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Background: Diabetic foot complications impose a significant strain on

healthcare systems worldwide, acting as a principal cause of morbidity and

mortality in individuals with diabetes mellitus. While traditional methods in

diagnosing and treating these conditions have faced limitations, the

emergence of Machine Learning (ML) technologies heralds a new era, offering

the promise of revolutionizing diabetic foot care through enhanced precision

and tailored treatment strategies.

Objective: This review aims to explore the transformative impact of ML on

managing diabetic foot complications, highlighting its potential to advance

diagnostic accuracy and therapeutic approaches by leveraging developments

in medical imaging, biomarker detection, and clinical biomechanics.

Methods: Ameticulous literature search was executed across PubMed, Scopus, and

Google Scholar databases to identify pertinent articles published up to March 2024.

The search strategy was carefully crafted, employing a combination of keywords

such as “Machine Learning,” “Diabetic Foot,” “Diabetic Foot Ulcers,” “Diabetic Foot

Care,” “Artificial Intelligence,” and “Predictive Modeling.” This review offers an in-

depth analysis of the foundational principles and algorithms that constitute ML,

placing a special emphasis on their relevance to the medical sciences, particularly

within the specialized domain of diabetic foot pathology. Through the incorporation

of illustrative case studies and schematic diagrams, the review endeavors to

elucidate the intricate computational methodologies involved.

Results:ML has proven to be invaluable in deriving critical insights from complex

datasets, enhancing both the diagnostic precision and therapeutic planning for

diabetic foot management. This review highlights the efficacy of ML in clinical

decision-making, underscored by comparative analyses of ML algorithms in

prognostic assessments and diagnostic applications within diabetic foot care.

Conclusion: The review culminates in a prospective assessment of the trajectory

of ML applications in the realm of diabetic foot care. We believe that despite

challenges such as computational limitations and ethical considerations, ML
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remains at the forefront of revolutionizing treatment paradigms for the

management of diabetic foot complications that are globally applicable and

precision-oriented. This technological evolution heralds unprecedented

possibilities for treatment and opportunities for enhancing patient care.
KEYWORDS

diabetic foot, machine learning, diabetes foot ulcers, precisionmedicine, computational
pathology
1 Introduction

Diabetes mellitus, a widespread global health issue, has emerged

as the eighth leading cause of global disease burden (1). This

condition affects hundreds of millions worldwide and is

associated with several severe complications that pose a heavy

load on global health systems. Notably, diabetic foot disease (DF),

a common complication, affects approximately 18.6 million

individuals annually, with a majority of cases progressing to foot

ulcers, leading to amputation rates as high as 85% among those

with diabetes (2–4). These dire outcomes not only impose

immense physical and psychological tolls on patients but also

strain healthcare systems financially. Notably, evidence-based

interventions can effectively mitigate these consequences (5–7).

Since its initial identification, the DF has been recognized for its

inherent complexity, posing a series of challenges that have

captivated the academic community. One of the primary

obstacles lies in the clinical heterogeneity among patients, which

hampers the generalizability of research findings. This issue is

further exacerbated by the limitations of existing diagnostic and

therapeutic techniques, especially in the critical area of early

diagnosis. Despite these challenges, the field has seen significant

advancements, largely due to the integration of high-throughput

genomics and advanced imaging technologies. These innovations

have expanded the scope of DF research into an interdisciplinary

endeavor, involving fields such as endocrinology, surgery,

imaging, and bioinformatics (4). However, the current state of

interdisciplinary collaboration falls short of the requisite level for

tackling the multifaceted nature of the disease. Moreover, the influx

of multimodal data from these diverse disciplines introduces

additional complexities in data analysis (8). To navigate

this intricate landscape, there is an increasing reliance on

sophisticated analytical tools, such as machine learning(ML) and
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artificial intelligence, which hold the promise of transforming data

integration and interpretation.

In recent decades, ML has evolved from a peripheral technology to

a cornerstone in medical data analytics (9). Its transformative impact is

evident across a broad spectrum of medical disciplines, ranging from

oncology and cardiology to pulmonology (10–12). In clinical practice,

ML techniques can mine key information from large amounts of

medical data to provide doctors with more accurate diagnosis,

prediction and treatment recommendations, and even provide

decision support during surgery (9, 13). Notably, ML algorithms

have proven to be invaluable in handling specialized data types, such

as single-cell RNA sequencing medical imaging, and multi-omics data

integration (14–16). In short, ML has revolutionized medical research

and practice by autonomously “discovering” and optimizing

algorithms to solve specific problems (17, 18).

Emerging evidence underscores the instrumental role of ML in

advancing DF research. Utilizing ML algorithms, clinicians can now

leverage biomarkers for the early diagnosis of DF, thereby initiating

timely interventions (19–21). Furthermore, ML has been employed to

predict the healing trajectory of DF ulcers, assess amputation risks,

and formulate personalized treatment regimens (22, 23). Recent

studies have even explored the use of ML in classifying thermal

images of diabetic feet for early detection of complications (24, 25).

Collectively, these applications not only deepen our understanding of

the pathophysiological underpinnings of the DF but also herald new

avenues for future research and treatment modalities.

This manuscript constitutes the first narrative review focusing

on the applications of machine learning within the domain of DF

pathology. In this narrative review, we systematically searched

PubMed, Scopus, and Google Scholar up to September 2023,

utilizing a detailed strategy with keywords focused on machine

learning and diabetic foot pathology. Our approach, designed to

capture the breadth and depth of the field, emphasizes the critical

evaluation of machine learning principles and their application to

diabetic foot care, supported by case studies and diagrams

for clarity.

Central to this review are several pivotal contributions that

advance the intersection of machine learning (ML) and diabetic foot

(DF) pathology. Primarily, our comprehensive analysis elucidates

the integral role of ML in enhancing diagnostic precision,

prognostic accuracy, and the overall management of DF
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conditions. By synthesizing current research findings, we illustrate

the substantial potential ML holds for revolutionizing patient care

in this domain. Secondarily, we delve into the identification of

emergent trends within this interdisciplinary sphere, spotlighting

cutting-edge ML algorithms poised to significantly improve clinical

outcomes. This exploration not only underscores the innovative

strides being made but also serves as a beacon for future research

directions, highlighting areas ripe for further exploration and

technological advancement. Moreover, our candid discussion on

the challenges and limitations inherent in the current landscape

provides a balanced perspective, fostering realistic expectations

among healthcare practitioners and researchers alike. In doing so,

we aim to catalyze a more informed integration of ML technologies

into clinical practice, bridging the gap between theoretical

advancements and their practical application in improving

diabetic foot care. Ultimately, the essence of our contribution lies

in equipping healthcare professionals with a deep understanding of

ML’s transformative potential, encouraging a collaborative,

informed approach to leveraging these technologies for the

betterment of DF management and patient outcomes.
2 Diabetic foot

2.1 Definition and pathophysiologic
mechanisms of the diabetic foot

The DF is a frequent and complex complication of diabetes

mellitus, characterized by a multifaceted interplay of neuropathy,

peripheral arterial occlusive disease, and infection (3) (Figure 1).

The International Working Group on the Diabetic Foot formally

defines the DF as a condition manifesting in patients with either a

newly diagnosed or a historical presence of diabetes mellitus,
Frontiers in Endocrinology 03
featuring one or more of the following elements: peripheral

neuropathy, peripheral arterial disease, infection, ulceration,

neuro-osteoarthropathy, gangrene, or amputation (26).

The etiological factors contributing to the diabetic foot are often

concomitant, exemplified by neuropathy, which is induced by a

chronic hyperglycemic state and characterized by the impairment of

sensory, autonomic, and motor nerves (2, 27, 28). This sensory

dysfunction results in a diminished perception of pain, temperature,

and pressure, thereby predisposing the foot to painless trauma and

altered biomechanics (29). Concurrently, hyperglycemia-induced

microangiopathy compromises blood circulation and leukocyte

phagocytosis, thereby impairing wound healing and elevating the

risk of infection (30). Moreover, peripheral arterial disease, a

prevalent macrovascular complication in diabetes mellitus, is

implicated in tissue loss in a significant subset of patients with

diabetic foot ulcer (DFUs) (31). The foot serves as a complex target

organ in the multisystemic pathology of diabetes. The convergence

of these pathological processes culminates in a complex

pathomechanism, rendering the foot particularly susceptible to

ulceration and severe soft tissue infections (2). Therefore, the

comprehensive management of diabetic foot necessitates an

integrated treatment strategy, incorporating glycemic control,

circulatory enhancement, infection prevention, and biomechanical

optimization, with the overarching aim of mitigating the

progression of diabetic foot and enhancing the quality of life

for patients.
2.1 Diagnosis and treatment of the
diabetic foot

The prevention and management of diabetic foot necessitate a

collaborative, long-term approach involving the patient, physician,
FIGURE 1

Pathologic factors, clinical manifestations of the diabetic foot and its further progression to severe ulceration and amputation.
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nursing staff, and other healthcare professionals. The International

Working Group on the Diabetic Foot (IWGDF) has been

instrumental in publishing and periodically updating evidence-

based guidelines for the prevention and management of diabetic

foot since 1999 (32–34). These guidelines underscore five pivotal

domains: risk identification, routine foot examinations, structured

patient and family education, footwear adaptation, and ulceration

risk mitigation (7).

Initially, identifying the at-risk population is paramount.

Annual screenings for diabetic patients with minimal ulceration

risk are recommended to evaluate the loss of protective sensation

and potential ulcer development (7). Subsequently, regular foot

examinations facilitate early detection and intervention (2). In

cases where high-risk factors are identified, comprehensive

assessments are warranted, encompassing evaluations of nerve

function, circulation, and musculoskeletal integrity (35). Recent

advancements in radiology and nuclear medicine offer

promising avenues for simplifying the evaluation of diabetic foot

complications (36). Risk-stratification systems guide the frequency

and scope of subsequent screenings (7), with high-risk patients

requiring more frequent evaluations and specialist referrals (2).

Patient education serves as a cornerstone in diabetic foot

prevention and is universally acknowledged for its role in halting

disease progression (2). Patients must be educated about risk factors

such as chronic hyperglycemia, smoking, and alcohol consumption,

as well as the importance of routine foot care (37).Notably, a study

conducted at the Diabetes Center in Khartoum, Sudan, revealed

that only half of the participants had adequate knowledge and

practice of self-foot care (37). Therefore it is urgent to improve

patient’s continuous health education regarding diabetic foot self-

care. For people with diabetic feet, all shoes should be adapted to

any changes affecting the structure of the foot or the biomechanics

of the foot (7). At the same time, comprehensive care for patients

with diabetic foot disease should be provided, including

recommendations for the preferred use of non-removable knee-

height load-relieving devices, the use of removable knee-height or

ankle-height load-relieving devices as a second choice for patients

with contraindications, the use of offloading interventions to

promote healing of foot ulcers and appropriate surgical treatment

(34, 38).

For those diagnosed with diabetic foot, a multidisciplinary

approach is imperative, encompassing preventive measures during

hospitalization, therapeutic interventions, and seamless transitions

from inpatient to outpatient care (39). Treatment objectives aim to

achieve wound healing while preserving patient mobility (2).

Innovations in pharmacotherapy, surgical interventions, and

integrative treatment modalities have revolutionized diabetic foot

management, ranging from basic pharmacological therapies and

debridement to advanced techniques such as revascularization,

decompression, and stem cell therapy (40–45). In the course of

treatment, continuous monitoring by a multidisciplinary team is

advised to adapt treatment strategies, ensuring both efficacy and

safety (2).
Frontiers in Endocrinology 04
3 Advancements in diabetic foot care:
exploring machine learning
applications in imaging diagnostics,
biomarker detection, and
clinical biomechanics

As summarized in many review studies, the application of ML

in the general field of diabetes has been widely validated and

recognized (46). However, compared to other diabetes-related

complications such as diabetic retinopathy, relatively few studies

have been conducted on diabetic foot syndrome (47). The complex

pathophysiology underlying diabetic foot syndrome necessitates a

transformative approach, where ML emerges as a pivotal tool,

especially in the nuanced analysis of data derived from multiple

sensors. Employing ML models offers a multi-faceted advantage in

the medical field, significantly aiding physicians in accurately

diagnosing diabetic foot, forecasting the potential clinical

outcomes of diabetic foot ulcers, and issuing timely alerts

regarding the imminent risks of amputation and mortality at the

point of patient admission (48). Furthermore, these models play a

crucial role in formulating targeted recommendations aimed at

mitigating risk factors and enhancing the management and

prevention strategies for diabetic foot ulcers. Given the

burgeoning interest and ongoing research in this arena, the

purpose of this manuscript is to provide a detailed review that

not only underscores the current advancements but also illuminates

the path for future investigative efforts in the realm of diabetic

foot care.
3.1 Machine learning in diabetic
foot diagnosis

3.1.1 Application of machine learning to diabetic
foot imaging diagnostics

Traditional wound assessment methodologies, often reliant on

visual inspection, are subject to bias and contribute to clinical

workload. In contrast, ML algorithms applied to image

recognition facilitate a more nuanced and systematic evaluation

of diabetic foot wounds, including their classification, localization,

and dimensionality (49). ML has demonstrated considerable

promise in the realm of imaging diagnostics for diabetic

foot conditions. Notably, the integration of infrared foot

thermography with ML algorithms has become increasingly

prevalent in the evaluation and diagnosis of diabetic foot

syndrome (24).

The infrared thermography is a fast, nonintrusive and non-

contact method which allows the visualization of foot plantar

temperature distribution (24). Previous research reports suggest

that thermographic images could aid in detecting an increase in

plantar temperature prior to the onset of DFUs However, the

distribution of plantar temperature may be heterogeneous,
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complicating the quantification and use for predicting outcomes (25).

Machine learning-based scoring techniques and feature selection

have offered a robust solution for the early identification of diabetic

foot. This model excels in optimizing features extracted from

individual foot thermograms and surpasses the performance of

deep learning methods reliant on 2D imagery. Such accuracy

heralds the feasibility of deploying these models within smartphone

applications, enabling patients to monitor DFUs progression

autonomously within domestic settings (25). Further, unsupervised

k-mean clustering of thermographic images to classify the severity of

diabetic foot ulcers improves the accuracy and reliability of early and

accurate diagnosis, enabling clinicians to proactively respond to the

condition before it worsens. And, the use of advanced machine

learning algorithms, including convolutional neural networks

(CNNs) (e.g., the VGG 19 model), further improves the accuracy

of diabetic foot severity detection and classification. This diagnostic

accuracy is critical to the development of targeted treatment

strategies, ensuring that patients receive the most appropriate

interventions based on their specific risk profile (50).

The recent study on automated detection of lower extremity

arterial stenosis using deep learning represents a significant leap

forward in the clinical management of DF patients (51). By

automating lower extremity arterial stenosis assessment, this

method stands to streamline treatment planning significantly,

overcoming the traditional reliance on time-consuming and

inconsistent manual evaluations. The model’s utilization of 3D

reconstructed blood vessel images and its adaptation of the

YOLOv5 framework, enhanced with specific algorithmic

modifications like the Convolutional Block Attention Module,

achieves a remarkable mean Average Precision of 85.40% (51).

This level of accuracy in identifying varying stenosis degrees directly

translates into the potential for quicker, more precise identification

of at-risk patients, facilitating the prompt initiation of personalized

treatment strategies.

3.1.2 Application of machine learning to diabetic
foot biomarker diagnosis

The identification of biomarkers for diabetic foot conditions

represents a pivotal frontier in early and precise diagnosis. ML

algorithms, notably deep learning and Support Vector Machine

(SVM), have been instrumental in the analysis and identification of

potential biomarkers, thereby furnishing clinicians with invaluable

insights into disease progression and therapeutic outcomes (20).

A investigation into the metabolomic changes associated with the

progression from T2DM to DF has unveiled a set of predictive

signatures specific to DF (52). This study highlights the

transformative potential of metabolomic analyses in forecasting DF

risk, revealing that differential metabolites in T2DMwith DF patients,

particularly those linked to branched-chain amino acid catabolic

pathways, serve as distinctive markers for the disease’s progression

(52). Employing advanced machine learning techniques, such as

Lasso regression and random forest algorithms, the research offers

new insights into the metabolic shifts characterizing the transition
Frontiers in Endocrinology 05
from T2DM to T2DM with DF. Moreover, a seminal investigation

conducted by Wang et al., ML algorithms were employed to

scrutinize genes associated with ferroptosis in the context of DFUs

(21). The study culminated in the identification of 25 ferroptosis-

related genes that could effectively discriminate between patients with

DFUs and control subjects. Subsequently, a predictive model was

successfully constructed utilizing ML algorithms.

Additionally, a recent study demonstrated the efficacy of deep

learning models in utilizing coronary artery disease as an alternative

biomarker for predicting cardiovascular disease and stroke risk in

patients with diabetic foot infections (19). Collectively, these studies

illuminate the transformative potential of ML in biomarker research

for diabetic foot conditions, offering novel avenues for diagnosis

and treatment.

3.1.3 Machine learning in clinical biomechanics
related to the diabetic foot

While it is well-acknowledged that diabetic foot conditions

often manifest alterations in gait biomechanics, the application of

ML in this domain remains conspicuously sparse.

It is noteworthy that Diabetic Peripheral Neuropathy is a

primary precursor to diabetic foot ulcers and has always been the

focus of innovative research efforts aimed at enhancing early

detection and intervention. Recent studies, such as those utilizing

Random Forest algorithms to analyze microcirculatory parameters

like post occlusion reactive hyperemia, local thermal hyperemia,

and transcutaneous oxygen pressure, have shown promising results

in accurately diagnosing Diabetic Peripheral Neuropathy (53).

These models have achieved significant accuracy, sensitivity, and

specificity, highlighting the potential of ML to refine diagnostic

criteria and more effectively predict patient outcomes compared to

traditional methods. By leveraging ML models, healthcare

professionals can now more accurately identify individuals at risk,

thereby enabling timely and targeted interventions.

As a matter of fact, the presence of gait specificity among

patients poses significant challenges to traditional analyses of

electromyography (EMG) and ground reaction forces (GRF) in

diagnosing Diabetic Neuropathy (DN) and DFUs (54). Individual

differences, including age, gender, body composition, disease status,

and history of injury, contribute to unique gait patterns, leading to

considerable variability even within the same experimental groups.

This variability is particularly pronounced in DN and DFUs

conditions, where sensory loss, muscle weakness, and structural

alterations in the lower limbs result in adaptive gait changes aimed

at minimizing pain or discomfort. Such adaptations can vary widely

across individuals, complicating the use of standard EMG and GRF

analyses to reliably identify biomechanical changes associated with

DN and DFUs (54). These challenges highlight the critical

significance of integrating machine learning techniques, renowned

for their adeptness in managing highly individualized data and

discerning intricate patterns. Such capabilities are instrumental in

enabling early interventions and crafting customized treatment

strategies, thereby enhancing patient care and outcomes.
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3.2 Application of machine learning in
prognostic assessment of diabetic foot

3.2.1 Application of machine learning in
prediction of diabetic foot ulcer healing

Machine learning serves as a pivotal instrument in

prognosticating the healing course of DFUs. The advent of

smartphones and smart tools has further simplified this

measurement process (55, 56). A prospective cohort investigation

substantiated that elementary wound characteristics, such as wound

surface area and duration, could be employed via machine learning

algorithms to reliably forecast wound resolution by the 16th week of

clinical management (23). In a seminal study by Renaid et al.,

electronic health records from 2,291 visits involving 381 ulcers

across 155 patients were utilized to construct a ML model. This

model employed both clinical attributes and image features to

prognosticate the healing trajectory of diabetes-related foot ulcers

(57). The findings underscore the model’s potential for remote

prognostic assessment via smartphone-captured imagery (57). The

study also found that crucial predictive features predominantly

included hand-crafted imaging attributes, while clinical factors like

nutritional status and ulcer size were less frequent yet impactful,

underscoring their known influence on wound healing (57).

Machine learning models showcased higher predictive accuracy

compared to traditional clinical or molecular biomarker-based

models, affirming their potential in DFUs care. These findings

have significant implications for telemedicine, suggesting that

smartphone or tablet images could effectively monitor DFUs

healing, offering a practical, non-invasive method easily integrated

into clinical practice. The efficiency of hand-crafted image features

in these models also means that their deployment does not require

extensive computational resources, facilitating broader clinical

adoption. And a study highlights the clinical relevance of

adopting sophisticated machine learning models in DFUs

management, emphasizing the integration of RGB images with

texture data to enhance diagnostic accuracy. Such advancements

promise to streamline early DFUs detection, alleviate the clinical

workload through diagnostic automation, and reduce misdiagnosis

risks (58). Furthermore, the demonstrated ability to classify DFUs

by severity and type paves the way for more personalized treatment

approaches, enabling clinicians to devise targeted interventions that

cater to the unique needs of each patient, thus optimizing DFUs

treatment outcomes (58).

A noteworthy study has introduced an advanced prediction

model that melds clinical insights with genetic data to forecast

DFUs healing outcomes more accurately (59). This innovative

approach, involving a cohort study of 206 patients, incorporates

not only clinical factors and circulating endothelial precursor cell

measurements but also delves into the genetic realm by examining

the NOS1AP gene’s single nucleotide polymorphisms (59). By

employing a blend of statistical and machine learning techniques,

the study developed prognostic models that significantly surpass

traditional clinical models in predictive accuracy. Moreover, it

provides a solid foundation for clinical trial designers to identify

candidates more likely to benefit from new therapies.
Frontiers in Endocrinology 06
Using machine learning and genomics, the study of DFUs uses

the comprehensive database of Gene Expression Omnibus (GEO)

database to analyze the complex pathological mechanism behind

the disease, including vascular changes, neuropathy and infection

(60). A notable study analyzed microarray data from the GEO

database using advanced bioinformatics andML techniques, such as

LASSO and SVM-RFE, to spotlight GSTM5 as a crucial immune-

related biomarker for DFU (61). This discovery, validated through

external datasets and immunohistochemistry, underscores

GSTM5’s potential influence on essential signaling pathways and

its association with T cells, paving the way for targeted immune

therapies (61). Equally important is that another pivotal study sheds

light on glutamine metabolism’s role in DFU pathogenesis (62). By

analyzing microarray datasets from the GEO database, this research

unveiled differential expressions of glutamine metabolism-related

genes and their correlation with immune cell infiltration in DFU

patients. The employment of a SVM model, based on 5 critical

genes, demonstrated remarkable predictive accuracy (AUC = 0.929)

on external validation datasets (62). Furthermore, investigations

into angiogenesis-related genes using machine learning algorithms

underscored the vital function of angiogenesis in DFU’s wound

healing process (63). Merging data from several datasets led to the

identification of thrombomodulin as a critical gene influencing

angiogenesis during DFUs development, validated by external

datasets and biological assays. These findings collectively advocate

for the application of machine learning in uncovering novel DFUs

biomarkers, providing invaluable insights into the disease’s

molecular biology, and paving the way for personalized

therapeutic strategies.

3.2.2 Application of machine learning to diabetic
foot amputation and mortality risk assessment

DFUs are acknowledged as one of the most grievous sequelae of

diabetes, markedly elevating the amputation risk profile in affected

individuals. The use of image-centric machine learning algorithms,

especially convolutional neural networks, has advanced the early

detection of DFUs to prevent limb amputation and infections (22,

58). These algorithms assess critical parameters, including wound

infection, offering benefits not only in early DFUs detection but also

in reducing clinical workloads, enhancing cost-effectiveness,

standardizing treatment, improving patient care, and minimizing

the incidence of misdiagnoses (58). Machine learning significantly

augments clinical decision-making in the management of DFUs by

pinpointing critical factors that influence the likelihood of

amputation. Consequently, this fosters an environment where

interventions are not only timely but also tailored to the specific

risk profiles of individual patients, thereby optimizing outcomes in

the management of DFUs.

To refine amputation risk assessments during hospitalization

for DFUs patients, a study scrutinized 618 DFUs inpatients,

segregating them into non-amputation, minor amputation, and

major amputation cohorts. The machine learning model devised

in this study not only accurately gauged the amputation risk but

also furnished invaluable insights for personalized risk stratification

(64). Further, the study employs Extreme Gradient Boosting
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(XGBoost) and Gradient Boosted Trees algorithms to achieve

remarkable predictive accuracies for each category of LEA risk,

highlighted by ROC scores of 0.820 for major LEA events, 0.637 for

minor LEA events, and 0.756 for any LEA event (65). A critical

aspect of this study is its utilization of SHapley Additive

exPlanations (SHAP) for model interpretability, a feature that

distinguishes this research by providing clear insights into the

contributing factors behind the model’s predictions. Key

determinants such as total white cell count, comorbidity score,

red blood cell count, eosinophil levels, and the presence of necrotic

eschar in wounds were identified as significant predictors of LEA

risk. This model’s ability to not only accurately predict LEA risk but

also offer transparent, explainable insights into the underlying

factors marks a significant advancement in DFUs care.

In a comprehensive study encompassing 326,853 DFUs -related

hospital admissions, machine learning algorithms accurately

predicted the likelihood of major lower extremity amputations

with a precision of 77.8% and an AUC of 0.84 using five clinical

variables: gangrene, osteomyelitis, peripheral vascular disease,

systemic infection, and weight loss (66). Notably, gangrene

emerged as the most critical risk factor, substantially increasing

amputation risk. This aligns with meta-analyses identifying

gangrene as a key predictor, emphasizing infections as major risk

factors for amputation. The study also reveals the prognostic value

of weight loss, underscoring it as a modifiable factor that clinicians

can target to slow disease progression.

A considerable subset of patients with DFUs necessitate minor

amputations. Early discernment of such outcomes is instrumental

in guiding clinical decision-making and mitigating the incidence of

major amputations and mortality (67). More importantly, the

application of machine learning and feature significance analysis

was utilized to identify and assess which factors were most critical in

predicting the likelihood of minor amputation. For instance, the

study finds that random blood glucose levels, history of DFUs, and

serum albumin are the most important factors in predicting the

need for minor amputations (67). Optimal blood glucose control is

paramount, aligning with the ACCORD trial’s findings that tight

glycemic management significantly reduces amputation risks. A

history of DFUs underscores the necessity for diligent monitoring

to prevent recurrence, while adequate serum albumin levels,

indicative of nutritional status, are crucial for effective wound

healing. This analysis directs clinicians towards targeted

interventions in glycemic stability, nutritional support, and

comprehensive follow-up, showcasing machine learning’s role in

advancing DFUs patient care (67).

Moreover, Du et al. ascertained that the XGBoost model could

furnish evidence-based risk profiles concerning amputation and

mortality during the COVID-19 pandemic, thereby benefiting

DFUs patients (48). In the study examining amputation and

mortality among DFUs patients during the COVID-19 pandemic,

machine learning techniques were instrumental in identifying key

clinical variables influencing outcomes (48). By analyzing patient

data, the machine learning model pinpointed white blood cells,

blood potassium, and prehospital status as pivotal predictors for

amputation before lockdown, and prehospital status, foot ischemia,

and serum albumin post-lockdown (48). For mortality, critical
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variables included nonfoot infection, age, and foot infection. The

subsequent analysis by another study extends this narrative by

employing machine learning to prognosticate long-term mortality

risks in DFUs patients, leveraging multilayer perceptron classifiers

for 5-year and 10-year mortality predictions (68). This approach,

rooted in the analysis of comprehensive clinical predictors,

reinforces the critical role of infections and underlying health

conditions in DFUs patient outcomes (68). Notably, the study’s

ability to predict mortality with notable accuracy using

non-invasive and economical predictors further emphasizes ML’s

potential to refine risk assessments and guide clinical

decision-making.

Schäfer et al. utilized existing socioeconomic registries and

clinical records from 246,705 diabetic patients to compile data on

socioeconomic status, medical history, and key risk factors (69). By

using machine learning to analyze these extensive clinical databases,

research has found that patients with lower household incomes face

higher risks (69). Their research goes beyond traditional medical

and physical parameters, emphasizing the significant impact of

socio-economic and demographic factors on DFUs outcomes. This

insight underscores the importance of integrating medical care with

socio-economic support, aiming not only to mitigate the physical

risks associated with DFUs but also to address the underlying socio-

economic barriers that exacerbate health disparities among diabetic

patients. Ultimately, this guidance steers clinicians towards more

effective and equitable DFUs management practices.
4 Comparative analysis of machine
learning algorithms: evaluating
optimal model performance in
diabetic foot clinical studies

In the realm of diabetic foot pathology, various machine

learning methodologies manifest distinct capabilities across a

spectrum of tasks, each tailored to its unique features and

functionalities. These computational tools furnish researchers and

clinicians with an expansive arsenal for the nuanced understanding,

prediction, and therapeutic management of this intricate medical

condition. A compendium of prevalent machine learning

techniques and their respective applications in the domain of

diabetic foot care is delineated in Table 1:

Simple linear models (i.e., logistic regression model, Cox

proportional hazard model), which were developed to evaluate

the risk of amputation in patients with DFUs, were limited by the

fact that they only predict a single outcome (the possibility of

amputation) and cannot distinguish between minor and major

amputation. Whereas these models can incorporate more risk

factors, they are limited in capturing the non‐linear relationship

among the risk factors, and are prone to underfitting, leading to low

accuracy and stability. The emergence and development of machine

learning algorithms provide new opportunities to overcome the

challenges presented by the simple linear models.

The clinical importance of comparing machine learning

research models in the context of diabetic foot management lies
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in the ability to discern which methodologies most effectively

predict, diagnose, and stratify risk levels among patients. In this

section, we focus on evaluating the application of machine learning

technologies in the prediction and detection of diabetic foot disease

through quantitative research methods. Specifically, we conduct a

detailed comparative analysis of the optimal model performance

across a series of key studies. These analyses are based not only on

metrics, numerical results, and statistical significance but also

include direct comparisons with other machine learning

algorithms. Such comparative analyses enable healthcare

professionals to select the most accurate and reliable tools,

ensuring that interventions are both timely and tailored to

individual patient needs. This not only enhances patient

outcomes by facilitating early detection and personalized

treatment plans but also contributes to the optimization of

healthcare resources, reducing both the clinical burden and the

overall incidence of severe complications associated with diabetic

foot ulcers (Table 2).

Within the realm of DFUs diagnostics, two pivotal studies have

illuminated the potential of ML and CNNs to refine classification

and severity grading methodologies. The first investigation

harnesses unsupervised ML techniques, notably K-means

clustering, to recalibrate the classification within a publicly

accessible heat-spectrum dataset, aimed at discerning diabetes

severity levels (50). This methodological innovation yielded

impressive outcomes, with the model demonstrating an accuracy,

precision, sensitivity, and F1 score of 95.08%, complemented by a

specificity of 97.2% in the stratification of severity. Such findings
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validate the nuanced capacity of ML in analyzing complex thermal

imagery associated with DFUs, thereby enhancing the granularity of

severity grading. Building upon this foundation, a subsequent study

further explores the capabilities of ML in DFUs management, with a

specific focus on the application of CNNs (58). This research

ventures beyond conventional RGB imagery, incorporating

diverse data inputs to bolster CNN model performance in DFUs

classification. By integrating texture information, derived via the

mapping binary pattern technique, with standard RGB images, the

study posits a nuanced approach that markedly augments DFUs

detection accuracy. This methodology unfolds in a two-stage

process: initially extracting texture data from RGB images,

subsequently leveraging this information to fortify the CNN’s

proficiency in DFUs identification. Such integration of texture

features with RGB data as fused image inputs for CNNs

underscores the significance of multidimensional data analysis in

achieving enhanced classification outcomes, thus promising

improved diagnostic accuracy and, consequently, patient prognosis.

A study investigated the use of EMG and GRF parameters to

identify patients with DN and DFUs through the k-nearest

neighbors (KNN) algorithm. In comparison with seven other

commonly used machine learning algorithms (including

discriminant analysis, kernel models, linear classification, etc.),

the optimized KNN model particularly excelled in the EMG

analysis of the GL and VL muscle combination, achieving an

impressive accuracy of 95.80% and an AUC value of 0.99. These

results highlight the potential and advantage of KNN in processing

specific biomechanical data (54).
TABLE 1 Different application functions of different machine learning methods in diabetic foot research.

Category Subcategory Algorithms Specific Features Literature
applications

Supervised
learning

regression (statistics) linear regression Simplicity and interpretability (54)

categorization Decision Trees and Random Forests Interpretability;
Feature Selection:
Help researchers identify key biomarkers or
risk factors.

(48, 57, 66, 67)

support vector machine Classification tasks:
Such as distinguishing diabetic foot from
other foot disorders.

(48, 57, 67, 70)

logistic regression Used to predict the risk of diabetic foot, e.g.,
based on the patient’s age, gender, and
history of diabetes.

(48, 67)

Deep Learning and
Neural Networks

Convolutional Neural Network Used to analyze medical images of the foot,
such as X-ray, MRI or ultrasound images, to
detect early signs or complications of
diabetic foot.

(25, 48, 50, 58).

unsupervised
learning

clustering K-Means subgroup analysis (50).

transfer
learning

Enhancing model performance using pre-
trained models from related fields, e.g.,
diabetic retinopathy, when diabetic foot data
is limited

(49).

Integrated
Methods

Boosting Stepwise optimization: an advantage when
dealing with diabetic foot data with complex
features and nonlinear relationships.

(25, 48, 50,
64, 67)
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In the quest to advance the prognosis and treatment of DFUs, a

pivotal study has leveraged the SVM algorithm to forecast the

healing trajectories of these complex wounds (57). Demonstrating

commendable efficacy, the SVM algorithm outshone traditional

models such as logistic regression and Naive Bayes on a validation

set, manifesting a robust performance characterized by an Accuracy

of 0.811, Precision of 0.828, Recall of 0.923, and an F1 score of 0.873

(57). Notably, when comparing an SVM_test model, which utilized

solely hand-crafted image features, to one incorporating a full

spectrum of features, it became evident that the former’s higher

AUROC value of 0.794, against the latter’s 0.734, did not eclipse the

holistic advantage of utilizing all available features (57). This

comprehensive approach underscores the model’s adeptness in

achieving a balanced precision-recall trade-off and its exceptional

capacity in accurately pinpointing true positive DFUs cases, thereby

enhancing diagnostic precision. Bridging this analytical prowess to

the broader spectrum of DFUs management, it becomes apparent

that the incorporation of hand-crafted imaging features—

encompassing both color and texture information—significantly

amplifies the predictive accuracy of machine learning models
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beyond what is achievable with deep learning or clinical data

alone (57). This innovative strategy underscores the critical role

of nuanced, hand-crafted features in enriching the machine

learning landscape for DFUs diagnosis and management. Such

features, particularly evident in the analysis of mean green color

intensity, offer novel clinical insights by highlighting the importance

of non-red hues in ulcers, which may signal the presence of severe

infections. This methodological insight not only showcases the

superior performance of models trained on hand-crafted features

but also heralds a new era of precision in DFUs management, where

simple yet powerful imaging attributes can guide more nuanced and

effective clinical interventions.

The application of Light Gradient Boosting Machine, a state-of-

the-art machine learning algorithm known for its efficiency and

effectiveness in handling large datasets, stands at the core of this

predictive endeavor (64). Coupled with the SHAP, the model

transcends mere prediction, offering insights into the

interpretability of its prognostic assessments. The achieved AUC

values of 0.90, 0.85, and 0.86 for predicting non-amputation, minor

amputation, and major amputation outcomes, respectively,
TABLE 2 Comparison of optimal model performance in clinical studies.

Name of study Optimal
Model

AUROC Accuracy Precision Recall F 1 Score

The amputation and mortality of inpatients
with diabetic foot ulceration in the COVID-19
pandemic and post pandemic era: A machine
learning study (48)

XGBoost 0.86
(Amputation),
0.94 (Mortality)

80
(Amputation),
90 (Mortality)

Not Provided 67
(Amputation),
100 (Mortality)

Not Provided

Image segmentation using transfer learning
and Fast R-CNN for diabetic foot wound
treatments (50).

VGG 19 CNN Not Provided 95.08 95.08 95.09 95.08

Machine Learning-Based Diabetic
Neuropathy and Previous Foot Ulceration
Patients Detection Using Electromyography
and Ground Reaction Forces during
Gait (54)

KNN
(Optimized)

0.99 95.80 95.86 95.80 95.78

Utilization of smartphone and tablet camera
photographs to predict healing of diabetes-
related foot ulcers (57)

SVM 0.734 81.1 82.8 92.3 87.3

An explainable machine learning model for
predicting in-hospital amputation rate of
patients with diabetic foot ulcer (64)

multi-class
classification
model

0.90 Not Provided 86.3 87.1 Not Provided

A Machine Learning Model for Prediction of
Amputation in Diabetics (66)

boosting 0.84 77.8 Not Provided 76.1 Not Provided

Machine learning for the prediction of minor
amputation in University of Texas grade 3
diabetic foot ulcers (67)

XGBoost 0.881 0.811 0.828 0.923 0.873

Area Determination of Diabetic Foot Ulcer
Images Using a Cascaded Two-Stage SVM-
Based Classification (70)

SVM Not Provided Not Provided Not Provided 71.4(entire
image)- 74.5
(wound +
healthy
skin only)

Not Provided
Study Title: A brief description of the study's theme and objectives.
Optimal Model: The machine learning model that performed best in the study.
AUROC: A metric of model performance, with higher values indicating better classification capabilities of the model.
Accuracy: The proportion of correct predictions made by the model.
Precision: The ratio of true positive predictions to the total number of positive predictions made.
Recall: The ratio of true positive predictions to the total number of actual positives.
F1 Score: The harmonic mean of precision and recall, used to measure the model's accuracy.
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underscore the model’s robust predictive capability (64). This

fusion of Light Gradient Boosting Machine and SHAP not only

enhances the accuracy of amputation rate estimations during

hospitalization but also pioneers a path toward individualized risk

factor analysis among DFUs patients.

XGBoost is an ensemble learning algorithm that combines the

predictions of multiple trees and sums their prediction scores to

obtain a final score. With advantages in speed, efficiency, and fault

tolerance, XGBoost can effectively avoid overfitting and

demonstrates a high generalization capability. The performance of

the XGBoost algorithm surpasses that of commonly used linear

regression models (LR), single classifiers (DT and SVM), and

another ensemble learning machine learning algorithm (RF).

Many researchers have proven that XGBoost performs well in

predicting a variety of clinical diseases. In a study encompassing

362 cases of grade 3 diabetic foot ulcers, a variety of machine

learning algorithms, including Decision Trees, Random Forest,

Logistic Regression, SVM, and XGBoost, were used to

independently construct risk prediction models (67). Compared

to other machine learning algorithms, the XGBoost algorithm

demonstrated superior performance in predicting whether

patients with diabetic foot ulcers would require minor

amputation surgery, with an AUROC value of 0.881, an accuracy

of 81.1%, and an F1 score of 87.3% (67). These results highlight the

efficiency and accuracy of XGBoost in processing complex

medical data.

One innovative approach employs SVM to delineate wound

boundaries in foot ulcer images, captured via specialized imaging

apparatus (70). This research marks a significant innovation in

DFUs management by introducing a smartphone-based system that

employs machine learning for precise wound boundary

determination. Utilizing a sophisticated cascaded two-stage SVM

classifier, this system analyzes high-resolution images to accurately

identify wound regions, leveraging both color and texture

descriptors. The involvement of clinicians in generating accurate

training labels ensures the model’s reliability and effectiveness.

Demonstrating superior sensitivity compared to traditional

machine learning approaches, this system offers rapid wound

assessment directly from a smartphone, significantly enhancing

the practicality of DFUs care (70).

Synthesizing these studies, we are afforded not only a view of the

unique contributions each model makes to the prediction and

detection of diabetic foot disease but also insights into the relative

efficacy of different algorithms when processing specific types of

data, based on comparisons between models. These comparisons

offer valuable perspectives for future research, particularly in the

selection and optimization of machine learning models to develop

highly accurate clinical predictive tools.
5 Datasets

The exploration of ML applications for the early detection of DF

highlights the critical importance of leveraging diverse datasets. In the

realm of DFU research, datasets such as STANDUP, INAOE, and

local collections provide invaluable insights into the complex thermal
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patterns associated with diabetic foot pathology (71). These datasets,

characterized by variations in infrared image acquisition parameters,

population samples, and health conditions, serve as foundational

elements for developing and validating predictive models.
5.1 INAOE dataset

The advances in infrared thermography during recent years

have opened new possibilities for its use in medical diagnosis. The

detection of complications related to diabetic foot is one of the

many uses of this technology. A new public plantar thermogram

database composed of 334 plantar thermograms from 122 diabetic

subjects and 45 non-diabetic subjects (72). Each thermogram

includes four extra images with their respective temperature file,

corresponding to the four plantar angiosomes. The database is

expected to provide a valuable source to promote research about the

potential of infrared thermography for the early diagnosis of

diabetic foot problems. Further, The INAOE dataset has been

enhanced by the inclusion of a local dataset acquired in 2021,

which comprises images from 22 healthy volunteers recorded at

four distinct time points, specifically utilizing those captured after a

15-minute resting period (71, 73). This local dataset was merged

with the INAOE dataset to create an extended collection aimed at

balancing the previously noted skew towards diabetic cases. This

strategic amalgamation enriches the dataset’s diversity, offering a

more robust foundation for DF detection and prevention research.
5.2 STANDUP dataset

This research database comprises 415 multispectral images

(thermal and RGB) of the plantar foot, with 125 images from

healthy individuals and 290 from type II diabetic patients (74).

Healthy participants were from PRISME, France, and IRF-SIC,

Morocco, while diabetic subjects were recruited from Hospital

Nacional Dos de Mayo, Lima, Peru, for a study on diabetic foot

ulcer detection. The database aims to support research in early ulcer

detection by providing details on recruitment, acquisition protocols,

and equipment used, facilitating the creation of similar databases

for advancing diabetic foot research.
5.3 Zivot dataset

The Zivot dataset marks a significant advancement in DFUs

research, addressing the need for comprehensive data to overcome

previous limitations of disparate and inadequate datasets (75). This

dataset incorporates a broad spectrum of data, including red–

green–blue images, temperature, moisture, and patient

demographics, enabling a nuanced evaluation of DFUs.

Developed in collaboration with the Zivot Limb Preservation

Centre, it introduces a meticulously designed data collection

protocol intended as a benchmark for DFUs research. The

inclusion of advanced imaging tools like depth cameras, red–

green–blue sensors, and thermometry enhances the precision of
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DFUs diagnoses. The application of machine learning and deep

learning on the Zivot dataset demonstrates promising accuracy, as

shown by F1-score and mAP segmentation metrics, suggesting the

dataset’s potential to drive forward holistic and multimodal DFUs

research approaches.
5.4 The National Inpatient Sample database

The National Inpatient Sample (NIS) from the Healthcare Cost

and Utilization Project adds a pivotal dimension to DFUs research

(66). Covering admissions for DFUs diagnosis from 2008 to 2014,

the NIS dataset provides detailed insights into patient

demographics, comorbidities, and outcomes through ICD-9-CM

codes and AHRQ measures (66). Focusing on major lower

extremity amputation cases, the NIS’s comprehensive approach

enriches DFUs research with a broad patient base, involving over

326,853 cases after meticulous data cleaning. Through advanced

statistical and machine learning analysis, the dataset aids in

developing predictive models for amputation risks, utilizing

decision trees and Lasso regression among other methods.
5.5 Augmented DFU classification datasets

Recent advancements introduced the Part-A and Part-B datasets,

enriching machine learning model training for DFUs research through

data augmentation (58). The Part-A dataset, initially comprising 1,679

images, expanded tenfold to 16,790 images, utilizing rotation, flipping,

and color space modifications (58). The Part-B dataset focuses on

ischemia and infection, offering detailed classification with augmented

patches for precise model training (58). A 10-fold cross-validation

strategy over five iterations ensures exhaustive model evaluation,

employing training, validation, and testing sets to optimize accuracy

and reliability. These augmented datasets exemplify how strategic data

enhancement and validation methodologies are crucial for advancing

DFU diagnosis and management, highlighting machine learning’s

transformative potential in medical research.
5.6 Gene expression omnibus database

The GEO database, maintained by the National Center for

Biotechnology Information, is a public repository that archives and

freely distributes comprehensive sets of microarray, next-

generation sequencing, and other forms of high-throughput

functional genomic data. Established to support the research

community’s efforts in molecular biology, GEO serves as a critical

resource for the study of gene expression across a vast array of

conditions, diseases, and experimental treatments. GEO allows

researchers to submit, retrieve, and explore data sets in an effort

to understand complex biological phenomena. This includes the

examination of gene expression changes associated with diseases

such as DFUs, where understanding the genetic underpinnings can

lead to breakthroughs in diagnosis, treatment, and prevention

strategies (61–63). The database supports the use of machine
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genomic data it contains, enabling the identification of disease

biomarkers and the elucidation of molecular pathways involved in

the progression of complex conditions like DFUs (61–63).

The juxtaposition of these datasets reveals the inherent challenges

in dataset imbalance, where diabetic cases often outnumber healthy

controls, and the difficulty in standardizing feature extraction

methodologies. Such disparities necessitate meticulous dataset

selection and preprocessing strategies to ensure model robustness

and generalizability. Moreover, the introduction of datasets like

STANDUP enriches the field by offering an expanded pool of

samples, thereby enhancing the potential for ML and DL models to

accurately generalize across varied patient demographics.

This diversity among datasets underscores the necessity for

continuous evaluation and refinement of ML and DL methodologies,

ensuring that the models developed are not only precise but also

applicable across different clinical settings. Consequently, the selection

and critical review of datasets emerge as pivotal steps in the

advancement of DFU detection technologies, driving forward the

pursuit of more effective, personalized patient care.
6 Results

The realm of diabetic foot care is witnessing a transformative era,

marked by the integration of ML into its diagnostic, prognostic, and

therapeutic strategies. The diabetic foot, a complex interplay of

neuropathy, infection, and ischemia, poses significant challenges in

its management, necessitating advanced approaches for early

detection, precise diagnosis, and effective treatment. Innovations in

ML applications to diabetic foot imaging diagnostics have

revolutionized the ability to identify subtle changes in foot health,

offering a leap forward from traditional visual inspections to nuanced,

systematic evaluations. Through the utilization of algorithms adept at

analyzing images for classification, localization, and dimensionality,

ML facilitates a comprehensive understanding of DFUs, enabling

early intervention and personalized care. Equally critical is the

application of ML in the identification of biomarkers for diabetic

foot conditions. The exploration of genomic data and the analysis of

potential biomarkers through ML algorithms furnish clinicians with

insights into disease progression and therapeutic outcomes,

enhancing the precision of diagnoses and the tailoring of treatment

plans. Clinical biomechanics related to the diabetic foot also benefit

from ML’s prowess. The assessment of gait abnormalities, pressure

distribution, and other biomechanical factors through ML algorithms

aids in the early detection of at-risk individuals, guiding interventions

to prevent ulcer formation and progression. The prognostic

assessment of diabetic foot through ML, particularly in predicting

DFU healing and assessing amputation risk, underscores the utility of

MLmodels in clinical decision-making. These models identify critical

factors influencing DFU outcomes, enabling timely and customized

interventions to mitigate the risk of severe complications. The

comparative analysis of ML algorithms, as presented in our review,

showcases the diverse approaches and their efficacy in diabetic foot

clinical studies. By evaluating the optimal model performance,

healthcare professionals are equipped with evidence-based tools for
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improving patient care in diabetic foot management. Lastly, the role

of datasets in advancing ML applications cannot be overstated. The

review highlights key datasets such as STANDUP, INAOE, and Zivot,

among others, that provide the foundational data necessary for

developing and validating predictive models. These datasets, with

their vast and varied information, are crucial in fostering innovations

that drive forward the application of ML in diabetic foot care.

Collectively, these sections of the review articulate the significant

impact of ML on the management of diabetic foot, from diagnostics

to treatment strategies. The integration of ML not only augments

clinical decision-making but also aligns with the objectives of

precision medicine, heralding a new chapter in the fight against

diabetic foot complications.
7 Discussion and outlook

7.1 Discussion of the findings

While extant literature has acknowledged the utility of machine

learning in the broader context of diabetes management (76), a focused

examination of its applicability to diabetic foot conditions remains

conspicuously absent. A recent review did venture into artificial

intelligence-based investigations of the diabetic foot but offered only

cursory treatment of machine learning methodologies (77). It merits

clarification that artificial intelligence serves as an overarching

discipline, within which machine learning operates as a specialized

subset, primarily concerned with algorithmic and statistical learning

from data. In medical contexts, machine learning excels in the

manipulation of extensive data sets, such as genomic sequences and

medical imaging, and demonstrates proficiency in disease prediction

and diagnosis (9, 10, 78). To the best of our scholarly awareness, this

constitutes the inaugural machine learning-centric review explicitly

addressing diabetic foot conditions.
7.2 Future trajectories of machine learning
in diabetic foot research

7.2.1 Tailored therapeutic approaches
Machine learning has exhibited exemplary efficacy in the early

diagnosis, risk stratification, and prognostic evaluation of diabetic

foot conditions, thereby holding substantial promise for its

integration into personalized treatment paradigms. This

encompasses, but is not confined to, the customization of

pharmacotherapy, optimization of therapeutic regimens, and

telemedical monitoring. Through granular analysis of expansive

patient data, machine learning algorithms can furnish clinicians

with highly individualized treatment recommendations, thereby

enhancing therapeutic outcomes, mitigating complication risks,

and elevating patient satisfaction and quality of life (79).

7.2.2 Interdisciplinary synergies
As computer science and IoT technologies continue to evolve,

we foresee a deeper intersection and collaboration between ML and
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bioinformatics, clinical medicine, and other related disciplines. This

collaboration will not only be limited to current areas of widespread

interest, such as advanced medical image analysis and early

diagnostic techniques, but will also extend to emerging

technology areas, such as wearable medical devices. These devices,

combined with ML capabilities, are expected to provide real-time

remote monitoring and management of diabetic foot patients,

resulting in a more efficient and convenient healthcare experience

for them. In addition, this interdisciplinary collaboration will

further advance the application of ML technology in diabetic foot

treatment, making it more precise and personalized to better meet

patients’ treatment needs.

7.2.3 Global health implications
Diabetic foot complications have ascended to the forefront of

global public health challenges, particularly in low- to middle-

income nations. In confronting this exigency, avant-garde

technologies like machine learning, especially in the realms of

transfer learning and federated learning, offer a robust framework

for the delivery of efficient and high-caliber healthcare in resource-

constrained settings. For instance, the application of pre-trained

algorithmic models enables medical specialists to render precise

diagnostic and therapeutic recommendations in the absence of

extensive training data sets. More critically, machine learning can

facilitate the judicious allocation of essential medical resources,

thereby optimizing the global response to this burgeoning public

health crisis.
8 Challenges and possible solutions to
the application of machine learning in
the diabetic foot

While ML has made considerable strides in the prognostication

and therapeutic management of diabetic foot conditions, several

formidable challenges persist. These include, but are not limited to,

issues surrounding model interpretability, data quality, and data

imbalance, which collectively constitute the crux of ongoing

research endeavors (80).
8.1 Data quality and imbalance

The performance of a ML model depends heavily on the quality

and quantity of the input data. In diabetic foot studies, data may be

missing, inconsistent, or excessively noisy. In addition, there may be

far more healthy samples than diabetic foot samples, leading to bias

in model training.
8.2 Maintaining privacy

The data-intensive nature of machine learning amplifies the

imperative for stringent safeguards surrounding patient data
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privacy. Despite researchers’ efforts to minimize data privacy risks,

completely eliminating them remains a challenge.
8.3 Model interpretability

The enigmatic “black box” decision-making paradigm inherent

to ML poses a significant challenge. Clinicians require transparent

decision logic to make judicious clinical determinations. The

complexity of certain algorithms may obfuscate error recognition

or bias identification, thereby undermining patient trust (81, 82). To

surmount these challenges, potential strategies include:
Fron
(1) Employing advanced data preprocessing techniques to

optimize data quality, coupled with data augmentation

methods to diversify the sample pool;

(2) Implementing oversampling or under sampling strategies

to rectify data imbalances and engender more

equitable models;

(3) Utilizing interpretability tools such as LIME or SHAP to

elucidate model decision-making processes, thereby

bolstering model credibility in clinical applications;

(4) Incorporating differential privacy and federated learning

methodologies to fortify data security and privacy;

(5) Fostering interdisciplinary dialogue and collaboration

between ML and medical experts to facilitate mutual

understanding;

(6) Continual validation and scrutiny of ML models within

authentic clinical environments to ascertain their precision

and reliability;

(7) Assembling a multidisciplinary consortium comprising

specialists from diverse fields—ranging from diabetology

and various surgical disciplines to infectious disease experts

and podiatrists—to deliver comprehensive patient care (4).

If immediate formation of a full-fledged team is impractical,

a phased approach to team assembly should be pursued,

incorporating as many specialties as feasible.
In an era marked by rapid technological advancements and

burgeoning interdisciplinary collaborations, the application of

machine learning in the realm of diabetic foot care holds

unparalleled promise and potential. We are both hopeful and

confident that as research in this domain deepens, scholars and

clinicians alike will continue to propel the innovation and

implementation of these advanced computational techniques. Such

endeavors aim to furnish more precise and efficacious therapeutic

strategies for patients afflicted with diabetic foot complications, thereby

making a seminal contribution to the global healthcare landscape.
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