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variants in epigenetic regulators:
progress and prospects
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Section on Growth and Development, National Institute of Child Health and Human
Development, Bethesda, MD, United States
Epigenetic modifications play an important role in regulation of transcription and

gene expression. The molecular machinery governing epigenetic modifications,

also known as epigenetic regulators, include non-coding RNA, chromatin

remodelers, and enzymes or proteins responsible for binding, reading, writing

and erasing DNA and histone modifications. Recent advancement in human

genetics and high throughput sequencing technology have allowed the

identification of causative variants, many of which are epigenetic regulators,

for a wide variety of childhood growth disorders that include skeletal dysplasias,

idiopathic short stature, and generalized overgrowth syndromes. In this review,

we highlight the connection between epigenetic modifications, genetic variants

in epigenetic regulators and childhood growth disorders being established over

the past decade, discuss their insights into skeletal biology, and the potential of

epidrugs as a new type of therapeutic intervention.
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Introduction

In the eukaryotic cell nucleus, double stranded DNA wraps around core histone

proteins composed of an octamer of H2A, H2B, H3 and H4, forming the basic unit of

chromatin called nucleosome. Nucleosomes are then further assembled in the cell nucleus

into highly compacted structure of chromatin and chromosomes. In order for transcription

factors to navigate the condense genetic material and access the individual promoter and

gene body to initiate gene expression, localized loosening of chromatin structure is

necessary, and this could be achieved by a combination of chromatin remodeling,

changes of DNA methylation, and post-translational modifications of the core histones.

These molecular changes that affect gene expression without altering the underlying DNA

sequence is also known as epigenetic modifications (1).

Over the years, a large number of molecules has been identified to regulate gene

expression via epigenetic mechanisms, molecules that could now be categorized into several

classes of epigenetic regulators (2). For example, enzymes that add epigenetic modifications

are referred to as epigenetic writers, which include DNA methyltransferases, histone
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acetyltransferases (HATs) and methyltransferases (KMTs), while

enzymes that remove modifications are referred to as epigenetic

erasers, such as histone deacetylases (HDACs) and demethylases

(KDMs) (3). In addition, epigenetic readers are proteins, rather

than enzymes, that recognize and bind to specific epigenetic

modifications to modulate downstream transcriptional activity.

And then there are epigenetic regulators that do not fall into this

ternary classification of epigenetic writer-eraser-reader, and those

include chromatin remodelers that affect chromatin accessibility

by higher level structural changes, and non-coding RNA (ncRNA)

that participate in post-transcriptional regulation of gene

expression (Figure 1).

In the past 20 years, tremendous advancement in sequencing

technology have led to a quantum leap in genetic diagnosis of

Mendelian disorders. There are now more than 400 different genes

associated with various types of skeletal dysplasia (4), and many

more have been identified for childhood growth disorders that

includes primordial dwarfism, idiopathic short stature and

overgrowth syndromes. Although pathogenic variants of

epigenetic regulators do not necessarily contribute to an outsized

proportion to childhood growth disorders overall, they do offer

some potential advantages for drug development, as implicated by

the theoretical reversibility and plasticity of the epigenome. In this

review, we aim to highlight the progresses being made in the past

decade on childhood growth disorder implicated by epigenetic
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regulators (Table 1), address the challenges that remain, and

discuss their potential insights into therapeutic development.
Childhood bone growth and the
epiphyseal growth plate

Genetic disorders affecting childhood growth can be manifested in

many different shapes and forms, but they all inevitably impact a child’s

normal skeletal development, usually in the form of short stature, tall

stature/overgrowth, and in some cases that more severely affect bone

development, skeletal dysplasias. Childhood bone growth is driven by a

process called endochondral ossification that takes place in the

epiphyseal growth plate, a cartilaginous structure found near the

ends of long bones. Evidently, many of the known monogenic

growth disorders that lead to short stature involves deleterious

variants of genes with important functions in the growth plate (5).

In the epiphysis of an actively growing child, chondrocytes, which is the

main cell type found in the growth plate, are arranged histologically

into three different zones called the resting, proliferative, and

hypertrophic zone. Resting zone chondrocytes function as stem cells

or progenitor cells in the cartilage, capable of self-renewing and giving

rise to new clones of proliferative chondrocytes right underneath the

resting zone (6, 7). Cells in the proliferative zones are then arranged in

columns parallel to the long axis of the bone, and these chondrocytes
FIGURE 1

Schematic diagram illustrating the involvement of epigenetic regulators in activation and suppression of transcription. In general, modifications
associated with gene activations include an open chromatin structure, histone acetylation, histone methylation at residue H3K4, H3K36, H3K79, and
a loss of DNA methylation. Epigenetic regulators favoring these conditions are labeled in green. Modifications associated with gene suppression
include a closed chromatin structure, histone deacetylation, histone methylation at H3K9, H3K27, H4K20, and a gain of DNA methylation. Epigenetic
regulators favoring these conditions are labeled in pink. Epigenetic regulators not associated with either activation or suppression are labeled in
black. HATs, histone acetyltransferases; HDACs, histone deacetylases; MBD, Methyl-CpG-binding domain; HMTs, histone methyltransferases; KDMs,
histone demethylases, ac, acetyl group; me, methyl group. Right-angled arrow indicates active transcription.
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TABLE 1 List of epigenetic regulators implicated in human growth disorders.

Epigenetic
modifications

Gene Function Human disorder (s) Growth
phenotype

Gene (s) or pathway
(s) involved?

Histone Acetylation (Writers)

P300 Histone
acetyltransferase

Rubinstein-Taybi syndrome
(OMIM 180849)

Short stature SOX9,COL2A1

CBP Histone
acetyltransferase

Menke-Hennekam syndrome
(OMIM 618332)

Short stature

KAT6B Histone
acetyltransferase

SBBYS syndrome
(OMIM 603736)

Short stature

(Erasers)

HDAC4 Histone deacetylase BDMR syndrome
(OMIM 600430)

Short stature RUNX2, MEF2C

HDAC8 Histone deacetylase Cornelia de Lange Syndrome 5
(OMIM 300882)

Short stature SMC3

Histone Methylation (Writers)

H3K4 KMT2D Histone
methyltransferase

Kabuki syndrome 1
(OMIM 147920)

Short stature SHOX2, SOX9

H3K4 KMT2A Histone
methyltransferase

Wiedemann-Steiner Syndrome
(OMIM 605130)

Short stature

H3K36 NSD1 Histone
methyltransferase

Sotos syndrome
(OMIM 117550)

Overgrowth SOX9, Hif1a

H3K36 SETD2 Histone
methyltransferase

Luscan-Lumish syndrome
(OMIM 616831)

Overgrowth

H3K27 EZH2 PRC2
complex component

Weaver syndrome
(OMIM 277590)

Overgrowth IGF signaling

H3K27 EED PRC2
complex component

Cohen-Gibson syndrome
(OMIM 617561)

Overgrowth WNT, TGF-b

H3K27 SUZ12 PRC2
complex component

Imagawa-Matsumoto syndrome
(OMIM 618786)

Overgrowth

(Erasers)

H3K9 KDM3B Histone
demethylase

Diets Jongmans syndrome
(OMIM 618846)

Short stature

H3K4 KDM6A Histone
demethylase

Kabuki syndrome 2
(OMIM 300867)

Short stature

(Readers)

H3K4 SPIN4 Binds
methylated histones

Lui-Jee-Baron syndrome
(OMIM 301114)

Overgrowth WNT signaling

DNA methylation (Writers)

DNMT3A DNA
methyltransferase

Tatton Brown Rahman syndrome
(OMIM 615879)

Overgrowth

(Readers)

MECP2 Binds
methylated DNA

Rett Syndrome
(OMIM 312750)

Short stature

Others CHD8 Chromatin
remodeler

IDDAM syndrome
(OMIM 615032)

Overgrowth

miR-140 Non-coding RNA Spondyloepiphyseal dysplasia
(OMIM 618618)

Short stature BMPs, Hif1a
F
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near the top half of the columns actively divide while gradually descend

to the bottom half of the columns. Eventually, these columnar

chondrocytes cease to divide and undergo hypertrophic

differentiation as they approach the bottom of the growth plate.

Hypertrophic chondrocytes near the bottom of the growth plate also

produce matrix metalloproteinases (MMPs) and vascular endothelial

growth factors (VEGFs) to resolve the mineralized cartilage matrix and

initiate angiogenesis. This allows the recruitment and infiltration of

osteoblasts to remodel the cartilage scaffold into bone tissue, which

results in bone elongation. The terminal hypertrophic chondrocytes

were initially thought to all undergo apoptosis, although lineage tracing

experiments in recent years showed that many of these hypertrophic

chondrocytes instead directly undergo transdifferentiation into

osteoblasts, which contribute to bone formation and continue to

reside in the trabecular space (8).

Genome-wide association studies (GWAS) of human stature

showed that regulation of gene expression in the growth plate is

instrumental in determining final adult height (9). Evidently, height-

associated genomic loci are strongly enriched with genes highly

expressed and spatially- or temporally-regulated in the growth plate

(10), which is further supported by a recent CRISPR screening that

showed enrichment of height-associated loci in genes impacting

chondrocyte functions (11). In the past few years, epigenetic and

transcriptome profiling of the murine growth plate (12, 13)

demonstrated that the growth plate is spatially dynamic in terms of

epigenetic modifications. In combination with the identification of

common variants of epigenetic regulators in the height-associated

GWAS and rare variants of epigenetic regulators in human growth

disorders (to be discussed below), these data are likely to yield

important insights into the role of epigenetics on human bone growth.

Histone acetyltransferases,
deacetylases, and
chondrocyte hypertrophy

Enzymes that catalyze the acetylation of core histone proteins are

known as HATs, and conversely, enzymes that catalyze the removal of

histone acetylation are known as HDACs. The involvement of histone

acetylation in gene regulation was theorized back in 1964, when Allfrey

et al. hypothesized that the positively charged histones normally bind

tightly to the negatively charge DNA through electrostatic interactions,

and that acetylation adds negative charges to the histones (14), thereby

weakening the histone-DNA interactions to improve accessibility of

transcription factors and RNA polymerases to facilitate gene

expression. Histone acetylation by HATs is therefore considered a

“stimulatory” chromatin modification associated with gene expression,

while removal of histone acetylation by HDACs is considered a

“inhibitory” chromatin modification associated with gene

suppression. Specifically in chondrocytes, expression of chondrogenic

markers including SOX9 and COL2A1 were shown to be mediated by

acetylation of histone by acetyltransferase p300 or CREB binding

protein (CBP) (15). Evidently, heterozygous mutation of either p300

or CBP cause a rare autosomal dominant growth disorder called

Rubinstein-Taybi syndrome (16) manifested by short stature,

dysmorphic facies, and intellectual disabilities, suggesting that p300/
Frontiers in Endocrinology 04
CBP-mediated histone acetylation is important for longitudinal

bone growth.

In particular, histone acetylation and deacetylation appear to be

instrumental for the spatial regulation of chondrocyte hypertrophy in

the growth plate. As mentioned in the previous section, chondrocytes

in different zones of the growth plate are specialized in different

functions. This spatial organization is enabled and maintained by a

number of paracrine gradients across the growth plate, and one

prominent example is the parathyroid hormone related peptide

(PTHrP) (17). PTHrP is produced in the resting zone and diffuses

across the growth plate from the epiphyseal end to the metaphyseal

end, forming a spatial gradient. Because PTHrP is also an inhibitor of

chondrocyte hypertrophy, this PTHrP gradient also determines where

chondrocyte hypertrophy begins, which becomes the boundary

between proliferative zone and hypertrophic zone. Recent studies

have shown that this function of PTHrP is mediated via histone

deacetylase HDAC4 (18). Histone deacetylation by HDAC4 normally

suppresses chondrocyte hypertrophy by blocking the expression of

transcription factors MEF2C and RUNX2. Consequently, mice with

Hdac4 knockout showed premature hypertrophy and ectopic bone

formation, while transgenic mice overexpressing Hdac4 showed

delayed hypertrophy and lack of bone formation (19). Interestingly,

recent studies showed that HDAC4 activity is also regulated spatially by

PTHrP. PTHrP suppresses salt-inducible kinase 3 (Sik3), which in turn

decreases HDAC4 phosphorylation and its inhibition by 14-3-3,

allowing HDAC4 activation (20). Therefore, a PTHrP concentration

gradient is translated into a HDAC4 activity gradient across the growth

plate to restrict activation of MEF2C and RUNX2 to only the

hypertrophic zone (Figure 2). The mechanistic connection between

PTHrP and HDAC4 also help explain why HDAC4 haploinsufficiency

causes Brachydactyly mental retardation syndrome (21), which is

phenotypically similar to Brachydactyly type E caused by mutations

in PTHLH, the gene that encodes PTHrP (22). Furthermore,

heterozygous loss-of-function variants of histone acetyltransferase

KAT6B causes two different genetic disorders, Genitopatellar

syndrome and SBBYSS syndrome (23), both of which are

characterized by patellar hypoplasia, and a variety of growth

phenotype that may include microcephaly and postnatal growth

retardation, which has been proposed to be mediated by regulation

of RUNX2 expression by KAT6B (24).

Importantly, HDACs have been shown to deacetylate both

histones and other non-histone proteins, and not all mechanistic

functions of HDACs are necessarily mediated by histone

deacetylation. For example, Cornelia de Lange Syndrome 5 (CdLS5)

caused by variants ofHDAC8 was mediated primarily by acetylation of

SMC3, a gene where mutation itself causes CdLS3, rather than by

acetylation of histones (25).
Histone methyltransferases,
demethylases (KDM), and
Kabuki syndrome

Compared to acetylation, histone methylation has a much more

complicated relationship with transcriptional activation and
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repression. While acetylation is generally considered a histone mark

associated with gene activation, histonemethylation can be associated

with activation or repression depending on which residue is

methylated, and whether the residue is mono-, di- or tri-

methylated. To add to the complexity, histones can be methylated

at multiple residues, and the outcome of transcriptional regulation

could be determined by the combination of multiple signals imposed

by these methylations. Generally speaking, methylation of histone 3

at lysine 4 (H3K4), lysine 36 (H3K36) and lysine 79 (H3K79) are

associated with transcriptional activation, while methylation of

histone 3 at lysine 9 (H3K9), lysine 27 (H3K27), and histone 4

lysine 20 (H4K20) are associated with transcriptional repression (26).

Histone methyltransferases and demethylases are also residue-

specific in general, so for example KMT2A is a methyltransferase

for H3K4 (27), and because H3K4 methylation is generally associated

with transcriptional activation, loss-of-function mutation of KMT2A

tend to be associated with downregulation of its target genes.

Perhaps because of such complexity of histone methylation, the

molecular mechanisms by which genetic variants of methyltransferase

and/or demethylase cause childhood growth disorder has so far been

difficult to decipher. For example, heterozygous (primarily loss-of-

function) variants of H3K4 methyltransferase KMT2A and KMT2D

(also called MLL1 and MLL2, respectively) cause two separate

autosomal dominant growth disorders with short stature. Mutations

of KMT2A is associated with Wiedemann-Steiner syndrome (28),

while mutations of KMT2D is associated with Kabuki syndrome

(29). The mechanism by which H3K4 methylation impacted bone

growth has also been elucidated in mouse model of Kabuki syndrome.

Shox2 expression was downregulated in Kmt2d-/- chondrocytes, which

led to upregulation of Sox9 and in turn delay of chondrocyte
Frontiers in Endocrinology 05
hypertrophy (30). In the same study, mice with haploinsufficiency of

Kmt2d showed decreased long bone growth, expanded growth plate

and delayed endochondral ossification (30). Paradoxically however,

loss-of-function variants of KDM6A, which is an H3K4 demethylase

and therefore supposedly the functional opposite of KMT2A or

KMT2D, also cause Kabuki syndrome (31, 32). A mechanistic

rationale as to why genetic disruption of H3K4 methyltransferase

and demethylase can both lead to Kabuki syndrome has so far

been lacking.
An epigenetic link to
overgrowth syndromes

In 2017, a clinical study with more than 700 patients found that

genetic variants in epigenetic regulators are a major cause of

overgrowth with intellectual disability (33). This is of particular

interest not only from a clinical diagnosis perspective but also from

a fundamental biology perspective for a couple of reasons. Firstly,

unlike short stature or growth retardation, which could sometimes

be non-specific due to decrease in overall organismal fitness,

overgrowth syndrome tend to be more specific about growth, and

especially if it was not caused by increase in growth hormone or

insulin-like growth factor I (IGF-I), could point to new biology

about bone growth; and secondly, such connection between

overgrowth and epigenetic regulators may imply that epigenetic

modifications are involved in limitation of overall organismal body

size, which has been a fascinating mystery in biology (34).

Overgrowth syndromes caused by genetic variants in epigenetic

regulators can be classified into three main groups according to the
FIGURE 2

Regulation of chondrocyte hypertrophy by PTHrP-HDAC4. Pointed arrows indicate activation, blunted arrows indicate inhibition. The growth plate is
spatially organized into 3 histologically distinct zones named the resting zone, proliferative zone, and hypertrophic zone. Chondrocytes in the resting
zone produces parathyroid hormone related peptide (PTHrP) that diffuses across the growth plate forming a concentration gradient (pink triangle). In
areas where PTHrP levels are high, chondrocyte hypertrophy is suppressed by phosphorylation and inhibition of SIK3 activity, which in turn keeps
HDAC4 activated. Active HDAC4 maintains histone deacetylation and inhibition of MEF2, a transcription factor that promotes chondrocyte
hypertrophy by direct actions and by activation of RUNX2.
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epigenetic modification involved: variants that affect H3K36 histone

methyltransferase, NSD1 and SETD2, cause Sotos (35) and Sotos-

like syndrome (now renamed as Luscan-Lumish syndrome) (36);

variants in components of the polycomb repressive complex 2

(PRC2), including EZH2, EED, and SUZ12, that catalyzes H3K27

methylation cause Weaver (37) or Weaver-like syndrome (now

renamed as Cohen-Gibson syndrome and Imagawa-Matsumoto

syndrome) (38, 39); and variants in DNA methyltransferase

DNMT3A cause Tatton-Brown Rahman Syndrome (40). All three

syndromes are phenotypically similar, which suggest the possibility

of some common yet unknown underlying molecular mechanisms

that cause overgrowth (41), despite the fact that H3K36 methylation

is associated with active transcription, but H3K27 methylation and

DNA methylation are generally associated with gene silencing with

no obvious connection between all three.

Mouse models with cartilage-specific deletion of these epigenetic

regulators could provide us with some mechanistic insights into the

role of these epigenetic modifications in bone growth. For example,

impaired cartilage development and bone growth was observed in

Prx1creNsd1f/f mice when Nsd1 was knocked out in mesenchymal

progenitors, where chondrocytes originated from, suggesting that Nsd1

is important for the early stages of endochondral bone formation (42).

The same study also demonstrated that Nsd1-mediated H3K36

methylation is needed for transcription of Sox9 and Hif1a, two
important transcription factors during chondrocyte differentiation

(42). Similarly, cartilage-specific knockout of either Eed (43) or Ezh2

(44) in mice impaired both chondrocyte proliferation and hypertrophy

via a combination of signaling pathways including IGF-I, WNT, and

TGF-b signaling. Although these studies highlighted the importance of

H3K36 and H3K27 methylation in skeletal development and bone

growth, conspicuously, they did not recapitulate the human

overgrowth phenotype. To date only two mouse models relevant to

these overgrowth syndromes have reported increased body growth,

which are heterozygous single mis-sense loss-of-function mutations of

either EZH2 (45) or DNMT3A (46), suggesting that while the complete

loss of these KMTs or DNMTs is detrimental, it is conceivable that a

more subtle, partial reduction of activity could be growth-promoting.

Several studies have tried to characterize crosstalk between NSD1,

PRC2, and DNMT3A in an attempt to mechanistically unify these

overgrowth syndromes (47, 48). Based on an hypothesis proposed by

Deevy and Bracken, an intricate balance between H3K27 and H3K36

di-methylation enables DNMT3A localization to the intergenic region

across the genome (49), which became disrupted bymutations of either

NSD1, EZH2, or DNMT3A. Nevertheless, the connection of such

balance in epigenetic modifications with body growth or bone

growth has yet to be elucidated.
Epigenetic reader: MECP2, BRD4,
and SPIN4

As mentioned above, epigenetic readers are proteins that

recognize and interacts with epigenetic modifications to modulate

transcription. Consequently, these proteins usually contain

structural domains that are known to interact with histones or
Frontiers in Endocrinology 06
methylated DNA. Methyl-CpG-binding domains (MBDs) are

responsible for binding to methylated cytosines in DNA;

Bromodomains are typically found in readers for histone

acetylation; while Chromodomains, PHD fingers, or Tudor

domains could be found in readers for histone methylation.

Inactivating mutations of DNA methylation reader protein

MECP2 is associated with Rett Syndrome, an X-linked

neurodevelopmental disorder that may include microcephaly and

short stature (50). Consistently, Mecp2 knockout mouse showed

significantly decreased bone length and overall skeletal size, with

abnormal growth plate histology and reduced cortical, trabecular

and calvarial bone volume (51). It is yet unclear exactly to what

extend these growth phenotypes are driven by MECP2 functions in

chondrocyte or osteoblast without using a tissue-specific model,

considering the importance of MECP2 in neurodevelopment (52).

Although no human genetic disease has so far been ascribed to

mutations of histone acetylation readers like BRD proteins, they are

still of considerable interest due to their connections with disease-

causing HATs and HDACs. Consistent with the role of p300 in

SOX9 transcription, Prx1-specific Brd4 deletion suppresses Sox9

expression in murine mesenchymal progenitors (53). In a separate

study, bone cells treated with BRD inhibitors resulted in

transcriptional silencing of RUNX2 due to depletion of BRD4

binding (54), corroborating previous findings on HDAC4 and

RUNX2, and suggested further that binding of BRD4 to acetylated

histone at the RUNX2 loci is necessary for its expression.

Consequently, knocking out Brd4 in the mesenchyme led to

abnormal growth plate histology, delayed endochondral

ossification and decreased long bone length (53). It would not be

a surprise if causative variants of BRD4 are eventually to be

identified in patients with short stature or skeletal abnormalities.

Recently, truncating variant in SPIN4, a Tudor-domains

containing histone methylation reader protein that can stimulate

WNT signaling (55), was identified in a family with X-linked

overgrowth (56). Hemizygous male patient with the SPIN4

variant has extreme tall stature (+4.8 SD) but otherwise normal

psychomotor and intellectual development, while female

individuals heterozygous for the variant are also tall (+2 SD).

Mice carrying truncating variants of Spin4 developed overgrowth

with increased bone length, recapitulating the growth phenotype in

the family. Growth plate histology showed increased progenitor

cells in the resting zone of Spin4 mutant mice, which could be

attributed to a WNT-inhibitory environment, thought to be

favorable for stem cell maintenance (57), created by loss of Spin4

expression (56). Future genetic analysis will help clarify if mutations

in SPIN4 may be more commonly found in patients with

overgrowth or tall stature.
microRNA-140 and human
skeletal disorders

Non-coding RNAs (ncRNAs), including microRNAs, are

sometimes viewed as distinct from epigenetic regulations. Given

the growing body of literature on ncRNAs and their role in skeletal
frontiersin.org
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growth, a separate, comprehensive review on this topic is

warranted. However, for the scope of this discussion, we will

concentrate on some recent studies that are particularly relevant

to human skeletal disorders.

microRNAs (miRNAs) is a type of short non-coding RNA that

binds to untranslated regions of messenger RNA of target genes to

inhibit expression, and its importance in bone growth have long

been demonstrated in mice. For example, cartilage-specific

knockout of Dicer, the enzyme essential for miRNA biogenesis,

showed lethal skeletal growth failure with decreased chondrocyte

proliferation and accelerated hypertrophy (58). Amongst the many

miRNAs abundantly expressed in chondrocytes, miR-140 was the

first being shown to have important functions in the growth plate.

Knockout of miR140 resulted in short stature and craniofacial

abnormalities in mice (59, 60). In these mice, an expansion of

resting zone in the growth plate was observed, suggesting that miR-

140 is important for the transition of resting zone progenitor cells

into proliferative chondrocytes (60, 61). Subsequently, many more

studies have demonstrated the role of miRNAs in chondrocyte

functions in vitro (62), although for many years the clinical

implications in human growth disorders have been lacking.

Finally in 2019, gain-of-function variants of miR140 was

identified in three patients from two independent families with a

novel skeletal dysplasia characterized by disproportionate short

stature with short limbs, small hands and feet (the syndrome was

subsequently named Spondyloepiphyseal dysplasia Nakamura type)

(63), providing the definitive genetic proof that miR140, if not

miRNA in general, is important for human growth plate physiology.
Future perspectives: potential and
challenges for epidrugs

The exceptional progress being made in the past decade on

clinical genetics and disease mechanisms have led to major

advancements in our understanding in epigenetic regulations in
Frontiers in Endocrinology 07
childhood bone development. However, we are still at the beginning

of a new technological epoch in translating these knowledges into

therapeutic interventions. Compared to genetic mutations,

epigenetic alternations have greater plasticity and are more likely

to be reversible, such as in the case of induced pluripotent stem cells

(iPSCs) (64).

Epigenetic drugs, or epidrugs, are small molecules or chemical

compounds that mainly work as an inhibitor or activator of

enzymes like histone acetyltransferases or demethylases to

modulate the epigenetic modifications, aiming to restore normal

epigenomic landscape to correct cellular functions and organismal

phenotypes. Epidrug design and experimentation is a growing field

for drug discovery in cancer biology, with a handful of therapeutics

already approved by FDA (Table 2) (65). For example, DNMT

inhibitor 5-azacitidine (or Vidaza) is approved for myelodysplastic

syndrome (66); HDAC inhibitors Vorinostat is approved for T-cell

lymphoma (67); and more recently, EZH2 inhibitor Tazemetostat

(or Tazverik) is approved for follicular lymphoma and epithelioid

sarcoma (68). Could any of these epidrugs for cancer therapy be

repurposed for childhood growth or skeletal disorders since they

work on the same epigenetic regulators? The potential is certainly

appealing although perhaps major concerns for unwanted adverse

and off-target effects cannot be overlooked. To complicate things

further, there appears to be an optimal epigenetic state where any

deviation or disruption of the equilibrium might be unfavorable,

such that for example mutations of H3K4 methyltransferase and

demethylase both cause Kabuki syndrome (29, 31), and miR140

gain-of-function (Spondyloepiphyseal dysplasia) and loss-of-

function (in mouse models) both resulted in short stature (60,

63). Therapeutics might have to strike the right balance between

activation and inhibition to achieve optimal outcomes. Using

Weaver syndrome as another example, a subtle decrease of EZH2

activity appeared to promote long bone growth (45) but further

reduction of EZH2 activity may lead to growth retardation (44). In

theory, one could try to pharmacologically modulate EZH2 activity

to stimulate bone growth, but what is the optimal EZH2 activity for
TABLE 2 List of FDA-approved epidrugs.

Generic
name

Brand name (company) Indication (s) Mechanism
of action

Year
approved

Vorinostat Zolinza (Merck & Co.) Cutaneous T cell lymphoma HDAC inhibitor 2006

Decitabine Dacogen (MGI Pharma) Myelodysplastic Diseases DNMT inhibitor 2006

Azacitidine Vidaza (Pharmion) Myelodysplastic Diseases DNMT inhibitor 2009

Onureg (BMS) Acute Myeloid Leukemia 2020

Romidepsin Istodax (Gloucester) Cutaneous T cell lymphoma HDAC inhibitor 2009

Istodax (BMS) Peripheral T cell lymphomas
(withdrawn 2021)

2011

Valproic Acid Depacon, Depakene, etc
(Abbott, others)

Epilepsy, Bipolar mania,
Migraine prophylaxis

HDAC inhibitor 2010

Belinostat Beleodaq (Spectrum) Peripheral T cell lymphomas HDAC inhibitor 2014

Panobinostat Farydak (Secura Bio) Multiple Myeloma (discontinued 2021) HDAC inhibitor 2015

Tazemetostat Tazverik (Epizyme) Epithelioid Sarcoma; Follicular Lymphoma EZH2 inhibitor 2020
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growth stimulation? The therapeutic window here could be too

narrow for drug development to be palatable, even if we were to

fully understand how EZH2 activity is mechanistically linked to

bone growth. At the current stage, a more thorough understanding

of epigenetic regulations of bone growth is still a necessity before

seeing epidrug blossom into the next frontier of skeletal/

growth therapeutics.
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