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Background: Organophosphate esters (OPEs) may interfere with thyroid

function, but the relationship between OPEs and thyroid disease remains

unclear. This study aims to elucidate the relationship between OPEs exposure

and thyroid disease risk in the general population in the United States.

Method: Data were obtained from the 2011-2014 National Health and Nutrition

Examination Survey cycle. All participants were tested for seven OPE metabolites

in their urine and answered questions about whether they had thyroid disease

through questionnaires. Logistic regression was employed to analyze the

association between exposure to individual OPE metabolites and thyroid

disease. Weighted Quantile Sum (WQS) regression modeling was utilized to

assess exposure to mixed OPE metabolites and risk of thyroid disease. Bayesian

kernel machine regression(BKMR) models to analyze the overall mixed effect of

OPE metabolites.

Result: A total of 2,449 participants were included in the study, 228 of whom had

a history of thyroid disease. Bis(1,3-dichloro-2-propyl) phos (BDCPP), Diphenyl

phosphate (DPHP) and Bis(2-chloroethyl) phosphate (BCEP) were the top three

metabolites with the highest detection rates of 91.75%, 90.77% and 86.57%,

respectively. In multivariate logistic regression models, after adjustment for

confounding variables, individuals with the highest tertile level of BCEP were

significantly and positively associated with increased risk of thyroid disease

(OR=1.57, 95% CI=1.04-2.36), using the lowest tertile level as reference. In the

positive WQS regression model, after correcting for confounding variables,

mixed exposure to OPE metabolites was significantly positively associated with

increased risk of thyroid disease (OR=1.03, 95% CI=1.01-1.06), with BCEP and

DPHP having high weights. In the BKMR model, the overall effect of mixed

exposure to OPE metabolites was not statistically significant, but univariate

exposure response trends showed that the risk of thyroid disease decreased

and then increased as BCEP exposure levels increased.
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Conclusion: The study revealed a significant association between exposure

to OPE metabolites and an increased risk of thyroid disease, with BCEP

emerging as the primary contributor. The risk of thyroid disease exhibits a J-

shaped pattern, whereby the risk initially decreases and subsequently

increases with rising levels of BCEP exposure. Additional studies are

required to validate the association between OPEs and thyroid diseases.
KEYWORDS

organophosphate esters, thyroid diseases, Weighted Quantile Sum (WQS)
regression, Bayesian Kernel Machine Regression (BKMR), nutrition surveys,
mixed exposure
1 Introduction

Organophosphate esters (OPEs) are a group of chemical flame

retardants widely used in building materials, electronic products,

furniture, textiles and many other products (1, 2). Since the new

century, brominated flame retardants have been gradually banned and

eliminated due to a series of reasons such as persistent environmental

pollution and physiological toxicity, organophosphorus flame

retardants as their main alternatives have been developed rapidly,

and the global production and consumption of OPEs have been

increasing (3–5). It is estimated that global production of OPEs will

account for more than 20% of all flame retardants in the future (6). The

bonding between OPEs materials is non-chemically bonded and is

susceptible to release from the product into the environment through

volatilization or wear during its production, transport application and

recycling (6). Current studies have detected the presence of OPEs in

environmental media such as air, water, dust, soil and sediment (7–10).

Humans are inevitably exposed to OPEs pollution, which poses a

potential health risk through inhalation, dietary intake and dermal

contact (11–13). It has been reported that OPEs and their metabolites

have been detected in human breast milk, serum and urine (14–16).

After entering the body, most OPEs are easily metabolized into dialkyl

or diaryl groups and various hydroxylation products. Therefore,

urinary OPE metabolites are commonly used as biomarkers to

quantify human OPE exposure (17, 18). Studies have found

associations between OPEs metabolite exposure and multiple adverse

health outcomes, such as cardiovascular disease (19), obesity (20), and

chronic kidney disease (21). Because of their ubiquity and potential

biotoxicity, it is important to reveal the adverse effects of OPEs

exposure on broader health outcomes.

Thyroid disorders are common endocrine diseases with increasing

incidence in recent years, including thyroid cancer and benign thyroid

diseases (22). Thyroid cancer is the most commonly detected cancer in

young people aged 15-29 years and is characterized by a significantly

higher incidence in women thanmen, with 44,280 new cases of thyroid

cancer expected to be diagnosed in 2021 (23, 24). Benign thyroid

diseases include nodular goiter, hypothyroidism or hyperthyroidism.

Hypothyroidism and hyperthyroidism are also common diseases that
02
have adverse effects on the cardiovascular system, female reproductive

function, and in severe cases can even be life-threatening (25). The

prevention and control of thyroid diseases has always been a difficult

problem, and its risk factors has not yet been clarified.

It has been observed in animal experiments that OPEs can

interfere with thyroid function through various signaling pathways

(26, 27), and the underlying toxicological mechanism may be

related to competitive binding of thyroid hormone receptors and

interference with thyroid hormone production (27, 28).

Epidemiological studies have also found that OPEs can interfere

with human thyroid function (29). Considering that common

thyroid disorders are closely related to thyroid-related hormones,

such as hyperthyroidism, hypothyroidism and thyroid cancer, the

association between OPEs and thyroid disorders is beginning to

attract attention (30). A case-control study found that OPEs

exposure contributes to changes in thyroid function, which

increases the risk of thyroid cancer (29). However, the association

between OPEs and thyroid diseases remains unclear.

Furthermore, given that humans are often exposed to multiple

OPEs at the same time, past studies have focused on the association

between single pollutant exposures and specific health outcomes,

and less concern has been given to the combined effects of various

OPEs exposures on humans. With the development of statistical

methods, two novel statistical strategies, Weighted Quantile Sum

(WQS) regression and Bayesian Kernel Machine Regression

(BKMR) models, have been applied to address this problem (31,

32). This study therefore explores the association between OPE

metabolites exposure and thyroid disease risk in the general

population, based on the National Health and Nutrition

Examination Survey (NHANES).
2 Materials and methods

2.1 Study design and population

NHANES is a cross-sectional national health nutrition

assessment survey sponsored by the National Center for Health
frontiersin.org
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Statistics to investigate the nutritional and health status of the

United States (US) population. The project uses a stratified multi-

stage sampling design to recruit 5,000 American volunteers each

year. Participants followed the voluntary principle of being

interviewed, physically examined and biological samples collected.

Survey data were published every two years on the official website

starting in 1999. All procedures were approved by the National

Center for Health Statistics Research Ethics Committee and written

informed consent was obtained from the participants. We collected

publicly accessible data from the NHANES project from 2011-2014

with the following inclusion criteria (1): Adults ≥ 20 years (2);

Complete all urine OPE metabolites (3); Assessment of thyroid

disease by means of a standardized questionnaire (4); Not suffering

from any type of cancer other than thyroid cancer (5); No missing

information on covariates. The detailed inclusion-exclusion process

for participants is shown in Figure 1.
2.2 Measurements of urinary
organophosphate ester metabolites

OPE metabolites were measured in urine using reversed phase

high-performance liquid chromatography separation, and isotope

dilution-electrospray ionization tandem mass spectrometry
Frontiers in Endocrinology 03
detection in the NHANES dataset. A total of seven OPE

metabolites were detected in this study, namely: Diphenyl

phosphate (DPHP); Bis(1,3-dichloro-2-propyl) phos (BDCPP);

Bis(1-chloro-2-propyl) phosphate (BCPP); Bis(2-chloroethyl)

phosphate (BCEP); Dibutyl phosphate (DBUP); Dibenzyl

phosphate (DBZP); 2,3,4,5-tetrabromobenzoic acid (TBBA). The

full names and abbreviations of the seven OPE metabolites tested in

this study are shown in Supplementary Table 1. Their parent

compounds are: Triphenyl phosphate (TPHP); Tris(1,3-

dichloropropyl) phosphate (TDCPP); Tris(1-chloro-2-propyl)

phosphate (TCPP); Tris(2-chloroethyl) phosphate (TCEP);

Tributyl phosphate (TBP); Tribenzyl phosphate; 2-ethylhexyl-

2,3,4,5- tetrabromobenzoate (TBB). Values below the limit of

detection (LOD) are estimated by dividing the detection limit by

the square root of 2 (LOD/√2). Metabolites with a detection rate of

more than 50% were selected for subsequent statistical analysis. A

detailed description of the experimental methods and procedures is

available on the NHANES website (33).
2.3 Assessment of outcomes

Thyroid disease outcomes identified in self-reported “medical

conditions” questionnaire in personal interview. The NHANES
FIGURE 1

Flow chart of the participants’ selection.
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questionnaire item for thyroid disease is MCQ 160m: “Ever told you

had thyroid problem”. If the answer was “yes”, the person was

classified as a thyroid disease group; if the answer was “no”, the

person was classified as a control group; if the answer was “don’t

know” or refused to answer, the data were considered missing. In

addition, patients with cancer types other than thyroid cancer were

excluded according to items MCQ220 (Ever told you had cancer or

malignancy) and MCQ230a (What kind of cancer). NHANES

Interview guidelines, including specific interview questions, can

be found in the Supplementary Material.
2.4 Covariates

Covariates were collected by NHANES through interviews or

laboratory tests and included age, gender, race, marital status, body

mass index (BMI), alcohol consumption status, history of

hypertension, history of diabetes, cotinine level, urinary

creatinine, education level, and family poverty income ratio (PIR).

The NHANES questionnaire and interview guide used to assess the

covariates are detailed in the Supplementary Material. Age, urinary

creatinine and PIR were continuous variables. The race is classified

into Mexican American, Other Hispanic, Non-Hispanic White,

Non-Hispanic Black, Non-Hispanic Asian, Other Race. Marital

status is classified as married or living with partner, widowed or

divorced or separated, or never married. BMI is classified as

underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), overweight

(25-29.9 kg/m2), obesity (≥30 kg/m2). Alcohol consumption status

was referred as alcohol user and non-alcohol user (at least 12

alcoholic drinks per year or not). Serum cotinine level as a marker of

nicotine exposure, classified as below the limit of detection (≤0.011

ng/mL), at or above the limit of detection (>0.011 ng/mL).

According to the NHANES questionnaire, self-reported history of

hypertension to determine hypertension and self-reported history

of diabetes to determine diabetes. Education level is classified as less

than high-school graduate, high-school graduate, college-

level graduate.
2.5 Statistical analysis

Continuous variables were expressed as mean and standard

deviation (SD) or median and inter-quartile range (IQR), and

categorical variables were expressed as frequencies and

percentages. The student’s t test (normal distribution) or Mann-

Whitney test (skewed distribution) was used to compare thyroid

disease cases and controls on continuous variables, and the chi-

square test was used on categorical variables. Since OPE metabolites

are non-normally distributed, they were log-transformed in this

study for subsequent analysis.

Multivariate logistic regression models were used to assess the

association between OPEs and thyroid disease risk. The groups were

divided into high, medium and low exposure groups according to

the tertile of urinary OPE metabolite concentrations. Odd ratios

(ORs) and corresponding 95% confidence intervals (CIs) were

calculated by comparing the medium and high OPEs exposure
Frontiers in Endocrinology 04
groups with the low exposure group. Model 1 adjusted for age,

gender and race; Model 2 adjusted for age, gender, race, marital

status, BMI, alcohol consumption status, history of hypertension,

history of diabetes, cotinine level, and urinary creatinine. In

addition, restricted cubic spline (RCS) curves were plotted to

determine the potential non-linearity of the association between

OPEmetabolites and thyroid disease risk. Four nodes were set at the

5th, 35th, 65th and 95th percentiles in the model, and the reference

value was set to the median of the ln-transformed OPE

metabolites concentrations.

To assess the association between exposure to mixed OPEs and

thyroid disease risk, we used WQS regression model (34). The

model constructs a weighted index, namely the WQS index, to

estimate the relationship between multiple exposures to

environmental chemicals and outcomes. In addition, the model

calculates the weight of the contribution of individual compounds

to the overall effect of the mixture, thus identifying the important

chemicals in the mixture. A detailed description of the method was

presented in previous study (32). In this study, 40% of the data as

the test set and the remaining 60% as the validation set.

Considering the potential interaction, non-linear effects and

non-additive relationships between multiple environmental

exposures, we used the BKMR model to assess the association

between mixed OPEs exposure and thyroid disease risk. The

method has been described in detail in previous study (31). In

this study, Markov chain Monte Carlo algorithm was used to fit the

BKMR model for 20,000 iterations. The BKMR model enables us to

conduct the following analyses (1): calculate the effect of individual

OPE metabolites on thyroid disease risk when the concentrations of

other OPE metabolites were fixed at the median (2); compared the

risk of thyroid disease for all metabolite concentrations of OPEs at a

given percentile with the risk at the 50th percentile, and calculated

the effect value of mixed exposure to OPEs (3); calculate the

posterior inclusion probability (PIP), which indicates the relative

importance of the effect of each OPE metabolite on the outcome,

with a higher PIP indicating a greater contribution to the outcome

(4); explore the pair-to-pair interaction of OPES metabolites when

other metabolites are fixed at median levels. All statistical analyses

were processed using R software (version 4.2.2). For RCS analysis,

WQS analysis and BKMR analysis, the RMS package, the gWQS

package and BKMR package were used, respectively. Two-sided P <

0.05 was considered statistically significant.
3 Result

3.1 Characteristics of study participants

Table 1 describes the demographic characteristics of the study

subjects. A total of 2449 participants were included in the study,

including 1230 (50.2%) men and 1219 (49.8%) women. The mean

age of the enrolled subjects was 46.00 (32.00-61.00) years and the

majority were non-Hispanic white or non-Hispanic black. 228

(9.3%) participants had self-reported thyroid problem, so they

were classified as thyroid disease group, and the remaining

subjects were control group. Participants in the thyroid disease
frontiersin.org
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TABLE 1 Characteristics of the study population (N=2449), NHANES, USA, 2011-2014.

Variable
Total TD group Control group

P
N=2449 N=228 N=2221

Age (years) 46.00 (32.00-61.00) 56.00 (45.25-69.00) 45.00 (31.00-60.00) <0.001

Age group (years) <0.001

20- 966 (39.4) 39 (17.1) 927 (41.7)

40- 865 (35.3) 96 (42.1) 769 (34.6)

60- 618 (25.2) 93 (40.8) 525 (23.6)

Gender <0.001

Male 1230 (50.2) 42 (18.4) 1188 (53.5)

Female 1219 (49.8) 186 (81.6) 1033 (46.5)

Race 0.001

Mexican American 280 (11.4) 21 (9.2) 259 (11.7)

Other Hispanic 235 (9.6) 19 (8.3) 216 (9.7)

Non-Hispanic White 1004 (41.0) 125 (54.8) 879 (39.6)

Non-Hispanic Black 548 (22.4) 40 (17.5) 508 (22.9)

Non-Hispanic Asian 305 (12.5) 16 (7.0) 289 (13.0)

Other Race 77 (3.1) 7 (3.1) 70 (3.2)

BMI (kg/m2) 27.9 (24.1-32.8) 29.80 (25.70-35.10) 27.70 (24.00-32.40) 0.001

BMI group (kg/m2) 0.002

<18.5 41 (1.7) 3 (1.3) 38 (1.7)

18.5- 694 (28.3) 47 (20.6) 647 (29.1)

25.0- 791 (32.3) 66 (28.9) 725 (32.6)

30.0- 923 (37.7) 112 (49.1) 811 (36.5)

PIR 2.02 (1.04-3.97) 1.96 (1.07-3.95) 2.02 (1.04-3.97) 0.97

Cotinine level 0.032

≥LOD 1760 (71.9) 150 (65.8) 1610 (72.5)

<LOD 689 (28.1) 78 (34.2) 611 (27.5)

Urinary creatinine 109.00 (61.00-166.00) 94.00 (47.25-149.75) 109.00 (62.00-167.00) 0.004

Alcohol consumption status <0.001

≥12 drink/year 1808 (73.8) 146 (64.0) 1662 (74.8)

<12 drink/year 641 (26.2) 82 (36.0) 559 (25.2)

Education level 0.645

Less than high-school graduate 485 (19.8) 41 (18.0) 444 (20.0)

High school graduate 540 (22.0) 48 (21.1) 492 (22.2)

College level graduate 1424 (58.1) 139 (61.0) 1285 (57.9)

Marital status <0.001

Married or living with partner 1415 (57.8) 130 (57.0) 1285 (57.9)

Widowed of divorced or separated 505 (20.6) 67 (29.4) 438 (19.7)

Never married 529 (21.6) 31 (13.6) 498 (22.4)

History of hypertension <0.001

(Continued)
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group were younger and more likely to be female(P<0.001). There

were also significant differences in race, BMI, cotinine level, urinary

creatinine, Alcohol consumption status, marital status, history of

hypertension and history of diabetes between the two

groups (P<0.05).
3.2 Measurements of urinary
OPE metabolites

The distribution of urinary OPE metabolite concentrations is

shown in Table 2. There were five OPE metabolites with detection

rate >50%, which were BDCPP, DPHP, BCEP, DBUP and BCPP,

with positive rates of 91.75%, 90.77%, 86.57%, 59.82% and

56.72%, respectively.
3.3 Association between OPEs and thyroid
disease risk by logistic regression analysis

Table 3 shows the results of multivariate logistic regression

analysis of the association between OPEs and thyroid disease risk.

When OPE metabolites were used as continuous variables,
Frontiers in Endocrinology 06
increased concentrations of DPHP, BDCPP, BCPP, and DBUP

were not significantly associated with thyroid disease risk, while

the positive association between BCEP concentration and thyroid

disease risk was marginally statistically significant. When OPE

metabolites were used as categorical variables, no association was

found between OPE metabolites and thyroid disease risk after

adjusting for age, gender, and race (Model 1). However, after

further adjustment for marital status, BMI, alcohol consumption

status, history of hypertension, history of diabetes, cotinine level,

and urinary creatinine, individuals with the highest tertile of

BCEP exposure had a significantly increased risk of thyroid

disease relative to the lowest tertile (OR=1.57, 95% CI=1.04-

2.36). In addition, the trend test P value of BCEP was less than

0.05, suggesting that the risk of thyroid disease increased with

BCEP levels.

The RCS curves are shown in Figure 2. No non-linear

relationship was observed between OPE metabolites and thyroid

disease risk (P for nonlinear>0.05). In this study, the association

between DPHP concentration and thyroid disease risk was observed

as an inverted U-shaped curve, while BCEP was a J-shaped curve.

When BCEP exposure increased to a certain concentration, the risk

of thyroid disease increased, which was similar to the results of

logistic regression model.
TABLE 1 Continued

Variable
Total TD group Control group

P
N=2449 N=228 N=2221

Yes 857 (35.0) 117 (51.3) 740 (33.3)

No 1592 (65.0) 111 (48.7) 1481 (66.7)

History of diabetes 0.002

Yes 283 (11.6) 40 (17.5) 243 (10.9)

No 2110 (86.2) 179 (78.5) 1931 (86.9)

Borderline 56 (2.3) 9 (3.9) 47 (2.1)
frontie
Normally distributed continuous variables are expressed as mean and standard deviation, skewed continuous variables are expressed as median and interquartile range, and categorical variables
are expressed as frequency and percentage. The student’s t test (normal distribution) or Mann-Whitney test (skewed distribution) was used to compare thyroid disease cases and controls on
continuous variables, and the chi-square test was used on categorical variables. TD, thyroid diseases.
TABLE 2 Distribution of the OPE metabolite concentrations (N=2449).

OPE metabolites
LOD
(µg/L)

Detection rate(%)
Mean
(µg/L)

Percentile(µg/L)

5 25 50 75 95

DPHP 0.100 90.772 1.653 0.110 0.330 0.750 1.590 5.740

BDCPP 0.100 91.752 1.639 0.080 0.290 0.741 1.770 5.850

BCPP 0.100 56.717 0.359 0.070 0.071 0.130 0.310 1.100

BCEP 0.100 86.566 1.126 0.060 0.170 0.400 0.960 3.735

DBUP 0.100 59.820 0.221 0.040 0.071 0.120 0.300 0.570

DBZP 0.050 0.082 0.038 0.035 0.035 0.040 0.040 0.040

TBBA 0.050 4.777 0.045 0.035 0.035 0.040 0.040 0.040
r
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3.4 Association between OPEs and thyroid
disease risk by WQS regression model

TheWQS model analyzed the potential effect of mixed OPEs on

thyroid disease. When analysis restricted in the positive direction,

the WQS index was significantly positively associated with thyroid

disease (OR=1.03, 95% CI=1.01-1.06, P=0.013). BCEP (65%) had

the highest weight, followed by DPHP (35%), indicating that they

play an important role in thyroid disease. When the analysis was

restricted to the negative, there was no association found between
Frontiers in Endocrinology 07
the WQS index and thyroid disease (OR=1.00,95% CI=0.97-

1.04, P=0.799).
3.5 Association between OPEs and thyroid
disease risk by BKMR model

When the other OPE metabolites were fixed at the median, the

univariate exposure response trend for each OPE metabolite was

shown in Figure 3A. The fit curve of BCEP exposure concentration
FIGURE 2

Association between ln-transformed urinary OPE metabolite concentrations and thyroid disease risk.
TABLE 3 Association of OPE metabolites exposure and the risk of thyroid disease.

Continuous
OR (95% CI)

P trend
a

Tertile 1 Tertile 2 Tertile 3

Model 1

DPHP 0.99(0.95-1.03) Reference 1.31(0.89-1.92) 1.19(0.79-1.81) 0.657

BDCPP 1.00(0.96-1.04) Reference 1.23(0.85-1.78) 0.85(0.54-1.33) 0.242

BCPP 1.10(0.98-1.23) Reference 0.92(0.63-1.36) 0.92(0.63-1.35) 0.675

BCEP 1.02(0.99-1.05) Reference 0.92(0.62-1.36) 1.56(1.05-2.33) 0.003

DBUP 1.06(0.73-1.52) Reference 0.78(0.53-1.14) 0.81(0.56-1.15) 0.335

Model 2

DPHP 0.98(0.94-1.03) Reference 1.24(0.84-1.83) 1.08(0.69-1.68) 0.934

BDCPP 0.99(0.95-1.04) Reference 1.14(0.78-1.66) 0.74(0.46-1.18) 0.088

BCPP 1.09(0.97-1.23) Reference 0.89(0.60-1.32) 0.87(0.59-1.28) 0.491

BCEP 1.02(0.99-1.05) Reference 0.95(0.64-1.40) 1.57(1.04-2.36) 0.005

DBUP 1.03(0.71-1.50) Reference 0.75(0.51-1.10) 0.80(0.55-1.15) 0.296
fro
Model 1: Adjusted for age, gender, race.
Model 2: Adjusted for age, gender, race, marital status, BMI, alcohol consumption status, history of hypertension, history of diabetes, cotinine level, and urinary creatinine.
a: The median value of each metabolite’s tertile was included in the regression model to test the trend.
Reference category: tertile 1.
Bold values indicate significant.
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and thyroid disease risk showed a “J” shape. As BCEP exposure levels

increased, thyroid disease risk first decreased and then increased. The

curves of the remaining OPE metabolites are flatter. The overall effect

of OPEs is shown in Figure 3B, although not statistically significant,

when all metabolites of OPEs were exposed at each percentile (except

at the 60th percentile) and had an increased risk of thyroid disease

compared with their exposure at the 50th percentile. And at the 70th

percentile and above, there was a trend for thyroid disease to increase

with increasing metabolites of OPEs. The highest PIP for thyroid

disease was BCEP (PIP=0.52), followed by DBUP (PIP=0.36), and

BCPP (PIP=0.32), indicating that BCEP plays an important

contribution to thyroid disease risk. Then the bivariate expose-

response interaction is also analyzed. In Figure 4, the columns

represent one of the OPE metabolite exposures studied (“ exposure

1 “), each row represents “exposure 2” at the 10th, 50th, and 90th,

while the other three metabolite exposures are fixed at the median

concentration. It was observed that the fit curves of BCEP and thyroid

disease risk clearly intersected with slope differences when BDCPP

was at different levels (10th, 50th, and 90th percentiles), suggesting a

potential interaction between BCEP and BDCPP exposure on thyroid

disease risk.
4 Discussion

To the best of our knowledge, no previous studies have investigated

the association between exposure to OPEs and the risk of thyroid

disease. In this study, we investigated the relationship between urinary

levels of OPEs and thyroid disease using multiple mixture analysis

models. Overall, our findings were consistent across all analyzed

models. The aggregated results demonstrated a positive association

between urine OPE metabolites and the risk of thyroid disease.

Notably, among the OPE mixtures, BCEP appeared to be the most

significant contributor. Furthermore, our study also revealed significant

interactions among different OPEmixtures, with a noteworthy negative

interaction observed between BCEP and BDCPP in the BKMR model.
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Generalized linear regression models, encompassing

multivariate logistic regression and linear regression, are

extensively employed in evaluating the health ramifications of

chemical substances (35–37). Previous studies utilizing

multivariate logistic regression and linear regression analyses have

demonstrated that exposure to OPEs can induce changes in thyroid

hormone levels (38, 39). These analyses often concentrate on a

single chemical. However, multi-pollutant mixtures in the natural

milieu can harbor intricate non-linear and non-cumulative

associations with health (31). Disregarding the interactions

between chemicals may result in spurious outcomes (35). The

findings of multivariate logistic regression analysis revealed a

favorable link between BCEP and susceptibility to thyroid disease.

In this scenario, individual model studies yield less robust outcomes

as the interactions between compounds is not considered.

Moreover, chemical interaction cannot be discerned in a

simplistic model.

Recently developed WQS regression and BKMR models, which

better reflect the complexity of real-life multiple exposures. The

WQS model can initially explore the link between overall

compound mixture exposure and outcomes, and provide specific

effect values and weighting of each compound’s contribution to

outcomes that more closely resemble realistic human exposure to

OPEs. The WQS model showed a significant positive association

between urine OPE metabolites and thyroid disease, with the most

contributing compound being BCEP, followed by DPHP. This

result is consistent with the results of multivariate logistic

regression analysis. The BKMR model can assess the overall

hazard trends of mixed exposures of compounds at different

exposure levels and can also represent the interactions between

any two chemicals. In the BKMR model, it was observed that the

risk of thyroid disease exhibited a J-shaped relationship with

increasing levels of BCEP exposure. Additionally, there might

exist an interaction between BCEP and BDCPP, influencing the

risk of thyroid disease. When BDCPP was in the 10th percentile, the

fitted curve of BCEP and the risk of thyroid disease exhibited a
A B

FIGURE 3

(A) Univariate exposure-response functions and 95% confidence intervals for each OPE metabolite, with the remaining OPE metabolites fixed at
50%; (B) Combined effect of BKMR model mixtures on thyroid disease when comparing all OPE metabolites at a specific percentile with all OPE
metabolites at the 50th percentile; models were adjusted for age, gender, race, marital status, BMI, alcohol consumption status, history of
hypertension, history of diabetes, cotinine level, and urinary creatinine.
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steeper slope compared to its presence in the 90th percentile. These

findings partly explain the low weighting of BDCPP in the model.

The three models in our study provided similar results, with

exposure to mixed OPEs having a tendency to increase the risk of

thyroid disease and pointing to BCEP as the most significant

compound responsible for this trend. Previous studies have

established an association between OPEs exposure and thyroid

hormone alterations, however few studies have clarified the

association between OPEs and thyroid disease. Previous study

found that tri-n-propyl phosphate, TCPP, TDCPP and TBEP in

OPEs significantly increased the risk of thyroid cancer (29). Among

them, TBEP is the parent compound of BCEP. This is similar to the

results of our study.

The potential mechanisms by which OPEs interfere with

thyroid function have not been fully elucidated, and evidence

from animal and in vitro studies suggests that OPEs can induce

thyroid dysfunction through a variety of signaling pathways. OPEs

can affect certain gene expression and signaling pathways related to

thyroid hormone (TH) synthesis, metabolism, transport and

elimination in zebrafish embryos, leading to thyroid dysplasia

(40). Binding of TH to thyroid hormone receptors is thought to

be a major potential target for OPEs-induced thyroid destruction

(41). It was found that OPEs can compete with TH to bind to

membrane thyroid hormone receptors to enter cells, thereby

inducing thyroid endocrine disruption. OPEs also competitively

bind to zebrafish thyroxine transporter protein and thyroxine-
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binding globulin, thereby affecting the transport of TH in the

blood, and it can interfere with thyroid peroxidase and

thyroglobulin to inhibit TH synthesis (27).

The OPE metabolites that contributed most to thyroid disease

in our study were BCEP. unfortunately, there are few studies on the

effects of BCEP on thyroid function, and more research evidence is

needed to explain the biological mechanisms leading to thyroid

damage. Although the toxicity of BCEP has not been elucidated, the

mechanism of toxicity of its parent compound, TCEP, may provide

some clues. Animal studies have shown that TCEP exposure is

associated with thyroid endocrine disruption and neurotoxicity (42,

43). TCEP has the potential to reduce plasma levels of TSH, T3 and

thyroxine (T4) in freshwater fish and trigger oxidative stress in the

organism (44). It was also found that TCEP caused significant

changes in gene expression in the hypothalamic-pituitary-thyroid

axis in the brain or liver of zebrafish (45). The same evidence was

found in humans that OPE exposure was associated with altered

thyroid function and an increased risk of thyroid cancer (29). A

case-control study shows that TCEP exposure is associated with the

development and severity of papillary thyroid cancer (46).

In addition, animal experiments have shown that exposure to

OPEs can induce oxidative stress and lipid peroxidation of DNA

damage (47). Reported urinary metabolites of OPEs (e.g., BCEP,

DPHP, DBUP) positively correlate with the concentration of 8-

hydroxy-2′-deoxyguanosine (8-OHdG), a marker of DNA oxidative

stress, suggesting that human exposure to OPEs may lead to DNA
FIGURE 4

Association between exposure 1 with thyroid disease risk, while fixing exposure 2 at the 10th, 50th, and 90th quantiles (and fixing the remaining
chemical exposure at the median level). Model was adjusted for age, gender, race, marital status, BMI, alcohol consumption status, history of
hypertension, history of diabetes, cotinine level, and urinary creatinine.
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oxidative stress (48). Thyroid hormones are important regulators of

antioxidants, and oxidative stress is closely related to thyroid

function (49). In the mother-infant population it was observed

that oxidative stress may be involved in the association between

maternal OPEs exposure and maternal and neonatal TSH

alterations, with 8-OHdG being the main mediator of the positive

association between neonatal TSH and DPHP (50). In this study

DPHP was the second contributing compound in the WQS model,

and DPHP causes oxidative stress damage may provide some

evidence to explain that it causes thyroid function impairment.

Our study has several advantages. Previous studies have

predominantly focused on the association between single

pollutant exposure and specific health outcomes, while our study

emphasizes the comprehensive impact of mixed exposure to OPEs

on humans. Additionally, we employ a series of mixed analysis

models, including multivariate logistic regression, WQS model and

BKMR model to comprehensively evaluate the association between

OPE mixtures and the risk of thyroid disease. Logistic regression is

inadequate for evaluating the comprehensive effects of OPE

mixtures since their effects cannot be simply calculated as the

sum of individual effects (51). The WQS model can investigate

the effects of mixed exposure burdens on outcomes in one direction

at a time, but it relies on meeting directional uniformity

assumptions and assumes linear and cumulative effects of

individual exposures. The BKMR model is a valuable statistical

tool for examining the effects of combined mixtures, offering linear

or nonlinear response functions and visualizations to enhance the

identification of key pollutants. However, inferring exposure-

response functions by fixing other chemicals at a certain level

cannot estimate the effects of common exposure patterns with

varying chemical levels. Simultaneously using these models allows

for consideration of their advantages and disadvantages in order to

elucidate the interactions between chemical mixtures.

Nevertheless, this study has several limitations. Firstly, the study

design employed a cross-sectional approach, which precluded the

exploration of a causal relationship between OPE exposure and

thyroid disease. Secondly, we used unweighted data in our analysis

due to concerns of over-adjustment bias and suitability of sampling

weight for complex statistical models. However, this decision may

limit the generalizability of our findings. Thirdly, participants

underwent only a single urine sample measurement, neglecting

potential fluctuations in OPE metabolite levels over time. Moreover,

fixed values were utilized to substitute for OPE metabolite levels

below the detection limit, leading to an inaccurate portrayal of

individual OPE exposure. Fourthly, the outcome relied on self-

reported cases of thyroid disease, thereby introducing the potential

for recall bias. Lastly, the study’s restricted analysis of only five OPE

metabolites fails to capture the comprehensive spectrum of

human exposure.
5 Conclusion

The study revealed an association between OPE metabolites

exposure and increased risk of thyroid disease, with BCEP being the
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most significant substance. The risk of thyroid disease exhibited a J-

shaped pattern, decreasing initially and then increasing with higher

levels of BCEP exposure. Our study initially explored the effect of

OPEs exposure on thyroid disease, and longitudinal and

experimental studies with larger samples are needed to validate

our preliminary results and elucidate the underlying mechanisms of

OPEs exposure and thyroid disease.
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