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Investigating the shared genetic
architecture between COVID-19
and obesity: a large-scale
genome wide cross-trait analysis
Yanjing Chen1, Chunhua Fan1 and Jun Liu1,2*

1Department of Radiology, Second Xiangya Hospital, Central South University, Changsha,
Hunan, China, 2Clinical Research Center for Medical Imaging in Hunan Province, Changsha,
Hunan, China
Observational studies have reported high comorbidity between obesity and

severe COVID-19. The aim of this study is to explore whether genetic factors are

involved in the co-occurrence of the two traits. Based on the available genome-

wide association studies (GWAS) summary statistics, we explored the genetic

correlation and performed cross-trait meta-analysis (CPASSOC) and

colocalization analysis (COLOC) to detect pleiotropic single nucleotide

polymorphisms (SNPs). At the genetic level, we obtained genes detected by

Functional mapping and annotation (FUMA) and the Multi-marker Analysis of

GenoMic Annotation (MAGMA). Potential functional genes were further

investigated by summary-data-based Mendelian randomization (SMR). Finally,

the casualty was identiied using the latent causal variable model (LCV). A

significant positive genetic correlation was revealed between obesity and

COVID-19. We found 331 shared genetic SNPs by CPASSOC and 13 shared risk

loci by COLOC. At the genetic level, We obtained 3546 pleiotropic genes, among

which 107 genes were found to be significantly expressed by SMR. Lastly, we

observed these genes were mainly enriched in immune pathways and signaling

transduction. These indings could provide new insights into the etiology of

comorbidity and have implications for future therapeutic trial.
KEYWORDS

GWAS, COVID-19, obesity, genetic overlap, pleiotropy, genetic correlation
1 Introductions

The 2019 coronavirus disease pandemic (COVID-19) is a highly contagious disease

caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since

January 2020, nearly 600 million people have been infected worldwide with the SARS-CoV-

2 virus (1). Due to the widespread presence of the ACE2 receptor, which serves as the site of

infection for the coronavirus, it has the potential to cause damage to various systems
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throughout the body. Obesity, as a public health epidemic, affects

over 650 million adults globally and 124 million children and

adolescents (2). Considering the high infectiousness and serious

adverse outcomes of COVID-19 and the high prevalence of obesity

(3), an in-depth exploration of the relationship between the two

could help to develop effective policies and personalized treatments

to control the spread of the epidemic and save social

healthcare expenditures.

Previous studies have found that COVID-19 syndrome

exacerbates metabolic dysfunction (4), including diabetes mellitus

(5), vertebral fractures (6), and obesity. A study showed that 90% of

SARS-CoV-2-infected patients with respiratory failure had a BMI

higher than 25 kg/m2 (7). From an immunological point of view,

excess energy in the diet accumulates in white adipose tissue, where

the immune cells affect the overall balance through metabolism. For

example, hypertrophied adipocytes recruit polarized macrophages

that produce excessive amounts of inflammatory cytokines such as

IL-6, TNF-a, and IL-1 (8) and blood levels of the proinflammatory

adipokine leptin are elevated, while expression of the anti-

inflammatory ACE2 receptor is reduced in lung epithelial cells

(9). This imbalance significantly impairs the efficiency of the innate

immune response. In addition, the sequelae of post COVID-19, also

known as long COVID-19, has received more and more attention as

the number of people found to be gradually increasing and affecting

a number of systems and the mechanism of occurrence is not

known (10), while some studies have found that exercise can be

effective in alleviating post-COVID-19 syndrome and improving

the physical strength and respiratory function of patients with

COVID-19 (11). Using Mendelian randomization (MR), Xiong

et al. found that physical activity and recreational sedentary

behavior were assoc ia ted with COVID sever i ty and

hospitalization rates (12).Therefore, obesity as the development of

a variety of diseases and prognostic risk factors, and to understand
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its relationship with the COVID-19 is of profound significance.

Since most of the past studies have been retrospective or

observational, they are prone to many confounding factors that

can bias the results, and as obesity is a highly hereditary disease, the

aim of this study is to examine whether it is an intrinsic cause of neo

coronary pneumonia disease from a genetic perspective and to

reveal the anatomical and physiopathological mechanisms that are

dependent on this.

Understanding the genetic architecture of both may not only

explain the higher risk or worse prognosis of COVID-19 in obese

individuals compared to normal individuals, but also provide

insight into the pathogenesis of SARS-CoV-2, which help

effectively manage obesity in the context of COVID-19. This

study employed genome-wide cross-trait analysis to identify

overlapping and distinct genetic architectures, thereby offering

novel insights into disease mechanisms.
2 Materials and methods

The flowchart was shown in Figure 1 and the figure were from

smart(https://smart.servier.com/). The GWAS for COVID-19 was

derived from the COVID-19 Host Genetics Initiative (https://

www.covid19hg.org/), an international consortium aimed to

discover genetic variants associated with susceptibility and

severity of COVID-19. The GWAS of COVID-19 from the

European population was obtained from the COVID-19 HGI

GWAS round 7, including hospitalized COVID-19, critical

COVID-19 and SARS-CoV-2 infection. The SNPs linked to BMI

were acquired from the GIANT consortium, a meta-analysis

including 2.4 million SNPs (13). To standardize the data, we first

filtered out SNPs that was not present in the 1000 Genomes

European population. Then we excluded SNPs without rsIDs or
FIGURE 1

Overview of research of shared genetic architecture between COVID-19 and obesity.
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with duplicate rsIDs. At last, we addressed missing data by filling it

in and mapped the chromosomal positions to the hg19

reference genome.
2.1 General genetic correlation analysis

Because heritability (h2) is distributed over thousands of

variants with small effects, it is not sufficient to focus only on

SNPs that differ or are significant between or within traits. In order

to measure the average sharing of genetic effect across the entire

genome between obesity and COVID-19, we used the linkage

disequilibrium score regression (LDSC) to estimate h2 (14) and

genetic correlation (rg) (15) based on the summary GWAS statistic.

With reference data obtained from the third phase of the European

1000 Genomes (1KG) project, LDSC can integrate the associated

evidence for multiple traits of interest (continuous and

dichotomous) from one or more studies. The LD Score regression

intercept was employed to estimate a more powerful and accurate

correction factor compared to genomic control.
2.2 Local genetic correlation analysis

Since traditional global approaches only consider the average rg

across the genome, they may fail to detect scenarios where the

overlapped information is confined to specific regions or has

opposing directions at different loci. We used LAVA (Local

Analysis of Variant Association) which can detect shared genetic

association regions between phenotypes by utilizing local genetic

regions (16). And the pairwise local rg tests on 2,495 genomic loci

(the entire genome) applying multivariate genetic association analysis

can provide more complex and conditional genetic relationships.
2.3 Cross-trait meta-analysis

For the purpose of identifying the risk SNPs associated with

joint phenotypes (COVID-19 and obesity), we implemented Cross

Phenotype Association (CPASSOC), which allows meta-analysis of

continuous traits based on the GWAS. There are two statistical

methods, SHom and SHet. SHom is an extension of the linear

combination of univariate test statistics, allowing sample size to be

used as weights and its statistical power is diminished when there is

between-study heterogeneity. Thus, we utilized SHet for analysis

which can sustain statistical power even in the presence of

heterogeneity by assigning greater weights. Since SNP often

cannot directly determine causal variants due to the influence of

linkage imbalances, the Functional mapping and annotation

(FUMA) was utilized (17) to provide annotation information for

SNPs associated with functional categories, especially regarding

non-coding regions or intergenic regions. Among the provided

information, CADD scores above 12.37 indicate potential

detrimental effects on protein outcomes and the scores from

RegulomeDB offer valuable insight into the regulatory
Frontiers in Endocrinology 03
functionality of SNPs by considering their association with

expression quantitative trait loci and chromatin marks.
2.4 Colocalization analysis

The meta-analysis of various traits resulted in the inclusion of

genetic loci associated with individual traits. Subsequently, we

employed the colocalization method (COLOC) (18) with the aim

of investigating whether the same genetic variation in the loci is

responsible for both traits. This algorithm is using a Bayesian

algorithm to calculate posterior probabilities for five exclusive

hypotheses related to the sharing of causal variants in a genomic

region. These hypotheses include H0 (no association), H1 or H2

(association with one specific trait), H3 (association with both traits,

involving two distinct SNPs), and H4 (association with both traits,

involving one shared SNP). A locus is considered colocalized if

PPH4 or PPH3 is greater than 0.7. We utilized the R package

“coloc” in Rstudio software to extract summary statistics for

variants within 5 Mb of the topSNP at each shared locus after

annotating in FUMA.
2.5 Multi-marker analysis of
GenoMic annotation

Gene and gene-set analysis have been suggested as potentially

more powerful alternatives to the typical single-SNP analyses

performed in GWAS. The FUMA can provide annotation of

SNPs to genes based on physical location. In addition, we used

MAGMA (Multi-marker Analysis of GenoMic Annotation) (19) to

obtain genes or sets of genes significantly associated with traits. It is

a fast and flexible tool which uses a multiple regression approach to

properly incorporate LD between markers. We compared the gene

sets generated by MAGMA with the gene sets annotated based on

physical location. After applying the Bonferroni correction, the

resulting genes represented the final set of pleiotropic genes

identified at the gene level. Additionally, we performed GTEx

tissue enrichment analysis using MAGMA and the 54 tissue types

from GTEx (v.8) to determine the specific tissues associated with

the shared genes. To address multiple testing, we adopted the

Benjamin-Hochberg procedure.
2.6 Summary-data-based
Mendelian randomization

We used Summary-data-based Mendelian randomization

(SMR) to identify putative functional genes underlying statistical

associations for obesity and COVID-19. SMR can integrate the

GWAS and eQTL to investigate the expression of the pleiotropic

genes in mRNA level, which was under the MR framework to test

for an link related to gene expression and a target phenotype (20).

The source of eQTL were based on 2 different reference panels,

Genotype-Tissue Expression project (21) (GTEx) and the

Encyclopedia of DNA Elements project (22) (ENCODE). The
frontiersin.org
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SMR can be also used to perform the heterogeneity in dependent

instruments (HEIDI) test to evaluate the existence of linkage in the

observed association. Significant common shared functional genes

between COVID-19 and obesity were defined passed the threshold

(p<0.05) and HEIDI-outlier test (p > 0.01) in SMR analyses of

both traits.
2.7 Enrichment analysis

To gain a better understanding of the biological implications of

the final pleiotropic genes identified from the overlapped genes

detected by MAGMA and the result of annotation, we performed an

enrichment analysis of these genes in terms of Gene Ontology (GO)

biological processes (23) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) (24) pathways using the “clusterProfiler” R

package. These two analysis can reveal the enriched biological

functions and metabolic pathways in a gene set. The GO analysis

annotates genes to biological processes (BP), molecular functions

(MF), and cellular components (CC) in a hierarchically

structured manner.
2.8 Latent causal variable analysis

At last, to further study whether the genetic correlated

relationship between the COVID-19 and BMI have the casual

component, The latent causal variable (LCV) model (25) was

used in this study, which is mediated by a latent variable that

causally impacts each trait. Compared to MR, it can overcome the

heterogeneity of instrumental variables. We introduced the concept

of genetic causality proportion (GCP) to measure the degree of

partial causality and quantify the impact of BMI on COVID-19. The

GCP scale spans from 0 to 1, representing the absence of partial

g ene t i c c ausa l i t y and the pre s ence o f fu l l g ene t i c

causality, respectively.
3 Results

3.1 Genetic correlations

The heritability of BMI was 0.2116, and the heritability of

critical COVID-19 was 0.0062, which was the highest of the three
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pair traits. The general genetic correlation between obesity and

COVID-19 was positive. We identified that the rg was 0.363

between BMI and hospitalized COVID-19, and the P value was

8.91E-15. There was also a significant rg (rg=0.3451, P=1.54E-08)

between BMI and critical COVID-19. A link between COVID-19

and BMI (rg=0.0722, P=8E-04) could be found. The most overlap

rate was only 0.018 between the critical COVID-19 and BMI

(Table 1). In LAVA, we all found the seven local relationships

between hospitalized COVID-19 and BMI. Among them, the most

significant locus was located at chr: bp 1:77895395-79065286, with a

P-value of 9.84E-09. The second significant locus was found at chr:

bp 7:13676748-15013694, with a P-value of 9.32E-07. The locus

located in chr 19:55182974-55714085 was observed to be shared

between COVID-19 and BMI. We did not observe any additional

region that showed a significant local genetic correlation between

critical COVID-19 and BMI (Table 2).
3.2 Shared loci between obesity and
COVID-19

Cross-trait meta-analysis can improve the test efficacy by

integrating the GWAS of two traits using meta-analysis ideas,

which can help us discover potential new pleiotropic SNPs. We

used the CPASSOC method and established a threshold of P < 5 ×

10−8 for meta-analysis and P < 5 × 10−5 for the single trait analysis.

In our study, a total of 331 SNP were identified between COVID-19

and BMI (Supplementary Table 1), among which 39 SNP were

linked to COVID-19, 207 SNP were linked to hospitalized COVID-

19, and 85 SNP were related to critical COVID-19. The most

significant SNP between critical COVID-19 and BMI was the

rs13107325 (Pcritical COVID-19 = 1.71E-05, PBMI=1.10E-47,

PCPASSOC=2.06E-48). The SNP rs2088518 showed a most

significant association (PCPASSOC=8.60E-28) with COVID-19 (P =

4.17E-05) and BMI (P = 3.10E-28) . The rs13107325

(PCPASSOC=1.67E-48) was the most significant locus shared

between hospitalized COVID-19 (P=1.10E-47) and BMI

(P=1.33E-07). We identified 17 novel SNP (5E-8<Psingle trait<1E-5

and PCPASSOC<5E-8) between hospitalized COVID-19 and BMI, 3

novel SNP between COVID-19 and BMI, and 2 novel SNP between

critical COVID-19 and BMI (Supplementary Table 2).

After physically annotating the polytropic SNPs obtained from

the above results in the FUMA, we can get the corresponding risk

loci. Further colocalization analysis identified that there were 13 loci
TABLE 1 The source of GWAS and genome-wide genetic correlation between COVID-19 and BMI using LDSC.

The detailed information LDSC

Diseases N_cases N_control Ancestry h2 rg P inter

BMI 387649 0 EUR 0.2116

Hospitalized COVID-19 32519 2062805 EUR 0.0036 0.3639 8.91E-15 0.0244

Critical COVID-19 13769 1072442 EUR 0.0062 0.3451 1.54E-08 0.0183

COVID-19 122616 2475240 EUR 0.0019 0.0722 0.0008 0.0238
frontie
h2, heritability; rg, genetic correlation; inter, quantity overlap of population, inter represents the overlap of two samples.
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with a PPH4 value exceeding 70% (Table 3), 7 loci were associated

with critical COVID-19, 5 were connected with COVID-19, and 1

was related to hospitalized COVID-19. The corresponding SNP,

rs1813006, shared between critical COVID-19 and BMI, was

consistent with critical COVID-19 (PPH4 = 0.990) and was the

most significant locus (PPH4 = 0.999). The locus between

hospitalized COVID-19 and BMI (PPH4 = 0.998) was located at

chr: bp 19:4069119. It mapped to five genes (PPP1CB, SPDYA,

TRMT61B, WDR43, FAM179A).
3.3 Candidate pleiotropic genes and
tissue specificity

MAGMA was analyzed based on the results of CPASSOC, and

it found that 5162 genes overlapped and were mapped by loci

physically annotated by FUMA (Supplementary Table 3). Among

these genes, there were 273 genes associated with hospitalized

COVID-19, 2433 genes associated with COVID-19, and 2456

genes associated with critical COVID-19. After applying the

Bonferroni correction, MAGMA identified 3546 significant

pleiotropic genes, out of which 152 genes were detected in 2 or

more trait pairs. The most common genes were shared between

COVID-19 and critical COVID-19 (Supplementary Table 4). We

observed significant enrichment for BMI and COVID-19 in brain

tissues after correction in every form of COVID-19. The results

were identified in 10 brain regions, including the brain cerebellum

(P=1.66E-29), the brain cerebellar hemisphere (P=2.98E-15) in

COVID-19, and the result of critical COVID-19 (Pbrain

cerebellum = 1.02E-17, Pbrain cerebellar hemisphere=4.28E-

17).The enrichment between hospitalized COVID-19 and BMI

mainly enriched in the brain cortex (P=4.55E-07) and brain

frontal cortex BA9 (P=3.05E-06) (Supplementary Table 5,

Figure 2B). The further functional gene analysis using SMR found

20 significant genes between hospitalized COVID-19 and BMI, 39

genes significant genes between critical COVID-19 and BMI, and 48

genes between COVID-19 and BMI (Supplementary Table 6).

Combined with the above result, we show seven common genes

significantly expressed in all analytic methods at both SNP and

genetic levels (Table 4). Among them, ADORA2B was on the chr17
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and was significantly expressed in blood, lung, brain frontal cortex

BA9, and brain cerebellar hemisphere. The most significant tissue

was on the lung (Pcritical COVID-19 = 1.018E-03, PBMI=7.37E-07), and

the PHEIDI was all above 0.01. Apart from this, ZSWIM7 was the

most common gene seen between BMI and critical COVID-19,

which was found in 12 tissues. The expression in the brain cortex

was most significant (PBMI= 1.12E-04, PCOVID-19 = 3.09E-09). There

was only one significant gene detected by COLOC and SMR

between COVID-19 and BMI, which was CCND3. It was on the

CHR 6 and significantly expressed in whole blood (PCOVID-

19 = 0.028, PBMI=2.30E-05). There were no functional genes

shared between hospitalized COVID-19 and BMI.
3.4 Biological mechanisms shared between
COVID-19 and BMI and causality

In the biological process of GO analysis, we identified

pleiotropic genes that were commonly associated with both

COVID-19 and BMI. Specifically, these genes were significantly

enriched in the regulation of synapse structure or activity (P=4.48E-

07, Padjust=6.27E-04), which was consistent with their critical role

in COVID-19 (P=1.42E-06, Padjust=7.23E-04). At the molecular

function level, our results indicated that the genes between critical

COVID-19 (P=5.84E-07, Padjust=5.79E-04) or COVID-19

(P=1.01E-06, Padjust=1.00E-03) and BMI are primarily involved

in DNA-binding transcription factor binding. Furthermore, the

enrichment of these genes at the cellular component level was

relatively minimal (Figure 3, Supplementary Table 7).In the KEGG

analysis, we found that the pleiotropic genes shared between

hospitalized COVID-19 patients and BMI were predominantly

enriched in the Phospholipase D signaling pathway (P=5.84E-07,

Padjust=5.79E-05) and the Rap1 signaling pathway (P=3.26E-05,

Padjust=1.1E-03), which was consistent with the findings on

COVID-19 (Supplementary Table 8).

We cannot find the causal component in the genomic

association between COVID-19 and BMI. The P value presented

by LCV between COVID-19 and BMI was 0.78. It also indicated a

lack of statistically significant association between hospitalized

COVID-19 and BMI, with a p-value of 0.57. It yielded a p-value
TABLE 2 The local genetic correlation between COVID-19 and BMI in 2495 loci by LAVA.

Loci CHR START STOP PHE1 H2 P1 PHE2 H2 P2 P

67 1 77895395 79065286 Hospitalized COVID-19 3.80E-05 2.21E-06 BMI 4.84E-04 1.11E-43 9.84E-09

1113 7 13676748 15013694 Hospitalized COVID-19 7.45E-05 3.24E-09 BMI 4.74E-04 2.38E-30 9.32E-07

2201 17 34474612 36116884 Hospitalized COVID-19 4.66E-05 8.49E-07 BMI 4.56E-04 1.26E-32 1.68E-06

1197 7 113339387 115321301 Hospitalized COVID-19 2.53E-05 1.13E-03 BMI 5.13E-04 1.30E-42 4.27E-06

2311 19 3893910 4741718 Hospitalized COVID-19 1.78E-04 8.97E-47 BMI 3.72E-04 2.68E-26 1.05E-05

692 4 102544804 104384534 Hospitalized COVID-19 3.27E-05 1.36E-04 BMI 5.06E-04 1.58E-40 1.38E-05

56 1 65894185 66778015 Hospitalized COVID-19 1.45E-05 1.39E-02 BMI 1.91E-04 6.98E-14 1.91E-05

2364 19 55182974 55714085 COVID-19 1.22E-04 3.89E-40 BMI 9.30E-05 3.98E-05 3.65E-07
fron
CHR, chromosomes; START, genomic starting point; STOP, genomic ending point; H2, heritability; rg,genetic correlation; PHE, phenotype, P1 and P2 represent the heritability of the trait in
the region.
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TABLE 3 Results from colocalization analysis for each pleiotropic locus identified from CPASSOC.

A1 A2
COVID-19 BMI

PCPASSOC PPH3 PPH4
Trait Beta P-value Beta P-value

A G Hospitalized COVID-19 -0.07 1.16E-07 -0.02 5.90E-17 8.62E-17 0.002 0.998

T G COVID-19 0.04 6.76E-06 0.05 4.40E-35 2.25E-34 0 1

T C COVID-19 -0.02 1.65E-05 -0.01 4.20E-09 3.23E-08 0.053 0.88

A G COVID-19 -0.01 0.084829 -0.02 1.10E-19 1.05E-19 0.022 0.821

C T COVID-19 -0.03 5.65E-05 -0.01 2.90E-09 2.07E-08 0.004 0.818

A C COVID-19 -0.04 1.22E-06 0.01 3.30E-05 2.60E-08 0.042 0.729

T G Critical COVID-19 0.11 8.99E-05 0.05 4.40E-35 1.58E-34 0.001 0.99

T C Critical COVID-19 -0.07 7.31E-06 -0.01 4.20E-09 3.23E-08 0.031 0.956

T C Critical COVID-19 0.02 8.79E-05 0.03 7.50E-38 1.70E-36 0.02 0.937

T C Critical COVID-19 -0.05 0.00011458 -0.01 1.20E-13 1.63E-13 0.05 0.904

C T Critical COVID-19 -0.09 0.000122 0.01 2.10E-07 7.80E-10 0.005 0.87

A C Critical COVID-19 0.2 7.69E-13 0.01 3.30E-05 7.64E-15 0.04 0.851

A G Critical COVID-19 0.09 0.0006997 0.02 9.60E-11 6.10E-10 0.079 0.816

H4 (association with both traits, involving one shared SNP).
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TopSNP Chromosome Position Genomiclocus

rs7254272 19 4069119 58

rs1813006 4 103001649 187

rs8070454 17 38160754 596
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rs6901756 6 41825590 261

rs11085735 19 10602180 635
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rs1075901 17 15943910 593

rs17484848 2 111900560 81

rs11085735 19 10602180 639

rs7560871 2 145616899 86

PHH3/PHH4:The percentages of H3 (association with both traits, involving two distinct SNPs) an
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of 0.56 when assessing the association between critical COVID-19

and BMI.
4 Discussion

As one of the common risk factors for COVID- 19, a deep

exploration of the genetic correlation and genetic pleiotropy between

them can not only further our understanding of their interaction but

also provide evidence that weight management facilitates the

reduction of viral infections in the context of the COVID-19.

Through LDSC, we discovered a positive genetic correlation

between COVID- 19 and obesity regardless of the COVID- 19

type, which was consistent with previous epidemiological surveys.

In order to reduce the bias brought by genetic structure from different

locations on the overall correlation, we further conducted a local

genetic correlation analysis. In the pleiotropy analysis, we found that

39 loci were linked to COVID- 19, 207 were linked to hospitalized

COVID- 19, and 85 were related to critical COVID- 19. After

validation with the COLOC algorithm, these loci yielded 13 loci

with posterior probabilities more significant than 70% and were

further mapped to 3545 genes through MAGMA analysis. Finally,
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combining the abovementioned filtering, we performed SMR analysis

and obtained eight effective drug targets (PSMR<0.05, PHEIDI>0.01).

This study provides a specific shared genetic structure for the

comorbidity between obesity and COVID- 19, rather than just due

to age and health status, etc.

The identification of biomarkers for COVID-19 may enable

early detection of patients at risk of developing severe illness.

Genetic factors can partially control the up- or down-regulation

of amino acid pathways that play a role in the COVID-19 immune

response (26). COVID-19 susceptibility or severity is determined by

host genetic polymorphisms (27),in addition, Li et al. found that

obesity plays an important role in the development of severe

COVID-19 when studying the causal relationship between

nonalcoholic fatty liver disease and COVID-19 (28). Hakonars ect

found that obesity, rather than diabetes, is the crucial risk factor for

hospitalization in COVID-19 patients (29).However, these studies

only used MR to explore their causal relationship, without delving

into the underlying genetic connections and quantifying the genetic

architecture. We selected GWAS from two large-scale studies to

elucidate the intersectionality that exists between the two traits

through various genomic levels to ensure that the interpretation of

COVID-19 and obesity is as adequate as possible. The diverse

manifestation of COVID-19 can be attributed partly to the host’s
A

B

FIGURE 2

(A) The manhattan plot of the SNP-based test based on results of CPASSOC of crirical COVID-19; (B) the result of tissue enrichment in GTEx 8 of
shared genes between critical COVID-19 and BMI, the color red represents the significant tissue, the color blue represents the tissue did not
reach threshold.
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genomic background. In contrast to the other two different types of

COVID-19, the SMARCA4 is a particular gene we detected between

critical COVID- 19 and BMI in all conducted methods, which

encodes the ATP-dependent chromatin remodeling factor 4 (30).

SMARCA4 has been identified as the second most significant gene

after ACE2 for COVID-19 (31). A previous study found SMARCA4

was the essential mutation in children with ASD and widespread

low-density lipoprotein-related lipidome derangements (32).

Furthermore, this study revealed that the expression of the
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SMARCA4 gene in whole blood tissues influenced the

development of both traits which is consistent with that

SMARCA4-LDLR haplotypes were the determinant of plasma

lipids, whose catalytic activity is necessary for ACE2 expression

and viral susceptibility (33). Weight control may be the most crucial

modifiable risk factor for preventing the development of severe

COVID-19.

We identified some genes reported in previous studies to be

associated with COVID-19 and obesity. The ADORA2A encodes the
TABLE 4 The significant functional genes detected in both COVID-19 and BMI.

Gene Tissue Trait
Genomic
Locus

CHR START STOP NSNPS

ZSWIM7

Brain caudate basal ganglia, Brain cerebellar hemisphere, Brain
cerebellum, Brain cortex, Brain frontal cortex_BA9, Brain hypothalamus,
Brain nucleus accumbens basal ganglia,Brain putamen basal ganglia,Lung,
ENCODE,Amygdala,Brain anterior cingulate cortex

Critical
COVID-
19

593 17 15879874 15903031 13

ADORA2B
Whole blood,Lung,Brain frontal cortex_BA9, ENCODE, Brain
cerebellar hemisphere

Critical
COVID-
19

593 17 15848231 15879060 15

TTC19
Brain nucleus accumbens Basal ganglia,Lung,Brain putamen basal ganglia,
Brain caudate basal ganglia,Whole blood

Critical
COVID-
19

593 17 15897694 15953329 34

GSDMA Lung
Critical
COVID-
19

598 17 38119226 38134019 12

DNM2 ENCODE
Critical
COVID-
19

639 19 10823755 10949164 54

SMARCA4 ENCODE
Critical
COVID-
19

639 19 11066598 11181071 55

ZZZ3 ENCODE
Critical
COVID-
19

25 1 78023101 78154104 64

CCND3 Lung,ENCODE
COVID-
19

261 6 41897671 42023095 73
fro
Tissue: the souce of eqtl, ENCODE, Encyclopedia of DNA Elements project; CHR, chromosomes; START, genomic starting point; STOP, genomic ending point; NSNPS, number of SNPs within
the gene.
A B

FIGURE 3

The results of enrichment of the shared genetic architecture between COVID-19 and obesity. (A) The circle plot of GO result, (B) The bubble plot of
KEGG analysis.
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adenosine A2A receptor which regulates cellular signaling and

biological functions through adenosine binding (34). Adenosine is

known as an anti-inflammatory and healing molecule of the

purinergic system. Selective agonists of A2AR may have significant

potential to reduce the fatality of COVID-19 (35, 36). Studies have

found that in terms of leukocyte gene expression, COVID-19

patients show upregulation of genes including (37) P2RX1,

P2RY12, PANX1, ADORA2B, NLPR3, and F3 (38). Meanwhile,

A2A receptors play a crucial pathophysiological role in obesity and

related diseases (39) by participating in inflammation, insulin

resistance, fat generation, and thermogenesis (40, 41). Previous

studies have found that the expression of A2AR in the adipose

tissue of obese mice induced by a high-fat diet (HFD) significantly

increased and mainly existed in adipose tissue macrophages (42). It

found that adenosine-A2AR signaling could activate brown adipose

tissue, which has an anti-obesity effect by inducing the browning of

white adipose tissue (43). In conclusion, the dysfunction of

adenosine-A2AR mediated by ADORA2A mutations may be a

common cause of obesity and COVID-19 due to disrupted

adenosine function. what is more, the CCND3 gene encodes the

protein Cyclin D3, a key molecule in cell cycle regulation, which is

preferentially expressed in adipose tissue, and its expression is

strongly induced during the terminal stages of 3T3-L1

adipogenesis (44). Moreover, cyclin D3 was identified to disrupt

the function of envelope and membrane proteins of SARS‐CoV‐2 by

affecting spike trafficking and incorporating the E protein into the

virions (45). The discovery of these genes and the pathologic

processes involved can provide insights for our future studies of

obesity in neocoronogenesis and long neocoronary syndromes.

In this study, we found that brain regions are involved in the co-

occurrence of both traits using SMR and enrichment analysis. The

regions of the brain and neurons help maintain energy balance and

homeostasis by perceiving and processing various metabolic signals

observed in the hypothalamus. Meanwhile, the peripheral

inflammation caused by COVID-19 may have long-term

consequences on the neurological system of recovery patients,

such as neurodegenerative diseases like dementia (46) The

excessive intake of saturated fatty acids can activate the innate

immune system and impair adaptive immunity, leading to chronic

inflammation and compromised host defense against viruses and

these outcomes may be worsened by continued excessive fat intake.

In addition, we have also found a high enrichment of pleiotropic

genes in the pituitary gland. COVID-19 patients with pituitary

dysfunction experience changes in multiple endocrine organs,

tissues, and hormone substances, making them susceptible to

diabetes, obesity, and fractures (47). This is related to the

expression of ACE2 mRNA in the hypothalamus and pituitary

cells (48), indicating the close relationship between the

management of pituitary diseases in the context of COVID-19

and the occurrence and development of complications. We also

identified some shared genes not found to be associated with either

trait in previous studies which were worthy of future study.
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This article has several advantages. Previous studies almost

exclusively used Mendelian randomization to investigate the

causal relationship between obesity and COVID-19, which can be

influenced by horizontal pleiotropy and cannot identify the specific

genetic architecture underlying the effects. We deeply explored the

genetic overlap between them from SNP to functional levels using

various post-GWAS methods. Additionally, enrichment analysis

was employed to reveal the genetic factors regulating anatomical

and physiological changes. In terms of causal relationships, we used

LCV, a model that quantifies the causal portion compared to MR

and is less susceptible to confounding variables. Our study has

limitations as we only used a European sample due to the limited

sample size of other racial groups. Addition of future GWAS data

could further enhance our research results. Second, our research’s

findings requires to be confirmed through basic experiment. Our

work only concentrated on the SNP, gene, and mRNA levels,

detailed research can be done at the protein level in the future.
5 Conclusions

This paper reveals in detail the genetic structure of the new

crown and obesity and supports their intrinsic link, a finding that

provides strong support for future decisions on weight management

to reduce COVID-19 infection and development.
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