validation

was performed using 7-fold cross-validation, and during model

development, 10-fold cross-validation was used for training and

testing to obtain optimal parameters. In the model development

process, adjustments were made to the hyperparameters of each

algorithm (such as cost values, kernel functions, and the number of

trees in the training dataset). Therefore, using the best

hyperparameters, our model was trained and tested on six folds

and validated on the remaining fold, repeated seven times across the

entire dataset (Figure 1).
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3 Results

3.1 Clinical characteristics

We tested 1361 nontargeted lipid metabolites in the plasma of

patients with pre-MetS or MetS. The important sociodemographic

factors and laboratory tests for each participant are reported in

Table 1. Results from ANOVA and Chi-square tests indicated no

statistically significant differences (P > 0.05) in gender, age,

education level, marital status, occupation type, smoking status,

alcohol consumption, exercise habits, TC, LDL-C, Cre, and BUN

among the groups (Table 1).
3.2 Identification of differentially
expressed lipids

To investigate the role of lipids in the pathogenesis of pre-MetS

and MetS, we performed subsequent analysis using the expression

profiles of nontargeted lipidomics from the plasma of pre-MetS

patients compared to healthy controls and MetS patients.

Differential expression analysis of the 1,361 lipid expression

profiles revealed that there were 77 significantly upregulated

lipids in pre-MetS patients compared to healthy controls and 141

significantly upregulated lipids in pre-MetS patients compared to

MetS patients. Additionally, there were 2 significantly
Frontiers in Endocrinology 04
downregulated lipids in pre-MetS patients compared to MetS

patients (Figures 2A, B). VIP values were calculated for each

metabolite through the OPLS-DA model, and metabolites with

VIP values > 1.5 were considered the most important. The

number of latent variables in the OPLS-DA model was chosen

based on sevenfold cross-validation. OPLS-DA score plots

demonstrated separation between pre-MetS patients and healthy

controls, as well as between pre-MetS patients and MetS patients

(Figures 2C, D). The cumulative R2Y values from the OPLS-DA

model were 0.709 and 0.589, and the cumulative Q2 values were

0.453 and 0.342 for the pre-MetS vs. control and pre-MetS vs. MetS

comparisons, respectively. From the 1,361 candidate metabolites, 50

and 89 metabolites were selected as candidates based on VIP > 1.5,

FDR < 0.05, and log2|FC| > 1 (Supplementary Tables 1, 2).
3.3 Feature selection using LASSO, rf and
SVM-RFE

Three algorithms—LASSO, rf and SVM-RFE—were employed to

select the core lipid features associated with pre-MetS patients. For

SVM-RFE, to prevent overfitting, when including three features, PE

(18:0/18:1), PS(38:3), and DG(16:0/18:1), the classifier accuracy

reached a maximum value, and the error was minimized

(Figures 3A, B). Using rf, 15 lipids were identified with relative

importance >0.4, including: PE(18:0/18:1), PS(38:3), DG(36:2p), DG
FIGURE 1

Study design and data analysis workflow.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1335269
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Huang et al. 10.3389/fendo.2024.1335269

Frontiers in Endocrinology frontiersin.org05
-

TABLE 1 Baseline.

Characteristics Total (n = 70) Normal (n = 14) pre-MetS(n = 28) MetS(n = 28) P

Gender 1.000

Male 40 (57.1) 8 (57.1) 16 (57.1) 16 (57.1)

Female 30 (42.9) 6 (42.9) 12 (42.9) 12 (42.9)

Age(years) 53.61 ± 8.1 54.29 ± 10.36 52.96 ± 7.89 53.93 ± 7.29 0.856

Education 0.320

High school and above 2 (6.9) 1 (20.0) 0 (0) 1 (8.3)

Below high school 27 (93.1) 4 (80.0) 12 (100) 11 (91.7)

Marital status 0.799

Married/cohabiting 67 (95.7) 14 (100) 27 (96.4) 26 (92.9)

Divorced/widowed/separated 3 (4.3) 0 (0) 1 (3.6) 2 (7.1)

Occupations 0.337

Brain work 12 (17.1) 2 (14.3) 7 (25.0) 3 (10.7)

Physical labor 43 (61.4) 11 (78.6) 14 (50.0) 18 (64.3)

Retired/unemployed 15 (21.4) 1 (7.1) 7 (25.0) 7 (25.0)

Smoking status 0.844

Never 48 (68.6) 10 (71.4) 18 (64.3) 20 (71.4)

Smoking/quitting 22 (31.4) 4 (28.6) 10 (35.7) 8 (28.6)

Alcohol consumption 0.199

No alcohol/moderate drinking 63 (90.0) 14 (100) 26 (92.9) 23 (82.1)

Alcohol abuse 7 (10.0) 0 (0) 2 (7.1) 5 (17.9)

Exercise habits 0.767

Medium to high intensity exercise 29 (41.4) 7 (50.0) 11 (39.3) 11 (39.3)

Lack of exercise 41 (58.6) 7 (50.0) 17 (60.7) 17 (60.7)

Sleep duration(h/d) 0.046

7-8 42 (60.0) 9 (64.3) 21 (75.0) 12 (42.9)

<7 or >9 28 (40.0) 5 (35.7) 7 (25.0) 16 (57.1)

BMI (kg/m2) 24.62 ± 3.74 23.41 ± 3.23 23.8 ± 3.66 26.05 ± 3.7 0.029

WC (cm) 83.82 ± 9.68 76.84 ± 4.53 80.22 ± 9.4 89.79 ± 7.89 < 0.001

SBP (mmHg) 127.3 (116.4, 136.2) 119.3 (115.3, 128.4) 119 (114.6, 131.5) 136.2 (127.8, 142.4) < 0.001

DBP (mmHg) 79.77 ± 10.07 73.14 ± 8.93 76.73 ± 7.73 86.13 ± 9.32 < 0.001

FBG (mmol/L) 5.7 (5.3, 6.5) 5.3 (5.1, 5.5) 5.7 (5.2, 6.5) 6.1 (5.7, 6.7) < 0.001

OGTT-2h(mmol/L) 11.3 (6.1, 12) 6.1 (5.2, 7.2) 8.8 (5.7, 11.5) 12 (11.4, 13.3) < 0.001

TC (mmol/L) 5.04 ± 0.87 4.68 ± 0.52 4.93 ± 0.89 5.33 ± 0.92 0.052

TG (mmol/L) 1.4 (1.0, 1.9) 0.7 (0.6, 0.9) 1.2 (1, 1.6) 2.2 (1.7, 3.4) < 0.001

HDL-C (mmol/L) 1.25 ± 0.28 1.43 ± 0.21 1.27 ± 0.27 1.15 ± 0.28 0.007

LDL-C (mmol/L) 3.03 ± 0.77 3.04 ± 0.44 3.02 ± 0.93 3.03 ± 0.75 0.997

SUA (mmmol/L) 356 (302.6, 421.1) 321 (234.5, 359.2) 344.5 (300, 405) 387 (329.2, 448.5) 0.017

Cre (mmol/L) 69.65 ± 12.74 67.26 ± 16.03 68.39 ± 10.89 72.1 ± 12.71 0.412

BUN (mmol/L) 4.94 ± 1.28 4.81 ± 1.07 4.87 ± 1.19 5.08 ± 1.47 0.762
Data are presented as the means ± SDs or frequencies (percentages).
MetS metabolic syndrome, SD standard deviation, WC waist circumference, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, FPG fasting plasma glucose, OGTT
2h Oral Glucose Tolerance Test - 2 hours, TC total cholesterol, TG triglycerides, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, Cre creatinine, BUN
blood urea nitrogen.
P < 0.05 was considered statistically significant.
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FIGURE 3

Pre-MetS lipid feature selection. (A, B) Biomarker signature lipid expression validation via SVM–RFE algorithm selection. (C) Random forest error rate
versus the number of classification trees. (D) The top 16 relatively important lipids. (E) Adjustment of feature selection in the LASSO model. (F) Three
algorithmic Venn diagrams screening lipids. All three algorithms employed ten-fold cross-validation for feature selection.
D

A B

C

FIGURE 2

Identification of lipids related to pre-MetS and MetS. (A) Volcano plot of candidate lipid metabolism biomarkers in the pre-MetS group. (B) Volcano
plot of candidate lipid metabolism biomarkers in the MetS group. (C) Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DS) score plot
between the pre-MetS and Normal groups. (D) OPLS-DS score plot between the MetS and pre-MetS groups. Lipid metabolites colored by their
chemical categories. Multivariate analysis was conducted using a seven-fold cross-validation method.
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(33:1p), TG(18:1/18:2/22:2), DG(34:2p), DG(16:0/18:1), TG(16:0/10:1/

18:2), TG(18:0/18:1/18:1), DG(34:1e), TG(16:0/16:0/23:0), DG(32:0p),

DG(32:1p), and TG(18:0/18:0/18:1) (Figures 3C, D).

Regarding the LASSO algorithm, after tenfold cross-

validation, the optimal lambda (l) was 0.02038657. Using a l
value of 0.045 that corresponded to the minimum partial

likelihood deviance (Figure 3E), 11 feature lipids were selected:

TG(18:1/18:2/22:2), PS(38:3), DG(16:0/18:1), TG(20:0/18:1/

22:5), DG(36:1p), TG(16:0/16:0/16:0), DG(34:2p), TG(16:0/

16:0/17:0), TG(25:0/18:1/18:1), DG(34:2p), and TG(16:0/18:1/

20:3). Two lipids with shared features were identified from the

LASSO, rf, and SVM-RFE algorithms: PS(38:3) and DG(16:0/

18:1) (Figure 3F and Table 2).
Frontiers in Endocrinology 07
3.4 Feature selection using LASSO, rf and
SVM-RFE for MetS patients

The same three algorithms (LASSO, rf and SVM-RFE) were

utilized to select the core lipid features associated with MetS

patients. For SVM-RFE, when including 17 features, TG(52:5),

TG(16:0/16:0/20:5), TG(16:0/14:0/20:5), TG(16:0/18:2/20:4),

CerG1(d40:5), DG(32:0), TG(16:0/10:1/18:2), TG(15:0/16:1/17:0),

TG(16:0/14:0/18:2), TG (48:3), TG (16:0/14:2/18:1), TG (50:3), TG

(16:0/16:0/20:4), TG (16:1/18:2/18:3), TG (16:0/16:1/20:5), TG

(16:0/14:1/22:6), and TG(16:1/18:2/20:4), the classifier accuracy

reached a maximum value, and the error was minimized

(Figures 4A, B). Using rf, 16 lipids were identified with relative
D
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F
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C

FIGURE 4

MetS lipid feature selection. (A, B) Biomarker signature lipid expression validation via SVM–RFE algorithm selection. (C) Random forest error rate
versus the number of classification trees. (D) The top 17 relatively important lipids. (E) Adjustment of feature selection in the minimum absolute
shrinkage and selection operator model (LASSO). (F) Three algorithmic Venn diagrams screening lipids. All three algorithms employed ten-fold
cross-validation for feature selection.
TABLE 2 The situation of two significantly different lipid metabolites identified by three machine learning methods in plasma between Normal and
Pre-MetS.

Molecule Subclass Formula m/z RT (min) VIP Log2|FC| P FDR

PS (38:3)-H PS C44 H79 O10 N1 P1 812.54 12.23 2.11 1.20 1.79E-05 0.01

DG (16:0/18:1)+NH4 DG C37 H74 O5 N1 612.56 13.00 2.17 1.35 1.79E-05 0.01
frontie
The number before the ratio in parentheses is the length of the carbon chain, the number after the ratio is the number of double bonds on the carbon chain; -H and +NH4 are lipid molecule
change groups. m/z: Mass-to-Charge Ratio; RT (min): Retention Time; VIP: Variable Importance in Projection; Log2|FC|: Log2 Fold Change; P: P-value; FDR: False Discovery Rate.
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importance >0.4, including: TG(16:0/16:0/20:4), TG(48:3), CerG1

(d40:5), TG(16:0/18:2/20:4), TG (16:0/16:0/20:5), TG(16:0/14:2/

18:1), TG(54:7), TG(16:0/14:1/22:6), TG (16:0/14:0/20:5), TG

(16:0/14:0/18:2), TG(16:1/18:2/20:4), TG(52:5), TG (16:0/16:1/

20:5), TG(14:0/18:2/18:3), TG(50:3), and TG(16:0/14:0/20:4)

(Figures 4C, D). Regarding the LASSO algorithm, after tenfold

cross-validation, the optimal lambda was 0.033. Using a l value of

0.126 that corresponded to the minimum partial likelihood

deviance (Figure 4E), 9 feature lipids were selected: TG (16:0/

16:0/16:0), DG (18:2/20:4), TG (14:0/18:2/18:3), PI (16:0/16:1),

TG (16:0/18:2/20:4), TG (18:1/18:2/22:5), TG (16:0/14:1/22:6), DG

(32:0p), and DG (30:1p).

Three shared feature lipids were identified from the

LASSO, rf and SVM-RFE algorithms: TG (16:0/14:1/22:6),

TG (16:0/18:2/20:4), and TG (14:0/18:2/18:3) (Figure 4F

and Table 3).
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3.5 Machine learning models for pre-MetS
and MetS identification

An important application of lipidomics is the identification of

potential disease biomarkers. Based on the feature selection results, PS

(38:3) and DG(16:0/18:1) were identified as two important lipids for

identifying pre-MetS (Figure 5A).We compared the performance offive

popular machine learning algorithms on the test dataset to determine

the optimal classification method for lipidomics data. These algorithms

included glm, rpart, rf, lda, and pam.Due to the imbalanced sample sizes

between the pre-MetS and control groups, we used balanced accuracy,

F1-score, and AUC to evaluate the models. Among them, lda was

identified as the best model with the highest balanced accuracy and F1-

score, all exceeding 0.8 (Figure 5B and Figures 6A–E).

Based on the feature selection results, TG(16:0/14:1/22:6), TG

(16:0/18:2/20:4), and TG(14:0/18:2/18:3) were identified as three
TABLE 3 The situation of three significantly different lipid metabolites identified by three machine learning methods in plasma between Pre-MetS
and MetS.

Molecule Subclass Formula m/z RT (min) VIP Log2|FC| P FDR

TG (16:0/14:1/22:6)+NH4 TG C55 H96 O6 N1 866.72 17.82 1.96 1.64 3.54E-08 6.88E-06

TG (16:0/18:2/20:4)+NH4 TG C57 H102 O6 N1 896.77 19.53 2.12 1.43 2.11E-08 6.88E-06

TG (14:0/18:2/18:3)+NH4 TG C53 H96 O6 N1 842.72 17.63 1.9 1.81 3.82E-07 4.00E-05
fron
The number before the ratio in parentheses is the length of the carbon chain, the number after the ratio is the number of double bonds on the carbon chain; three sets of numbers indicate that the
compound consists of three longer carbon chains; +NH4 are lipid molecule change groups. m/z: Mass-to-Charge Ratio; RT (min): Retention Time; VIP: Variable Importance in Projection; Log2|
FC|: Log2 Fold Change; P: P-value; FDR: False Discovery Rate.
D
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FIGURE 5

(A) Determining lipid panels in pre-MetS based on three variable-selection methods. (B) Performance evaluation metrics for each ML-based
model distinguish control individuals from pre-MetS patients. (C) Determining lipid panels in MetS based on three variable-selection methods.
(D) Performance evaluation metrics for each ML-based model distinguishing pre-MetS from MetS. From left to right: glm, rpart, rf, lda, and pam.
The repeated ten-fold cross-validation was used for model performance validation, while the ten-fold cross-validation was utilized for model
training and parameter tuning.
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important lipids for identifying MetS (Figure 5C). We used six

performance metrics to evaluate the models, and rf demonstrated

the best performance, with all metrics exceeding 0.8 (Figure 5D and

Figures 6F–J).
4 Discussion

Metabolic risk factors present significant global challenges,

necessitating effective strategies for early intervention. In this

study, which involved a small sample of pre-MetS and MetS

patients, we screened differential lipids between the two groups

based on the expression levels of 1361 lipids and established

identification models. Our results revealed significant differences

in the levels of 77 lipids for pre-MetS compared to the control

group and 143 lipids for MetS compared to the control group

(Figure 2). Furthermore, through machine learning, we selected

the optimal lipid panel and models for identifying pre-MetS and

MetS (Figures 3, 4), achieving model evaluation metrics exceeding

0.8 (Figure 5). Previous studies have mainly focused on identifying

metabolites associated with MetS (16, 17). In contrast, our

research emphasizes using machine learning-based lipid selection

for identifying pre-MetS and MetS patients, particularly targeting

middle-aged and elderly individuals at risk of metabolic

dysfunction, and promoting effective interventions to modify

risk factors, rather than relying solely on traditional risk factors.

Our study differs from others in that we explored the differences

in lipid metabolites between pre-MetS and MetS for the first time.

Several explanations support this research. First, considering the

complexity and heterogeneity of pre-MetS and MetS components

(19), a comprehensive assessment of lipid metabolism may better

reflect the underlying disease progression, providing fundamental

insights into the dynamic changes of MetS and enabling more

specific treatments for patients. Second, considering the

cumbersome nature of physical examinations during widespread

screening and the potential for significant measurement errors and
Frontiers in Endocrinology 09
reduced efficiency due to variations in instruments, the diagnosis of

pre-MetS and MetS may lead to false-positives. Therefore, lipid

metabolites could serve as useful auxiliary indicators. In contrast to

traditional classification, this study classified participants into three

groups: control, pre-MetS, and MetS, aiming for a large-scale

community-based screening program for MetS and cardiovascular

disease prevention. In our research, the combinations of two and

three biomarkers corresponded to LDA and rf models, respectively,

with both exhibiting good discriminative ability in the validation set

through sevenfold cross-validation (AUC of 0.89 for pre-MetS vs.

control and 0.88 for pre-MetS vs. MetS) (Figures 6D, H).

We found that higher levels of plasma DGs and TGs were

positively correlated with the risk of pre-MetS and MetS. Consistent

with previous studies (16), we identified DG(36:2) as associated

with MetS through OPLS-DA and univariate analysis

(Supplementary Table 1). Conversely, while previous research

found that DG(34:1) was associated with MetS, we found it to be

associated with pre-MetS. This is not surprising, as DGs act as

bioactive lipids, serving as second messengers in insulin resistance

induction, and TGs play a critical role in regulating fatty acid

oxidation and lipid synthesis (20), and are widely used to predict

cardiovascular risk (21).

We identified a class of phospholipids (PE(18:0/18:1), PE(18:0/

20:5) , PS(38:3)) posit ively correlated with pre-MetS.

Phosphatidylserine (PS) is involved in cell membrane

composition and various signaling pathways, providing signals for

immune cell recognition and phagocytosis during cell apoptosis

(22). Interestingly, immune-related dysregulation has been found to

play a prominent role in pre-MetS (12), which might be due to the

biochemical pathways differing in the heterogeneity of pre-MetS

populations in our study compared to other studies. We also found

that levels of ceramides (Cer(d40:4), Cer(d40:5), Cer(d42:4)) were

positively correlated with MetS. Total ceramide content is positively

correlated with insulin resistance (23). In fact, ceramides are

involved in inducing cell apoptosis through various downstream

targets (24) and are associated with atherosclerosis (25).
G H I J
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FIGURE 6

Area under the receiver operating characteristic curves of five machine learning algorithms. (A–E) and (F–J) From left to right: generalized linear model
(glm), recursive partitioning and regression (rpart), random forest (rf), linear discriminant analysis (lda), and prediction analysis for microarrays (pam).
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Our study achieved favorable screening results with a relatively

small number of lipids combined with corresponding models,

yielding an AUC > 0.8. This indicated that the lipids we identified

serve as excellent screening tools. However, the study has some

limitations. Firstly, it is an exploratory study with a small sample

size, which may lead to a certain degree of overfitting, although we

mitigated this issue through various machine learning methods.

Secondly, the LC-MS lipidomics technique can only differentiate

lipids based on identification algorithms for subion, parent ion, and

neutral loss scans, rather than providing clear and unique

identification (26). This complicates pathway enrichment analysis

of different lipids in the study. Lastly, the participants in this study

were all residents from coastal areas of China, and the results may

not be extrapolated to other countries and inland regions. We hope

that future research, combining larger sample sizes and multiomics

studies, will further explore these findings.
5 Conclusion

In this initial lipidomics analysis of pre-MetS and MetS, we

identified relevant lipid features and selected 50 and 89 plasma lipid

metabolites associated with pre-MetS and MetS patients,

respectively. Furthermore, through machine learning, we selected

two sets of plasma metabolites composed of PS(38:3), DG(16:0/

18:1), and TG(16:0/14:1/22:6), TG(16:0/18:2/20:4), TG(14:0/18:2/

18:3) as biomarkers for the identification models of pre-MetS and

MetS in this study. Our results indicate that the identified

biomarkers can reflect metabolic changes at different stages of

MetS, providing a new perspective for monitoring disease

progression and treatment response in pre-MetS and MetS

patients. These findings hold promise for the differential diagnosis

of pre-MetS and MetS, laying a foundation for future diagnostics

and treatments.
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