AUTHOR=Goundan Poorani N. , Lye Theresa , Markel Andrew , Mamou Jonathan , Lee Stephanie L. TITLE=Improved cancer risk stratification of isoechoic thyroid nodules to reduce unnecessary biopsies using quantitative ultrasound JOURNAL=Frontiers in Endocrinology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2024.1326188 DOI=10.3389/fendo.2024.1326188 ISSN=1664-2392 ABSTRACT=Objective

Gray-scale ultrasound (US) is the standard-of-care for evaluating thyroid nodules (TNs). However, the performance is better for the identification of hypoechoic malignant TNs (such as classic papillary thyroid cancer) than isoechoic malignant TNs. Quantitative ultrasound (QUS) utilizes information from raw ultrasonic radiofrequency (RF) echo signal to assess properties of tissue microarchitecture. The purpose of this study is to determine if QUS can improve the cancer risk stratification of isoechoic TNs.

Methods

Patients scheduled for TN fine needle biopsy (FNB) were recruited from the Thyroid Health Clinic at Boston Medical Center. B-mode US and RF data (to generate QUS parameters) were collected in 274 TNs (163 isoechoic, 111 hypoechoic). A linear combination of QUS parameters (CQP) was trained and tested for isoechoic [CQP(i)] and hypoechoic [CQP(h)] TNs separately and compared with the performance of conventional B-mode US risk stratification systems.

Results

CQP(i) produced an ROC AUC value of 0.937+/- 0.043 compared to a value of 0.717 +/- 0.145 (p >0.05) for the American College of Radiology Thyroid Imaging, Reporting and Data System (ACR TI-RADS) and 0.589 +/- 0.173 (p >0.05) for the American Thyroid Association (ATA) risk stratification system. In this study, CQP(i) avoids unnecessary FNBs in 73% of TNs compared to 55.8% and 11.8% when using ACR TI-RADS and ATA classification system.

Conclusion

This data supports that a unique QUS-based classifier may be superior to conventional US stratification systems to evaluate isoechoic TNs for cancer and should be explored further in larger studies.