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recurrent miscarriage revealed
by integrated transcriptomics
analysis and machine learning
Juanjuan He1,2†, Ahui Liu2,3†, Haofei Shen3, Yanbiao Jiang2,3,
Min Gao2,3, Liulin Yu3, Wenjing Du3, Xuehong Zhang2,3*

and Fen Fu1*

1The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang,
Jiangxi, China, 2The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China,
3The First Hospital of Lanzhou University, Lanzhou, Gansu, China
Objective: More and more studies have found that polycystic ovary syndrome

(PCOS) is significantly associated with recurrent spontaneous abortion (RSA), but

the specific mechanism is not yet clear.

Methods: Based on the GEO database, we downloaded the PCOS (GSE10946,

GSE6798 and GSE137684) and RSA (GSE165004, GSE26787 and GSE22490)

datasets and performed differential analysis, weighted gene co-expression

network (WGCNA), functional enrichment, and machine learning, respectively,

on the datasets of the two diseases, Nomogram and integrated bioinformatics

analysis such as immune infiltration analysis. Finally, the reliability of the

diagnostic gene was verified by external verification and collection of

human specimens.

Results: In this study, PCOS and RSA datasets were obtained from Gene

Expression Omnibus (GEO) database, and a total of 23 shared genes were

obtained by differential analysis and WGCNA analysis. GO results showed that

the shared genes were mainly enriched in the functions of lipid catabolism and

cell cycle transition (G1/S). DO enrichment revealed that shared genes are mainly

involved in ovarian diseases, lipid metabolism disorders and psychological

disorders. KEGG analysis showed significant enrichment of Regulation of

lipolysis in adipocytes, Prolactin signaling pathway, FoxO signaling pathway,

Hippo signaling pathway and other pathways. A diagnostic gene FAM166 B was

obtained bymachine learning and Nomogram screening, whichmainly played an

important role in Cellular component. GSEA analysis revealed that FAM166B may

be involved in the development of PCOS and RSA by regulating the cell cycle,

amino acid metabolism, lipid metabolism, and carbohydrate metabolism.

CIBERSORT analysis showed that the high expression of FAM166 B was closely

related to the imbalance of multiple immune cells. Further verification by qPCR

suggested that FAM166 B could be used as a common marker of PCOS and RSA.
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Conclusions: In summary, this study identified FAM166B as a common biomarker

for PCOS and RSA, and conducted in-depth research and analysis of this gene,

providing new data for basic experimental research and early prognosis,

diagnosis and treatment of clinical diseases.
KEYWORDS

PCOS, RSA, bioinformatics analysis, co-diagnostic genes, mechanism research,
immune infiltration
Introduction

Polycystic ovary syndrome (PCOS) has become one of the most

common and serious endocrine diseases affecting the reproductive

health of women of childbearing age in the 21st century, the

prevalence rate is as high as 15%, which is mainly characterized

by hyperandrogenism (HA), ovarian dysfunction (oligoovulation or

anovulation) and polycystic ovary morphology (PCOM), irregular

menstruation, infertility and excessive androgen (hirsutism and

acne) are the main clinical symptoms of PCOS (1–3). It is worth

noting that infertility is currently the primary problem plaguing

women of childbearing age. Although many infertile women with

PCOS can be pregnant through assisted reproductive technology

(ART) treatment, the risk of pregnancy also increases (4), such as

recurrent spontaneous abortion, repeated implantation failure,

insulin resistance (IR), gestational diabetes, gestational

hypertension, etc. (5, 6), which seriously affect the pregnancy

ability of women of childbearing age, among them, recurrent

spontaneous abortion is one of the main concerns of scholars in

recent years (7).

Recurrent spontaneous abortion (RSA) refers to two or more

spontaneous abortions with the same partner before 20-24 weeks of

pregnancy (8, 9), affecting 1-5% of pregnant women (10), it is often

related to anatomical defects, chromosomal abnormalities, immune

microenvironment, endocrine disorders and psychological factors

(11, 12). In recent years, the relationship between PCOS, IR and RSA

has gradually attracted the attention of many scholars (13). It is

reported that about 70% of PCOS women have IR (14), and about

40% of RSA women have PCOS (15), this suggests that polycystic

ovary syndrome and RSA may have a common pathophysiological

process (16–18). Unfortunately, the current research on the potential

mechanism between PCOS and RSA disease is still inconclusive, and

few studies have focused on the common genetic characteristics and

molecular mechanisms of PCOS and RSA.

In this study, we integrated PCOS and RSA-related transcriptomic

data from the Gene Expression Omnibus (GEO) database, and applied

the “limma” package and weighted gene co-expression network

analysis (WGCNA) to identify differentially expressed genes and key

modules in each disease, and performed enrichment analysis of shared

genes. Subsequently, the target gene was screened by three kinds of

machine learning and Nomogram, and a common diagnostic gene
02
FAM166B was finally identified. Next, we performed functional

enrichment analysis of FAM166B to determine the common

pathways associated with PCOS and RSA. In addition, we learned

about the regulatory role of FAM166B on immune cells in two diseases

through CIBERSORT. Finally, the reliability of FAM166 B was verified

by external data sets and human samples.

In conclusion, this study provides valuable insights into the

common molecular mechanisms of PCOS and RSA, and highlights

the potential of FAM166B as a diagnostic marker for PCOS and

RSA, laying the foundation for targeted therapy and improving the

fertility of PCOS patients.
Materials and methods

Collection and processing of data sets

In this study, data sets related to PCOS and RSA were retrieved

in GEO (http://www.ncbi.nih.gov/geo/) database (19), and the

inclusion criteria were set as: (1) Homo sapiens; (2) Detection of

RNA expression profile by gene chip; (3) disease group and control

group included; (4) Each dataset contains at least 10 samples.

Finally, three PCOS datasets (GSE10946, GSE6798, GSE137684)

and three RSA datasets (GSE165004, GSE26787, GSE22490) were

retrieved and included in the study. GSE10946 and GSE165004

were used for the analysis and verification of PCOS and RSA.

GSE6798 and GSE137684 of PCOS, GSE26787 and GSE22490 of

RSA were used for external validation. Detailed information about

the dataset is shown in Table 1.

The downloaded gene expression matrix files were read,

annotated, corrected, merged and batch effects eliminated using

the “limma” and “sva” packages to obtain standardized gene

expression data for analysis.
Differential gene expression analysis

We used the “limma” package to obtain differentially expressed

genes (DEGs) in the PCOS and RSA groups. The DEGs standard of

PCOS group was set as P < 0.05 and |log2FC|>0.25; RSA used

P < 0.05 and |log2 FC|>0.65 as the standard for screening DEGs.
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The DEGs of the two groups were visualized by the volcano map

and heat map made by the “ggplot2” and “pheatmap” package.
Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is a

sophisticated systems biology method for elucidating patterns of

association between genes in microarray samples. The method

helps to identify sets of genes with strong co-variation and reveal

potential candidate biomarker genes or therapeutic targets by

exploring the intrinsic linkages within the set of genes and their

correlation with the phenotype (20). In this study, the top 5000

genes with large variance were selected from the normalized mRNA

expression data for WGCNA analysis, and the “gplots” package was

used for hierarchical clustering analysis. The selection of a soft

threshold power (b) was determined by applying the

pickSoftThreshold function and adhering to the scale-free

topology criterion, and the b is mainly related to the

independence and average connectivity of the co-expression

module. Topological overlap degree (TOM) represents the

overlap degree of network neighbors, and (1-TOM) retrieves

pairwise distances to identify hierarchical clustering nodes and

modules (21). The dynamic tree cutting algorithm of “pheatmap”

package (minModuleSize=100, mergeCutHeight= 0.25) was used to

obtain the gene modules related to the disease group.
Identification of shared genes and
functional enrichment analysis

After variance analysis and WGCNA analysis, 23 common

genes were obtained in the PCOS and RSA groups, and in order

to better understand the biological functions of these common

genes, in this study, we used the “clusterProfiler” software package

to perform enrichment analysis of the Gene Ontology (GO) [which

includes Cellular Component (CC), Biological Process (BP) and

molecular function (MF)], disease ontology (DO) and Kyoto

Encyclopedia of the Genome (KEGG) were enriched and

analyzed (22, 23), with P < 0.05 indicating statistical significance.

The “enrichplot”, “circlize” and “ggplot2” software packages were

used for data visualization.
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Machine learning algorithms to screen
potential common markers

In this study, three mature machine learning algorithms are

used, including least absolute shrinkage and selection operator

(LASSO), support vector machine recursive feature elimination

(SVM-RFE), and random forest (RF). In order to ensure the

repeatability of these algorithms, we set the seeds to 12345 (24).

Firstly, shared genes were input into the LASSO algorithm, and

the regression model was constructed using the “glmnet” package,

and 10-fold cross-validation was carried out. In the “family”

parameter, we set the “binomial”. The choice of l has an important

impact on the results of Lasso regression. If l is too small, the

regularization is not strong enough, which may lead to overfitting of

the model; if l is too large, the regularization is too strong, whichmay

lead to underfitting of the model, which is generally chosen to be the

minimum standard value. In this study, lambda.min was used as the

best lambda value, and the shrinkage coefficient diagram of LASSO

regression variable and the relationship diagram between LASSO

regression model error and log (l) were drawn.
Then, the random forest model is constructed using the

“randomforest” package. The random forest model is used to

determine the optimal number of variables by calculating the

average error rate of candidate genes. In this study, error rates

were calculated for each of the trees from 1 to 500, and the optimal

number of trees and each candidate diagnostic gene feature

importance score were determined based on the lowest error rate,

with the top 10 genes in terms of importance being used for

subsequent analyses.

Finally, the SVM-RFE model was constructed using the “caret”

package and the “e1071” package, and was cross-validated with 10

folds to obtain the set of genes with the lowest 5×CV error and the

highest 5×CV accuracy, and this set of genes was considered to be

the relatively accurate diagnostic genes.
Nomogram

In this study, the result variables of the final screening of

machine learning are used as predictors, and a nomogram model

is constructed through the “rms” package (25). “Points” represents

the contribution score of each factor, and “Total Points” refers to

the total score of all factors. In order to verify the performance of
TABLE 1 Information of GSE Datasets.

Diseases Datasets Platform Species Total sample Data type

PCOS

GSE10946 GPL570 Homo sapiens 23 Microarray

GSE6798 GPL570 Homo sapiens 29 Microarray

GSE137684 GPL17077 Homo sapiens 12 Microarray

RSA

GSE165004 GPL16699 Homo sapiens 48 Microarray

GSE26787 GPL570 Homo sapiens 10 Microarray

GSE22490 GPL570 Homo sapiens 10 Microarray
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the nomogram, the consistency index (C-index) is calculated,

and the discrimination is evaluated by the bootstrap method of

1000 resampling. Then, calibration curves were plotted to observe

the relationship between the ideal diagnostic rate and the actual

diagnostic rate obtained from the nomogram. The receiver

operating characteristic (ROC) curve is used to assess the

diagnostic performance of the genetic characterization model.

The ROC analysis generated the area under the curve (AUC) and

95% confidence interval (CI), and an AUC value > 0.7 was

considered to have great diagnostic efficacy.
Identification and validation of shared
diagnostic genes

In this study, 2 datasets from PCOS (GSE6798 and GSE137684)

and RSA (GSE26787 and GSE22490) were used for external

validation, with PCOS containing 41 samples (17 control samples

and 24 experimental samples) and RSA containing 20 samples (11

control samples and 9 experimental samples). The PCOS and RSA

datasets were read, annotated, corrected, merged, and batch effects

eliminated using the “limma” and “sva” packages, resulting in

standardized gene expression data for analysis. Box plots and

ROC curves of the “limma”, “ggpubr” and “pROC” packages were

used to understand the expression patterns and diagnostic

performance of the co-diagnostic genes.
Shared gene markers and functional
enrichment analysis

Basic information about FAM166B was obtained through the

Uniprot online platform (https://www.uniprot.org/). To understand

the biological functions in which the shared markers are mainly

involved, we performed GO enrichment and GSEA enrichment of

the FAM166B gene using the “clusterProfiler” package, and

visualized the biological signaling pathways associated with PCOS

and RSA using the “enrichplot” package and “pathview” package.
Gene set variation analysis

GSVA is a non-parametric and unsupervised algorithm, which

transforms the change of gene level into the change of pathway level

by comprehensively scoring the gene set of interest, and then judges

the biological function of the sample (26). In this study, gene sets

(c2.cp.kegg.Hs.symbols.gmt) were downloaded from the Molecular

Characterization Database, and the GSVA algorithm was used to

score each gene set comprehensively, thus assessing potential

biological functional changes in different samples.
Immune cell infiltration

The CIBERSORT algorithm analyses the composition of

immune cells based on normalized gene expression profiling data
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via deconvolution (27, 28). The LM22 in CIBERSORT website

(http://cibersort.stanford.edu/) contains 22 annotated genetic

features. Based on the genetic characterization of LM22, this

study quantified 22 immune cells by the CIBERSORT algorithm

and 1000 iterations to understand the distribution of immune cells

in the two disease groups. Subsequently, the correlation between

immune cells and diagnostic genes was analyzed. Finally, the results

are visualized using the “corplot” package, the “vioplot” package,

and the “ggpubr” package.
Collection of clinical tissue samples

To further validate the expression of FAM166B in PCOS and RSA,

granulosa cells were collected from six patients who underwent in vitro

fertilization-embryo transfer (IVF-ET)/Intracytoplasmic sperm

injection (ICSI) at the Reproductive Center of the First Affiliated

Hospital of Lanzhou University (Lanzhou, China) in the present study,

of which three were due to infertility due to PCOS and 3 due to male

factor or tubal factor. Inclusion criteria for PCOS (1): fulfillment of the

diagnostic criteria for PCOS initiated by ESHRE/ASRM Rotterdam

(29); (2) age 20-40 years. Control group: (1) patients with infertility due

tomale factor or tubal factor; (2) age 20-40 years old. Exclusion criteria:

(1) age greater than 40 years; (2) mental illness or inability to

communicate normally; (3) chromosomal abnormalities in one or

both spouses; (4) exclusion of endocrine diseases and cardiovascular

and cerebral vascular diseases; (5) organic disorders of the uterus and

ovaries, gonadal insufficiency, etc.; and (6) history of antibiotic

treatment and autoimmune disorders in the past 3 months. In this

study, the effect of ovulation promotion regimen on the outcome of the

study was considered, and all the included populations were subjected

to a progestin primed ovarian stimulation (PPOS) regimen with high

progesterone. When participants’ vaginal ultrasound monitoring

showed 3 or more follicles growing to≥18 mm in diameter,

appropriate amounts of human chorionic gonadotrophin (HCG)

were administered as appropriate, and oocytes were collected 36

hours after administration under vaginal ultrasound guidance.

Granulosa cells (GCs) from multiple pooled follicles per subject were

collected from approximately 20 mL of follicular fluid using sterile test

tubes and separated using Ficoll-Percoll (Solarbio-Life-Sciences,

Beijing, China), labeled and loaded into 1.5 mL centrifuge tubes,

which were immediately placed in - 80°C refrigerator for freezing

and storage for subsequent RT-qPCR.

In addition, chorionic villus tissue samples from four women

with RSA and four women with elective termination of pregnancy

were collected to validate the expression of FAM166B in RSA.

Inclusion criteria for the RSA group were (1) history of two or more

unexplained miscarriages and (2) absence of fetal heartbeat by

ultrasound at 6-8 weeks of gestation. Control group: (1) natural

pregnancy of 6-8 weeks duration and voluntary termination of

pregnancy for non-medical reasons; (2) No symptoms of threatened

abortion; (3) fetal cardiac activity observed by ultrasound within 3

days before termination of pregnancy. Exclusion criteria: (1)

karyotyping of abnormal embryos; (2) known causes of

miscarriage; and (3) patients with other concurrent medical

conditions. After the patient had an abortion, the chorionic tissue
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was transferred to a curved disk with forceps within 15 minutes, the

tissue was rinsed thoroughly with saline, the surrounding blood clot

was removed, and a sample of approximately 4 g was separated with

a scalpel and placed in a cryotube with RNA cryopreservative

solution and stored in a refrigerated tube at -80°C for use in

subsequent RT-qPCR.

The study was approved by the Ethics Committee of the First

Affiliated Hospital of Lanzhou University, Lanzhou, China (Ethics

No. LDYYSZLL2023-25) and complied with the principles of the

Declaration of Helsinki.
RT-qPCR

Total RNAwas extracted from tissues with Trizol (Takara, Japan)

according to the instructions of the Total RNA Extraction Kit

(Coolaber, RE600). RNA purity and concentration were

determined using a NanoDrop 2000 (Thermo Fisher Scientific,

USA). SweScript All-in-One First Strand cDNA Synthesis Kit

(Servicebio, G3337) reverse transcribed total RNA into cDNA. The

PCR reaction was performed using SYBR Green Master Mix kit from

Qiagen, Germany, with cDNA as template and human GAPDH as

internal reference. The primers were designed and synthesized by

Sevier Biotechnology Ltd. and the primer sequences are shown in

Supplementary Table 1. qRT-PCR was performed as previously

reported (30), and primer specificity was ensured by observing the

melting curve of the reaction during qPCR. At least three biological

replicates and three technical replicates were performed in this

experiment, and the relative expression of mRNA of target genes

was calculated using the 2-DDCT method. Statistical analyses were

performed using the Mann-Whitney U test, and data were expressed

as mean and standard error of the mean (SEM). P < 0.05 was

considered a statistically significant difference.
Statistical analysis

Statistical analysis was performed using R (4.3.1) or GraphPad

Prism (9.5.0), and P < 0.05 was considered statistically significant.
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Results

Identification of DEGs

DEGs for PCOS and RSA were analyzed using the “limma”

package. A total of 537 DEGs were obtained from the PCOS group,

of which 207 were up-regulated genes and 330 were down-regulated

genes. A total of 517 DEGs were obtained from the RSA group,

including 226 up-regulated genes and 291 down-regulated genes.

Heat maps (Figures 1A, C) and volcano plots (Figures 1B, D) show

that the distribution of the differential genes differed markedly

between the disease and control groups, with red representing up-

regulation and blue representing down-regulation.
Screening for key gene modules
by WGCNA

In order to study the key genes related to clinical phenotypes, in

addition to analyzing the DEGs of the two groups, this study also

constructed a co-expressed gene module. Cluster analysis showed

that there was one outlier sample in the PCOS group, and it was

removed. All samples in the RSA group are in the cluster, so all

samples are retained.

According to the approximate scale-free topological standard,

the b of the PCOS group model was set to 9 (Figure 2A), and the

fitting index was set to 0.9; the adjacency matrix is generated by

using the adjacency function, and the hierarchical clustering is

constructed by using the TOM dissimilarity measure. After

merging similar gene modules, 10 modules were found in the

PCOS model, among which the MEpink module had the strongest

positive correlation with PCOS (R = 0.53, P = 0.01), containing a

total of 259 genes (Figures 2B, C). The maximum b of RSA group

was 14 (Figures 2D), and the fitting index was set to 0.9.A total of

10 co-expression modules were identified, among which the grey

module was strongly negatively correlated with the occurrence of

RSA (R = 0.85, P < 0.001) (Figures 2E, F). These genes in the two

key modules may be used as candidate markers.
FIGURE 1

Visualization of differential genes. (A) Heatmap of DEGs in PCOS group. (B) Volcano plot of DEGs in PCOS group. (C) Heatmap of DEGs in RSA
group. (D) Volcano plot of DEGs in RSA group.
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Shared gene and functional
enrichment analysis

In order to explore the common mechanism of PCOS and RSA,

we regard the intersection genes of DEGs andWGCNA as common

candidate diagnostic genes (Figures 3A, B), and try to understand

the potential biological changes between PCOS and RSA through

functional annotation and enrichment analysis.

The GO enrichment results included Cellular Components (CC),

Biological Process (BP) and Molecular Function (MF) (Figure 3C), of

which the main enrichment in molecular biological function was in

the regulation of lipid catabolic process and cell cycle G1/S phase

transition; In Cellular Components, it was mainly involved in cation

channel complex and ion channel complex; In addition, it is

significantly enriched in metal ion transmembrane transporter

activity, single-stranded DNA endodeoxyribonuclease activity,

armadillo repeat domain binding, and other biological processes

domain binding (Figure 3D). To further understand which diseases

these genes are mainly involved in, we performed DO enrichment

analysis, which showed that the common genes were mainly enriched

in female reproductive system, lipid metabolism disorder-related

diseases and psychological disorders, including polycystic ovary

syndrome, germ cell cancer, germinoma, familial hyperlipidemia

and schizoaffective disorder, etc. (Figure 3E). In the KEGG

enrichment results, we noticed a significant enrichment of

Regulation of lipolysis in adipocytes, Prolactin signaling pathway,

FoxO signaling pathway, Hippo signaling pathway, Wnt signaling
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pathway, and other pathways were significantly enriched (Figure 3F),

and these pathways collaborated closely with each other (Figure 3G).
Screening potential co-diagnostic genes
based on machine learning

In order to further screen out the most candidate diagnostic genes

that have important contribution value to the classification of disease

group and control group, based on the 23 common genes obtained

from DEGs and WGCNA results, three different algorithms (LASSO,

SVM-RFE and RF) were used for screening.

In the PCOS group, the l of Lasso was set to 0.05051258

(Figure 4A), and 9 genes with non-zero coefficients were identified;

the top 10 genes in the random forest results were selected (Figure 4B);

the SVM algorithm was used to identify the 21 genes with the smallest

error (Figure 4C); finally, the Venn algorithm was used to intersect the

three results, and six candidate markers (RYR3, TBC1D8B, CNST,

FAM166B, SLC5A3, PYY2) were identified for the PCOS group

(Figure 4D). Similarly, in the RSA group, when the l of the LASSO

algorithmwas set to 0.004239023, 10 characteristic genes were obtained

(Figure 4E); the top 10 genes of random forest results were selected

(Figure 4F); the SVM-REF algorithm was used to determine the 18 hub

genes with the smallest error (Figure 4G); finally, eight common genes

(TBC1D8B, HAPLN1, CCND2, TCF7L2, FAM166B, RBBP8, CGA,

PYY2) obtained by Venn analysis were identified as potential markers

for the diagnosis of RSA (Figure 4H).
FIGURE 2

Construction and module analysis of WGCNA. (A) Determination of soft-threshold power for PCOS. (B) Cluster dendrogram of PCOS highly
connected genes in key modules. (C) The correlation between co-expressed gene modules and clinical traits in PCOS. (D) Determination of soft-
threshold power for RSA. (E) Cluster dendrogram of RSA highly connected genes in key modules. (F) The correlation between co-expressed gene
modules and clinical traits in RSA. Different colors represent different co-expression modules. A correlation and P value are included in each cell.
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Nomogram of candidate markers

In order to further determine the common diagnostic genes of

PCOS and RSA, we used the cross genes of two sets of machine

learning results (TBC1D8B, FAM166B, PYY2) as predictors to

construct two sets of nomogram models (Figures 5A, D). The

calibration curves showed that the actual diagnostic rates of the two

models were more similar to the ideal diagnostic rates, indicating that
Frontiers in Endocrinology 07
the column-line plots had a better predictive value, and the mean

absolute errors of the PCOS and RSA models were 0.053 and 0.043,

respectively (Figures 5B, E). In addition, the AUC of the PCOS group

nomogram model was 0.864 (95% CI 0.707-1) (Figure 5C), and the

AUC of the RSA group nomogrammodel was 0.976 (95% CI 0.943-1)

(Figure 5F). The overall results showed that the two sets of prediction

models had fair accuracy and discrimination, and the three key genes

had high clinical value in the diagnosis of PCOS and RSA.
FIGURE 3

Shared gene characteristics and functional enrichment between PCOS and RSA. (A) The DEGs intersection genes of PCOS group and RSA group.
(B) WGCNA module overlapping genes of PCOS and RSA. (C) GO enrichment chord graph of shared genes. (D) GO enrichment bubble diagram of
shared genes. (E) DO enrichment bubble diagram of shared genes. (F) KEGG enrichment bubble diagram of shared genes. (G) KEGG enrichment
network map of shared genes.
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Identification and verification of shared
diagnostic genes

In order to identify the key genes with diagnostic value for

PCOS and RSA, the expression patterns and receiver operating

characteristic curve (ROC curve) of three candidate diagnostic

genes (TBC1D8B, FAM166B, PYY2) were analyzed in this study.
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Finally, FAM166B was identified as the best shared diagnostic gene.

It is worth noting that the expression of FAM166 B was significantly

increased in PCOS and RSA (Figures 6A, E) (P < 0.05), and the

prediction performance was relatively robust (AUC = 0.697, 0.772)

(Figures 6B, F).

In addition, in the external validation cohorts of PCOS and

RSA, the expression level of FAM166B was consistent with that of
FIGURE 4

(A) Coefficient profile plot of the LASSO model for PCOS showed the final parameter selection l (lambda). (B) The top 20 genes in the RF analysis results of
the PCOS group. (C) SVM-RFE algorithm was used to screen 21 important genes for PCOS group. (D) Six candidate diagnostic genes in PCOS group.
(E) Coefficient profile plot of the LASSO model for RSA showed the final parameter selection l (lambda). (F) The top 20 genes in the RF analysis results of
the RSA group. (G) SVM-RFE algorithm was used to screen out 18 important genes for RSA group. (H) Eight candidate diagnostic genes in RSA group.
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the training group (Figures 6C, G), and had higher diagnostic

performance in the validation cohorts of PCOS and RSA (AUC =

0.772, 0.859) (Figures 6D, H). In summary, various results have

confirmed the reliability of FAM166B as a biomarker for the

diagnosis of PCOS and RSA.
Functional enrichment of FAM166B

Through the Uniprot online platform, FAM166B was found to

be localized in the cytoplasm, cytoskeleton, ciliated axons

(Figure 7A), and the structure was microtubule-like (Figure 7B).

In order to further clarify the biological processes in which

FAM166B is mainly involved, this study performed GO

enrichment and GSEA enrichment analysis on FAM166B. GO

enrichment results showed that FAM166 B mainly played an

important role in cellular component, and was significantly

enriched in axonemal microtubule, cytoplasmic microtubule,

axoneme, ciliary plasm and plasma membrane bounded cell

projection cytoplasm pathways (Figures 7C, D). GSEA

enrichment results in PCOS showed that highly expressed

FAM166B was mainly enriched in signaling pathways such as

Insulin secretion, Fructose and mannose metabolism, Regulation

of lipolysis in adipocytes, Inflammatory mediator regulation of TRP

channels, Carbohydrate digestion and absorption, Steroid
Frontiers in Endocrinology 09
biosynthesis and Platelet activation (Figures 7E, F). GSEA

enrichment results of RSA showed that highly expressed

FAM166B was mainly enriched in signaling pathways such as

Histidine metabolism, Phenylalanine metabolism, Linoleic acid

metabolism, Nicotinate and nicotinamide metabolism, Cell cycle

and DNA replication signaling pathways (Figures 7G, H).
Signal transduction mechanisms associated
with co-diagnostic genes

Next, this study explored the effect of FAM166B on disease

progression-related signaling pathways. GSVA results of PCOS

showed that high expression of FAM166B was mainly enriched

for O-glycan biosynthesis, glycosaminoglycan biosynthesis-

chondroitin sulfate, fructose and mannose metabolism,

Glycolysis/gluconeogenesis, amino sugar and nucleotide sugar

metabolism and Glutathione metabolism signaling pathways

(Figure 8A). GSVA results of RSA showed that up-regulated

FAM166B was mainly enriched for primary bile acid biosynthesis

and Glutathione metabolism pathways that were significantly up-

regulated, and linoleic acid metabolism, Arachidonic acid

metabolism, Arachidonic acid metabolism, Nicotinate and

nicotinamide metabolism pathways were significantly down-

regulated (Figure 8B).
FIGURE 5

(A) The PCOS group constructed a nomogram model based on three key genes (TBC1D8B, FAM166B, PYY2). (B) The calibration curve of PCOS
nomogram model. (C) ROC curve of PCOS group nomogram model. (D) The RSA group constructed a nomogram model based on three key genes
(TBC1D8B, FAM166B, PYY2). (E) Calibration curve of RSA nomogram model. (F) The ROC curve of the RSA group nomogram model.
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FAM166B and immune cell infiltration

Considering that the common feature of PCOS and RSA is

that the immune response is more prominent, we used the

CIBERSORT algorithm to analyze the distribution of 22

different immune cell types between the disease and the control

group and the correlation between shared diagnostic genes and

immune cells. As shown in the violin plots, the degree of immune

cell infiltration was more significant in RSA than in PCOS

(Figures 9A, B), in which the degree of T cells follicular helper

infiltration was significantly increased in RSA; whereas, the degree

of Macrophages M1 and Macrophages M2 infiltration was

significantly decreased (Figure 9B). Notably, different immune

cells interacted with each other and were closely linked

(Figures 9C, D). In PCOS, FAM166B was positively correlated

with Macrophages M0, Mast cells activated; and negatively

correlated with Dendritic cells resting, Macrophages M2,

Monocytes, NK cells activated and T cells CD8 (Figures 9E, G).

In the RSA group, FAM166B was positively correlated with T cells

gamma delta, Plasma cells, and T cells CD8, and negatively

correlated with Macrophages M0, NK cells activated, and Mast

cells resting (Figures 9F, H), which is in agreement with the

former findings (31).
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Human tissue samples were used to verify
co-diagnostic genes

Finally, qRT-PCR analysis was performed in this study in order

to validate the expression of FAM166B in granulosa cells and RSA

chorionic tissue of PCOS. The results showed that the mRNA

expression of FAM166B showed an elevated trend in both PCOS

and RSA (Figures 10A, B), which was essentially similar to the

results of the data analysis described above. Unfortunately, the up-

regulation of FAM166B in granulosa cells of PCOS patients was not

significant, which may be due to the small sample size.
Discussion

As a heterogeneous endocrine disease that seriously affects the

reproductive health of women of childbearing age, PCOS is affected by

a variety of external factors (epigenetics, environmental toxins, physical

and emotional stress, diet) and internal factors (insulin resistance,

androgen excess, inflammation, oxidative stress, obesity) (32, 33). RSA

is a common disease associated with infertility, including embryonic or

fetal abortion. Chromosomal abnormalities, reproductive tract

abnormalities, immune diseases, endocrine diseases, antiphospholipid
FIGURE 6

(A) The differential expression of FAM166 B in PCOS training groups. (B) ROC curve of FAM166 B in PCOS training group. (C) The differential expression
of FAM166 B in PCOS validation group. (D) ROC curve of FAM166 B in PCOS validation group. (E) The differential expression of FAM166 B in RSA training
group. (F) ROC curve of FAM166 B in RSA training group. (G) The differential expression of FAM166 B in RSA validation group. (H) ROC curve of FAM166
B in RSA validation group. *P <0.05, **P < 0.01, ****P<0.0001.
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syndrome, thrombophilia and pathogen infection have been shown to

play an important role in the occurrence of RSA (34). Li et al. showed

that decidualization, embryo implantation, trophoblast cell

differentiation, invasion and apoptosis, placental development, fetal

development, immune response and coagulation process may be

involved in the occurrence of RSA (35). It is worth noting that the
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etiology of about 50% of RSA is not clear, its molecular mechanism is

not clear, and the incidence of RSA is increasing year by year (36).

At present, more and more studies have confirmed that there is

a close correlation between PCOS and RSA. Cocksedge et al. first

used the Rotterdam standard for clinical research and found that

the prevalence of PCOS in RSA was 8.3-10% (36–38). However, the
FIGURE 7

(A) Subcellular localization of FAM166B. (B) The spatial structure of FAM166B. (C) GO enrichment network diagram of FAM166B. (D) GO enrichment
bubble diagram of FAM166B. (E) GSEA up-regulation pathway of FAM166B in PCOS. (F) GSEA down-regulation pathway of FAM166B in PCOS.
(G) GSEA up-regulation pathway of FAM166B in RSA. (H) GSEA down-regulation pathway of FAM166B in RSA.
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common pathological mechanism between PCOS and RSA has not

been fully understood. Therefore, actively exploring the molecular

mechanism between PCOS and RSA will be the basis for early

identification and intervention of the disease.

In this study, the relevant data sets of PCOS and RSA were

retrieved based on the GEO database, and a total of 23 shared genes

were obtained through a series of bioinformatics analysis. GO

enrichment results showed that the shared genes were mainly

enriched in the functions of lipid metabolism and G1/S phase

transition of cell cycle. This result suggests that the association

between PCOS and RSA may be related to lipid metabolism and cell

cycle, while previous studies have reported that the occurrence of

PCOS or RSA is closely related to lipid metabolism and cell cycle

(39–43). DO enrichment results showed that these shared genes

were mainly associated with polycystic ovary syndrome, germ cell

cancer, germinoma, familial hyperlipidemia and schizoaffective

disorder, which further confirmed that FAM166B may be

involved in the development of PCOS. KEGG analysis showed

that the common genes were mainly enriched in adipocyte lipolysis

regulation, prolactin signaling pathway (44, 45), FoxO signaling

pathway (46), Hippo signaling pathway (47, 48), Wnt signaling

pathway (49–51) and other pathways. The relationship between

these pathways and PCOS and RSA has been mentioned in previous

studies, but has not been further studied. Subsequently, through

three kinds of machine learning and Nomoram identification

analysis, a common diagnostic gene FAM166 B was obtained.

FAM166 B is located in the cytoplasm, cytoskeleton and ciliated

axons, and the structure is microtubule-like, it is a gene that needs

to be further studied (52). Previous studies on FAM166B have

shown that it is highly expressed in multiple symmetric lipidosis,

skeletal muscle, adrenal gland and ciliated cells (52, 53). Secondly,

the expression of FAM166 B is related to the prognosis of breast

cancer, and the expression level of FAM166 B in breast cancer is

closely related to macrophages and CD4+T cells, which indicates

that the recruitment and regulation of immune infiltrating cells in

breast cancer may be mediated by FAM166B (54).

In addition, FAM166B may be involved in lymph node

metastasis in patients with non-small cell lung cancer (NSCLC)
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(55). Whereas a recent bioinformatics study demonstrated that

FAM166B may be involved in RSA by down-regulating M2-type

macrophages, plasma cells, and CD4 resting memory T cells (56),

no studies have been found in the pathogenesis of PCOS.

The GO analysis of FAM166 B in this study showed that FAM166 B

mainly played an important role in the cellular component, which was

significantly enriched in the functions of axonemal microtubule,

cytoplasmic microtubule, axoneme, ciliary plasm and plasma

membrane bounded cell projection cytoplasm. In GSEA results,

FAM166B in PCOS was mainly enriched in signaling pathways such

as Insulin secretion, Fructose and mannose metabolism, Regulation of

lipolysis in adipocytes, Inflammatory mediator regulation of TRP

channels, Carbohydrate digestion and absorption, Steroid biosynthesis

and Platelet activation. FAM166B of RSA is mainly enriched in

Histidine metabolism, Phenylalanine metabolism, Linoleic acid

metabolism, Nicotinate and nicotinamide metabolism, Cell cycle and

DNA replication signaling pathways. This suggests that FAM166B may

be involved in the development of PCOS or RSA by regulating the cell

cycle, amino acid metabolism, lipid metabolism, glucose metabolism,

carbohydrate metabolism, and inflammatory responses. Previous studies

have shown that PCOS (57) and RSA (58) have different degrees of

redox abnormalities. GSVA analysis in this study showed that both

PCOS and RSA had severe disorders of glutathione metabolism, which

was similar to the results of previous studies.

CIBERSORT-based analysis showed that more severe immune

dysfunction existed in RSA than in PCOS, in which the degree of T

cells follicular helper infiltration was significantly increased in RSA;

whereas the degree of Macrophages M1 and Macrophages M2

infiltration was significantly decreased. In addition, in PCOS,

FAM166B was positively correlated with Macrophages M0, Mast

cells activated; and negatively correlated with Dendritic cells resting,

Macrophages M2, Monocytes, NK cells activated and T cells CD8

Mast cells activated. In the RSA group, FAM166B was positively

correlated with T cells gamma delta, Plasma cells, and T cells CD8,

and negatively correlated with Macrophages M0, NK cells activated,

and Mast cells resting, which is in line with the former findings (31).

Zeng and other scholars found that adequate and balanced

accumulation of T cells follicular helper during pregnancy may
FIGURE 8

GSVA analysis of high expression of FAM166B. (A) GSVA analysis of FAM166B in PCOS. (B) GSVA analysis of FAM166B in RSA.
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help to maintain a successful pregnancy, while excessively high levels

may lead to miscarriage (59). The association between RSA and

Macrophages M1 and Macrophages M2 has been reported in

previous studies (60).

In summary, FAM166 B may be involved in the occurrence and

development of PCOS and RSA by changing the cell cycle, oxidative

stress, immune microenvironment and so on. The newly discovered

diagnostic genes and potential molecular mechanisms in this study
Frontiers in Endocrinology 13
provide new clinical insights and guidance for the diagnosis and

treatment of PCOS and RSA patients.

Although this study combines WGCNA, LASSO model, RF

algorithm and SVM-RFE algorithm to identify common potential

biomarkers associated with the pathogenesis of PCOS and RSA,

and there is no joint analysis of these two diseases. However, this

study still has some limitations. First, our current study only

involves one diagnostic gene; secondly, the sample size is relatively
FIGURE 9

The characteristics of immune cell infiltration and its correlation with shared genes. (A) The difference of immune cell infiltration between PCOS and
control group. (B) The difference of immune cell infiltration between RSA and control group. (C) Correlation heat map between 22 kinds of immune
cells in PCOS. (D) Correlation heat map between 22 kinds of immune cells in RSA. (E) Analysis of the correlation between FAM166B and immune cells in
PCOS. (F) Analysis of the correlation between FAM166B and immune cells in RSA. (G) The correlation scatter plot of FAM166 B and immune cells in
PCOS. (H) The correlation scatter plot of FAM166 B and immune cells in RSA.
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small, and future research needs larger sample size and more

predictive clinical indicators to verify these results. Thirdly, the

research on the related mechanism of PCOS and RSA is not deep

enough. If proteomics, metabolomics and microbiome can be

combined and analyzed, the physiological mechanism of the two

diseases will be better understood.
Conclusions

Our study preliminarily revealed the common potential genes

and molecular mechanisms closely related to PCOS and RSA.

Among them, the FAM166 B gene may have a critical impact on

the pathophysiological mechanisms of PCOS and RSA and may be

involved in the development and progression of the disease by

altering the cell cycle, oxidative stress status, and immune

microenvironment. These findings may help to develop early

diagnostic strategies, prognostic markers and therapeutic targets.
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