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An arterial spin labeling−based
radiomics signature and machine
learning for the prediction and
detection of various stages of
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1National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I
Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,
2Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China, 3Department
of Radiology, Tianjin First Central Hospital, Tianjin, China, 4Ultrasound Diagnostic Center,The First
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Objective: The aim of this study was to assess the predictive capabilities of a

radiomics signature obtained from arterial spin labeling (ASL) imaging in

forecasting and detecting stages of kidney damage in patients with diabetes

mellitus (DM), as well as to analyze the correlation between texture feature

parameters and biological clinical indicators. Additionally, this study seeks to

identify the imaging risk factors associated with early renal injury in diabetic

patients, with the ultimate goal of offering novel insights for predicting and

diagnosing early renal injury and its progression in patients with DM.

Materials and methods: In total, 42 healthy volunteers (Group A); 68 individuals

with diabetes (Group B) who exhibited microalbuminuria, defined by a urinary

albumin-to-creatinine ratio (ACR)< 30 mg/g and an estimated glomerular

filtration rate (eGFR) within the range of 60–120 mL/min/1.73m²; and 53

patients with diabetic nephropathy (Group C) were included in the study. ASL

using magnetic resonance imaging (MRI) at 3.0T was conducted. The radiologist

manually delineated regions of interest (ROIs) on the ASL maps of both the right

and left kidney cortex. Texture features from the ROIs were extracted utilizing

MaZda software. Feature selection was performed utilizing a range of methods,

such as the Fisher coefficient, mutual information (MI), probability of

classification error, and average correlation coefficient (POE + ACC). A

radiomics model was developed to detect early diabetic renal injury, extract

imaging risk factors associated with early diabetic renal injury, and examine the

relationship between significant texture feature parameters and biological

clinical indicators. Patients with DM and kidney injury were followed

prospectively. The study utilized seven machine learning algorithms to develop

a detective radiomics model and a comprehensive predictive model for assessing

the progression of kidney damage in patients with DM. The diagnostic efficacy of

the models in detecting variations in diabetic kidney damage over time was
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evaluated using the area under the curve (AUC) of the receiver operating

characteristic (ROC) curve. Empower (R) was used to establish a correlation

between clinical biological indicators and texture feature metrics. Statistical

analysis was conducted using R, Python, MedCalc 15.8, and GraphPad Prism 8.

Results: A total of 367 texture features were extracted from the ROIs in the

kidneys and refined based on selection criteria using MaZda software across

groups A, B, and C. The renal blood flow (RBF) values of the renal cortex in groups

A, B, and C exhibited a decreasing trend, with values of 256.458 ± 54.256 mL/

100g/min, 213.846 ± 52.109 mL/100g/min, and 170.204 ± 34.992 mL/100g/min,

respectively. There was a positive correlation between kidney RBF and eGFR (r =

0.439, P<0.001). The negative correlation between RBF and various clinical

parameters including urinary albumin-to-creatinine ratio (UACR), body mass

index (BMI), diastolic blood pressure (DBP), blood urea nitrogen (BUN), and

serum creatinine (SCr) was investigated. Through the use of a least absolute

shrinkage and selection operator (LASSO) regression model, the study identified

the eight most significant texture features and biological indicators, namely

GeoY, GeoRf, GeoRff, GeoRh, GeoW8, GeoW12, S (0, 4) Entropy, and S (5, -5)

Entropy. Spearman correlation analysis revealed associations between imaging

markers in early diabetic patients with kidney damage and factors such as age,

systolic blood pressure (SBP), Alanine Transaminase (ALT), Aspartate Amino

Transferase (AST) albumin, uric acid (UA), microalbuminuria (UMA), UACR, 24h

urinary protein, fasting blood glucose (FBG), two hours postprandial blood

glucose (P2BG), and HbA1c. The study utilized ASL imaging as a detection

model to identify renal injury in patients with DM across different stages,

achieving a sensitivity of 85.1%, specificity of 65.5%, and an AUC of 0.865.

Additionally, a comprehensive prediction model combining imaging labels and

biological indicators, with the naive Bayes machine learning algorithm as the best

model, demonstrated an AUC of 0.734, accuracy of 0.74, and precision of 0.43.

Conclusion: ASL imaging sequences demonstrated the ability to accurately

detect alterations in kidney function and blood flow in patients with DM.

Strong associations were observed between renal blood flow values in ASL

imaging and established clinical biomarkers. These values show promise in

detecting early microstructural changes in the kidneys of diabetic patients.

Utilizing image markers in conjunction with clinical indicators was effective in

identifying early renal dysfunction and its progression in individuals with DM.

Furthermore, the integration of imaging texture feature parameters with clinical

biomarkers holds significant potential for predicting early renal damage and its

progression in patients with diabetes.
KEYWORDS

radiomics signature, arterial spin labeling, texture analysis, diabetic kidney damage,
machine learning (ML)
Introduction

Diabetic kidney disease (DKD) is a prevalent condition that

increases the risk of cardiovascular disease and can lead to renal

failure (1).
02
In individuals with chronic kidney disease (CKD), albuminuria

and estimated glomerular filtration rate (eGFR) serve as predictive

biomarkers for the progression of kidney dysfunction. However,

previous studies suggest that the staging of proteinuria may not

accurately predict renal function (2) in diabetic patients with
frontiersin.org
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normoalbuminuria who demonstrate preserved renal function and

no apparent renal damage at different stages. Therefore, early

detection of renal injury through sensitive imaging techniques

is crucial.

Renal blood flow (RBF) can be measured non-invasively with

arterial spin labeling magnetic resonance imaging (ASL MRI), a

promising technique that holds considerable value in research

(3–5). In ASL, an endogenous tracer is magnetically tagged and

arterial blood water perfusion is measured by subtracting the labeled

image from the non-labeled (control) image (6). RBF, tissue

perfusion, oxidation, microstructure, inflammation, and fibrosis are

crucial elements in the pathogenesis of various renal disorders, with

biomarkers such as RBF being responsive to these alterations (4).

Furthermore, quantitative assessment of renal blood perfusion by

renal ASL-MRI can evaluate the protective effect of hypoglycemic

drugs on kidney function (7). While prior research has concentrated

on cortical perfusion ASL measurements for the detection of

hemodynamic variations in early diabetic nephropathy, we argue

that the analysis of texture features warrants further investigation.

Radiomics presents a non-invasive method for evaluating

kidney damage in diabetic patients at various stages through the

extraction of statistical information from multiple quantitative and

analyzable medical images. Utilizing data-characterization

algorithms, the extraction of numerous features from medical

images can reveal digital disease fingerprints (8).

Through the use of labeled training samples, machine learning

(ML) algorithms develop mathematical models to classify new data

and generate predictions from unlabeled data (9). Radiomics bridges

imaging (‘macroscopic’) and histology (‘microscopic’) and provides a

new dimension for assessing cancer structures (10). In one study,

texture-feature Gray Level Co-occurrence Matrix (GLCM) inverse

difference was found to be the most representative feature (an avatar

feature) in a model predictive of poor outcomes in patients treated

with immunotherapy (11). Another study used cross-validation and

grid search to assess three ML models [(XGBoost, Random Forest,

and least absolute shrinkage and selection operator (LASSO)] for

their ability to accurately predict the risk of malignancy for

pulmonary nodules. They found the LASSO model yielded the best

predictive performance in cross-validation (12). At present, there are

no investigations on renal function in individuals with diabetes based

on ASL imaging. In this study, patients with diverse levels of renal

impairment were utilized to develop a precise and effective model for

assessing radiomics texture characteristics through the application of

machine learning methodologies.

Furthermore, this research expanded the examination to

incorporate supplementary radiomics texture attributes in ASL

imaging to ascertain whether imaging can detect renal injury

earlier than conventional clinical markers. Additionally, the study

aimed to predict the progression of renal impairment in diabetic

individuals with normal clinical indicators. Advanced machine

learning techniques were employed to uncover latent features

within the radiomics data and explore the potential correlation

between texture features and clinical biological indicators. It

provides a rich opportunity for further research on the

development of imaging omics in diabetic nephropathy.
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Materials and methods

Study population

The study was approved by the ethics committee at Tianjin

Medical University, with all participants providing informed

consent prior to their involvement. Retrospective and prospective

analyses were conducted on clinical and imaging data of

individuals, including healthy volunteers, individuals with

diabetes, and patients with diabetes, at Chu Hsien-I Memorial

Hospital, Tianjin Medical University, from 1 January 2018 to 31

December 2022.

The diagnosis of diabetes mellitus (DM) adhered to the criteria

outlined by the American Diabetes Association (13). Using the

creatinine equation developed from the CKD-Epidemiology

Collaboration (EPI) equation, the eGFR for each participant was

calculated (14).

Group A, consisting of 42 healthy volunteers (24 men and 18

women, aged 28-72 years with a mean age of 46 years), exhibited

normal eGFR levels and no indications of cardiac disease, gout,

hypertension, or kidney disease.

Group B consisted of 68 patients with DM (39 men and 29

women, with an age range of 17-70 years and a mean age of 50 years).

These patients demonstrated an eGFR between 60 and 120 mL/

(min·1.73 m²) and an albumin-to-creatinine ratio (ACR)< 30 mg/g.

Group C included 53 diabetic patients (35 men and 18 women,

with an age range of 33-74 years and a mean age of 55 years) who

had an eGFR< 60 mL/(min·1.73m²) or an ACR>30 mg/g. The

participants in groups B and C were clinically diagnosed with DM.

The study’s exclusion criteria encompassed patients with a

history of kidney tumor, trauma, or surgery (two cases), those

with renal morphological abnormalities, hydronephrosis, stones,

masses, or recent use of nephrotoxic substances (five cases), and

individuals with image artifacts or other factors that could

potentially impact the texture analysis (30 cases).

Ultimately, 163 individuals with an average age of 51 ± 12.21

years, consisting of 98 men and 65 women, were enrolled in the

study. The screening process is depicted in Figure 1.
Magnetic resonance examination

During functional MRI (fMRI) scanning, a 3.0T Philips Ingenia

MRI scanner was utilized, with signal reception facilitated by 12

elements from the integrated spine matrix coil and six elements

from the body matrix coil. The participants were positioned in a

supine posture on the examination bed, instructed to breathe freely,

and advised to minimize body movement during the scan. The scan

was conducted by a proficient MR technician. The ASL scan

parameters for the renal coronal sequence included a repetition

time (TR) of 3200 ms and an echo time (TE) of 16 ms, AP = 10 mm,

FH = 257 mm, RL = 316 mm for the field of view (FOV), 88×117 for

the matrix size, and 10 mm for the slice thickness (THK) and gap of

1 mm. Post-processing of the original image data was conducted

using a Philips workstation to generate the ASL image.
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Postprocessing, image segmentation, and
extracting features

On the fMRI images, the radiomics features associated with

diabetic kidney damage were analyzed, and the specific steps were

as follows:
Fron
1. The program MaZda, which was created for the analysis

of image textures, was used to load the initial ASL

data (Version 4.6, https://www.eletel.p.lodz.pl/mazda) (15).

Regions of interest (ROIs) were manually delineated to

segment the ASL images. The radiologist manually outlined

ROIs on ASL images of both the right and left kidney,

encompassing the cortex (Figure 2).
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2. To mitigate the impact of variations in contrast and

brightness on analysis outcomes, prior to extracting

texture parameters in MaZda, gray levels were normalized

within the range [m - 3d, m + 3d], encompassing image

intensity normalization and gray level discretization.

3. The MaZda software extracted texture features from the

ROI, encompassing a total of 367 parameters, consisting of

the run-length matrix (RLM), absolute gradient (GRA), co-

occurrence matrix (COM), autoregression model, and Haar

wavelet in addition to the gray-level histogram. The MaZda

software used techniques such such as the Fisher coefficient,

mutual information (MI), probability of classification error,

and average correlation coefficient (POE + ACC), mutual

information (MI), and classification error probability to

determine the texture parameters.
Data processing

Perfusion-weighted pictures were obtained by subtracting the

control from the label images after motion correction. The equation

below, which was developed from a single-compartment ASL

perfusion model, was used to quantify renal blood flow from this

map in milliliters per hundred grams per minute (16).

RBF =
DM
M0

l
2a

R1a

exp ( − wR1a ) − exp( − ðt + wÞR1a )

The blood/tissue water partition coefficient was 0.9 mL/g; the

labeling efficiency was 74%; the labeling duration was 1.6 s; the

postlabeling delay was 1.2 s; the longitudinal relaxation rate of

arterial blood, R1a, was 0.67 s-1; and the image intensity of the mean

control image is Mo. The signal difference between the label and

control images is represented by M.
FIGURE 1

Study screening flowchart.
FIGURE 2

The ROI in the ASL image includes the renal cortex.
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Statistical analysis

The clinical biological indicators in the three groups were

statistically compared using multivariate analysis of variance

(MANOVA) for the normally distributed data and the Kruskal-

Wallis test for the non-normally distributed data. A significance

threshold of p<0.05 was utilized. Image rendering was conducted

with GraphPad Prism 8 and R Studio.

LASSO was employed to select the most informative texture

characteristics. A refined model was achieved through the

construction of a penalty function, which compressed the

regression coefficient to zero and optimized the model parameters

via cross-validation. The model was trained using a 10-fold cross-

validation approach to predict early identification of diabetic kidney

injury in patient groups A, B, and C. Seven machine learning

algorithms were utilized to establish prediction models, with the

optimal model for predicting various stages of kidney damage in

individuals with DM selected.

The study utilized hierarchical clustering heat maps generated

using R language and Python to visually represent the most valuable

texture features and clinical biological indicators selected. Spearman

correlation analysis was conducted to assess the relationship

between the texture features and clinical indicators. The

predictive capability of the model for different stages of diabetic

kidney impairment was evaluated through ROC curve analysis

using Python and MedCalc 15.8.
Frontiers in Endocrinology 05
Results

Clinical characteristics of the
study subjects

A total of 163 individuals underwent renal ASL, with 53 in

group A, 68 in group B, and 42 in group C. Demographic and

clinical variables are reported in Table 1. The resulting images met

the diagnostic criteria. There were no statistically significant

differences in gender or age among groups A, B, and C (p > 0.05).
RBF values analysis of ASL imaging

All participants underwent abdominal functional magnetic

resonance imaging, and renal cortical blood perfusion values were

assessed using ASL imaging. The bilateral RBF values in groups A,

B, and C exhibited a progressive decrease, with values of 256.458 ±

54.256mL/100g/min, 213.846 ± 52.109mL/100g/min, and 170.204 ±

34.992mL/100g/min, respectively, as shown in Figure 3.

Statistically significant differences (p< 0.05) were observed in the

RBF values among the various groups and within the three distinct

groups. No significant disparity was noted in the RBF levels of the left

and right kidneys. Furthermore, a positive correlation was identified

between the RBF values and eGFR (r = 0.439, P< 0.001), while

negative correlations were found with urinary albumin-to-creatinine
TABLE 1 Baseline characteristics of different diabetic subjects.

HVs(n=42) DM(n=68) DN(n=53) F/H value P value

Female n(%) 18 (42.8%) 29 (42.6%) 18 (34%) 7.130 1.458

Age (years,
~X± SD)

46.381 ± 12.165 50.941 ± 12.456 55.566 ± 10.613 1.140 0.001

BMI(kg/m2,~X± SD ) 23.671 ± 3.039 28.494 ± 3.622 26.852 ± 3.142 27.333 <0.01

SBP (mmHg,~X± SD) 108.5 ± 7.178 133.632 ± 11.398 134.679 ± 18.883 55.729 <0.01

DBP (mmHg,~X± SD) 74.167 ± 7.708 81.088 ± 8.954 81.981 ± 10.148 10.278 <0.01

ALT [U/L,M(Q1,Q3)] 30.45(22.475,40.025) 24.25(18.825,44.75) 20.5(14.5,31.8) 9.408 0.009

AST [U/L,M(Q1,Q3)] 27.25(21.175,34.75) 21.65(16.925,28.8) 21(15.85,27.9) 9.542 0.008

ALB(g/L) 48.410 ± 4.478 44.201 ± 4.618 41.691 ± 5.087 23.717 <0.01

AG 1.510 ± 0.157 1.645 ± 0.264 1.468 ± 0.247 9.379 <0.01

BUN [mmol/L,M(Q1,Q3)] 5.65(4.675,7.05) 5.08(4.26,6.263) 6.87(5.55,9.29) 27.350 <0.01

SCr [umol/L,M(Q1,Q3)] 61.65(56.15,65.925) 63.3(54.575,72.15) 74.7(63.45,123.25) 43.239 <0.01

UA [umol/L, M(Q1,Q3)] 271.2(247.225,293.575) 335.25(260.6,389.25) 382.2(315.8,427.65) 40.422 0.043

eGFR [ml/min/1.73m2, M
(Q1,Q3)]

107.78
(100.915,116.6775)

105.978(99.4,112.99) 84.51(50.635,102.33) 43.239 <0.01

UMA [mg/24h,M(Q1,Q3)] 9.75(3.1,14.45) 11.88(6.7,29.2) 110.1(56.015,1082.665) 85.683 <0.01

Pro 0(0,0) 0(0,0) 1(0,2) 70.778 <0.01

ACR [mg/g, M(Q1,Q3)] 6.9(5.5,8.725) 9.333(6.275,13.374) 223.21(43.505,223.21) 92.915 <0.01
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ratio (UACR) (r = -0.691, p< 0.001), age (r = -0.242, p< 0.001), body

mass index (BMI) (r = -0.253, p< 0.001), diastolic blood pressure

(DBP) (r = -0.307, p< 0.001), blood urea nitrogen (BUN) (r = -0.245,

p< 0.001), and serum creatinine (SCr) (r = -0.338, p< 0.001).
Feature selection and extraction and the
creation of a radiomics diagnostic model
and radiomics signature

Utilizing the MaZda software, a total of 367 texture

characteristics were extracted from each kidney. Three

algorithms, namely the Fisher Coefficient, Mutual Information,

and Probability of Error plus Accuracy were utilized to identify

the texture parameters of significance for further analysis.

Subsequently, the eight texture features with the highest

diagnostic values were selected for further investigation, as shown

in Figure 4 and Table 2. A LASSO regression model was then

developed using the “glmnet” and “e1071” packages.
Evaluation of the detection model

Based on the prominent indices of LASSO regression, eight

optimal texture features were selected, and distinct machine

learning algorithms were utilized to establish radiomics texture

feature prediction models for renal damage in diabetic patients at

various stages. The categorical variables were defined as follows.The

positive variable was the patients with diabetes in Group B, and the

negative variable was the healthy controls in Group A. At the same

time, the positive variable was defined as diabetic nephropathy

patients in Group C, and the negative variable was defined as

patients with diabetes in Group B.
Frontiers in Endocrinology 06
The area under the receiver operating characteristic curve

(AUC) was computed for each participant to assess the

discriminatory performance of the model. The most significant

texture features in the model had an AUC of 0.865, a sensitivity of

85.1, and a specificity of 65.5 (Figure 5).
Model development

Seven machine learning techniques, including decision trees

(DTC), gradient boosting machines (GBM), logistic regression

(LR), random forest (RF), K-Nearest Neighbor (KNN), support

vector machines (SVM), and naive Bayes (NB), were employed to

identify key characteristics and develop a radiomics texture feature

prediction model. The subjects were divided into training (75%)

and validation (25%) groups at random. Thus, 75% of the data were

utilized for model construction, with the remaining 25% allocated

for internal validation. A 10-fold cross-validation was conducted on

the Training Set, representing 75% of the entire dataset. In total,

90% of the Training Set was utilized for training, while the

remaining 10% was reserved for testing purposes. Among

the seven classifiers examined, the NB classifier demonstrated the

most favorable performance in the prediction model, with an

accuracy of 0.74 and a precision of 0.43. The accuracy of the

seven machine learning methods is depicted in Figure 6.
Correlation analysis between texture
features and clinical biological indicators

In order to examine the correlation between the eight pertinent

textural characteristics and clinical biological markers, Spearman

correlation analysis was employed. The data exhibited a skewness
FIGURE 3

RBF values from ASL imaging in groups A, B and C. (*p<0.05,**p<0.01, ***p<0.001).
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distribution in the normal distribution diagram and the Shapiro-

Wilk test, while the scatter diagram (Figure 7) displayed a

monotonic relationship between the two variables.

The identified texture feature parameters demonstrated varying

degrees of significant correlation with eGFR and blood pressure

measurements, including DBP, systolic blood pressure (SBP),

albumin (ALB), albumin-to-creatinine ratio (ACR), BMI, fasting

blood glucose (FBG), two hours postprandial blood glucose (P2BG),

24-hour urine protein, blood urea nitrogen (BUN), SCr, uric acid

(UA), and microalbuminuria (UMA) in individuals with early

diabetic kidney impairment.
Frontiers in Endocrinology 07
Discussion

Prompt detection and intervention in diabetic nephropathy

hold considerable clinical significance. Previous studies have

demonstrated a relationship between RBF, as evaluated by ASL,

and the severity of diabetic kidney damage. In our study, we

examined the textural characteristics of renal ASL images in a

cohort of healthy individuals and those with varying stages of DM.

Our findings suggest that radiomics features derived from ASL

imaging can effectively identify both early and advanced stages of

renal injury in patients with DM. To the best of our knowledge, our
TABLE 2 Eight significant textural characteristics identified by the LASSO regression model.

Texture feature Group A Group B Group C F value P value

GeoY 163.172(81.298~219.885) 142.743(64.222~201.104) 103.971(57.6543~211.164) 64.88 0.001

GeoRf 0.530(0.336~1.547) 0.670(0.373~1.529) 0.923(0.420~2.571) 54.73 0.001

GeoRff 0.456(0.270~0.684) 0.541(0.363~0.927) 0.677 (0.302~0.923) 74.29 0.001

GeoRh 0.934(0.872~0.983 0.953(0.899~0.983) 0.955(0.906~0.991) 29.81 0.001

GeoW8 0.462(0.270~0.702) 0.561(0.363~1) 0.734(0.308~1) 75.46 0.001

GeoW12 0.577(0.072~1.923) 1.074(0.147~1.838) 1.411(0.159~2.522) 66.36 0.009

S(0,4)
Entropy

2.397(1.074~2.897) 2.16(1.157~3.048) 2.042(0.173~2.710) 22.94 0.007

S(5,-5)Entropy 2.291(1.415~2.877) 2.093(1.180~2.997) 1.976(0.184~2.666) 18.27 0.001
MANOVA and a nonparametric test were used to compare the texture features of the three groups. A statistically significant value was p < 0.05.
FIGURE 4

Texture feature selection was conducted using the LASSO binary regression model. The LASSO model uses 10-fold cross-validation to select the
tuning parameter (lambda) and plot the binomial deviation curve against log(lambda). Vertical lines are drawn at the ideal values using the minimal
criteria and one standard error method. This approach was used to screen eight texture characteristics. Texture features logit(P) = logit(P) = -
0.005483×GeoY + 0.215022×GeoRf - 0.099669×GeoRff + 2.829132×GeoRh + 0.657665×GeoW8 + 0.315119×GeoW12- 0.254502×S(0,4)Entropy -
0.073115×S(5,-5)Entropy.
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findings represent an initial demonstration of the efficacy of

radiomics-based analysis in the quantitative evaluation of diabetic

kidney ASL MRI. Furthermore, we examined the correlation

between radiomics and clinical biological indicators.

DKD exhibits heterogeneity and lacks a consistently predictable

clinical progression. eGFR and albuminuria are the two recognized

biomarkers currently used to determine the stage of DKD. Existing

literature has extensively discussed the limitations of these

biomarkers (17–21). Moreover, formulating a personalized

therapeutic approach solely based on these two biomarkers has

proven challenging (22).

Previous studies have consistently demonstrated a positive

association between ASL and eGFR in native kidneys (23–25).
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The utilization of radiomics in renal ASL has not yet been

documented in the literature. Nevertheless, the analysis of texture

feature parameters can enhance the assessment of kidney damage in

patients with DM at various stages, leading to improved treatment

strategies and efficacy evaluation.

A total of 367 texture feature parameters were extracted from

ASL images of the left and right kidneys using MaZda 4.6 software.

The selection of the most valuable texture parameters was

conducted through LASSO regression analysis, following the

refinement of 30 optimal texture feature parameters using the

B11 statistical module within the MaZda program. Subsequently,

models were developed for the evaluation of kidney damage in

individuals with different stages of DM employing a range of

machine learning techniques.

Tibshirani (26) was the first to propose the LASSO method. The

evaluation of various machine learning algorithms, such as LR, RF,

KNN, SVM, GBM, NB, and DTC, were performed in this study. After

conducting a comparative analysis of the effectiveness of these

machine learning algorithms in developing radiomics texture feature

models for individuals with both DM and DKD at various stages, the

results indicate that several classifiers utilizing the chosen features

demonstrated optimal performance. The LR andNBmodels exhibited

the highest AUC, sensitivity, positive predictive values, and negative

predictive values. The LR algorithm identified eight primary factors

for the risk prediction model: GeoFmin, GeoS1, GeoLsz, GeoRd,

GeoW12, Skewness, and S(0,1)AngScMom,45dgr_GLevNonU. In the

present study, the incorporation of the radiomics texture features

alongside the clinical variables yielded a marginal improvement in the

AUC-ROC. Despite the observed correlations among these features,

the progressive addition of radiomics features bolstered the predictive

capacity of each model for DKD and its rapid progression. As a result,

the LR detection radiomics model and the NB prediction model were

ultimately chosen for further analysis (p< 0.05), indicating a

statistically significant disparity between the anticipated and

observed outcomes. In order to evaluate the precision of the model,

a comparison was made between the projected value and the actual

value. The model was utilized to identify kidney damage in patients

across three clinical trial datasets: a healthy control group, an early

kidney injury group, and a diabetic nephropathy group.

The observed changes in texture features are suggestive of renal

injury in diabetic patients at different stages indicates discrepancies

in the structure and function of diabetic kidneys. This phenomenon

may be attributed to the atrophy of renal tubules and the

diminished capillary count in diabetic individuals, leading to a

reduction in blood flow within the renal cortex. Wang et al. (27)

indicated an association between kidney cortical perfusion and

peritubular capillary densities, with interstitial fibrosis being

identified as a factor that decreases cortical perfusion by

disrupting peritubular capillaries.

Various confounding factors that impact cortical perfusion

as measured by ASL should be taken into account. One such

factor is anemia, which can potentially decrease brain perfusion

measurements obtained through ASL due to the technique’s

reliance on circulating blood as an endogenous tracer. This

phenomenon may help elucidate the lower ASL values

observed in the unstable graft group. It is worth noting,
FIGURE 6

Prediction results of the machine learning algorithms.
FIGURE 5

The diagnostic model’s degree of discrimination was evaluated
using the AUC. This provided a paradigm for diagnosing different
stages of diabetic kidney disease.
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however, that anemia is commonly present in individuals with

compromised kidney function. Additionally, variables such as

the use of anti-hypertensive medications may also influence

renal perfusion (28). These criteria, however, had no impact

on our findings because the groups were matched according to

these factors.

ROC curve analysis confirmed the effectiveness of using ASL for

detecting kidney injury in patients with DM over time. The high

AUC and specificity support this approach. First, it integrated

various texture feature parameters associated with diabetic

nephropathy into an assessment model, enabling the estimation

of alterations in RBF and microstructure across patients with DM in

different stages. This introduces a novel approach for clinicians,

suggesting the need to integrate imaging markers to guide

intervention strategies. Second, discerning interdependencies

among markers proves challenging for clinicians. This system

may also be used as a customized patient monitoring tool, using

machine learning models that adapt to changing measurements

through retraining.

More importantly, the high specificity of this distinction can be

achieved by using ASL radiomics parameters, and a combination of

biological and radiomics markers may be more useful for the

follow-up of renal function changes.

While our findings highlight the potential utility in

distinguishing radiomics texture features between healthy
Frontiers in Endocrinology 09
kidneys and various stages of kidney damage, our study does

possess certain limitations. This study lacks a multicenter design

and further research is needed to evaluate the diagnostic

effectiveness of the ASL map-based radiomics model. Despite

the small sample size, statistical variations in texture feature

values were significant. ASL with free-breath scanning may have

slightly lower image quality compared to breath-triggered images,

but it offers advantages such as easier patient cooperation and

shorter scan times.
Conclusion

It is widely recognized that obtaining pathological results for

early DKD in a clinical setting poses challenges, and quantitatively

monitoring changes in renal function and structure is currently not

feasible. In conclusion, we demonstrated that ASL sequences have

the ability to sensitively detect alterations in kidney function and

blood flow in patients with DM. Significant associations were

observed between ASL imaging RBF values and clinical

biomarkers. RBF values have the potential to identify early

microstructural changes in the kidneys of DM patients. A model

that combines imaging texture feature parameters with clinical

biological indicators can predict early renal damage and

progression in patients with DM early and intelligently.
FIGURE 7

Heat map with meaningful hierarchical clustering of texture features and clinical biological indicators.
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