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Exploring the bidirectional
relationship between metabolic
syndrome and thyroid
autoimmunity: a Mendelian
randomization study
Kefan Chen, Wei Sun, Liang He, Wenwu Dong, Dalin Zhang,
Ting Zhang and Hao Zhang*

Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang,
Liaoning, China
Background: Observational studies have reported a possible association between

metabolic syndrome (MetS) and thyroid autoimmunity. Nevertheless, the relationship

between thyroid autoimmunity and MetS remains unclear. The objective of this

research was to assess the causal impact of MetS on thyroid autoimmunity through

the utilization of Mendelian randomization (MR) methodology.

Methods: We performed bidirectional MR to elucidate the causal relationship

between MetS and their components and thyroid autoimmunity (positivity of

TPOAb). Single nucleotide polymorphisms (SNPs) of MetS and its components

were obtained from the publicly available genetic variation summary database.

The Thyroidomics Consortium conducted a genome-wide association analysis,

which provided summary-level data pertaining to thyroid autoimmunity. The

study included several statistical methods, including the inverse variance

weighting method (IVW), weighted median, simple mode, weight mode, and

MR-Egger methods, to assess the causal link. In addition, to ensure the stability of

the results, a sensitivity analysis was conducted.

Results: IVW showed that MetS reduced the risk of developing thyroid

autoimmunity (OR = 0.717, 95% CI = 0.584 - 0.88, P = 1.48E−03). The

investigation into the causative association between components of MetS and

thyroid autoimmune revealed a statistically significant link between triglycerides

levels and the presence of thyroid autoimmunity (IVW analysis, OR = 0.603, 95%CI =

0.45 -0.807, P = 6.82E−04). The reverse analysis did not reveal any causal

relationship between thyroid autoimmunity andMetS, including its five components.

Conclusions:We have presented new genetic evidence demonstrating that MetS

and its triglyceride components may serve as potential protective factors against

thyroid autoimmunity.
KEYWORDS

metabolic syndrome, thyroid autoimmunity, TPOAb-positivity, Mendelian
randomization, GWAS
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1 Introduction

Autoimmune thyroid disease (AITD), encompassing

Hashimoto’s thyroiditis (HT) and Graves’ disease (GD),

represents a prevalent autoimmune disorder, with a prevalence

rate ranging from 2% to 5% among the general population in

western countries (1, 2). Anti-thyroid peroxidase antibodies

(TPOAb) are frequently detected in HT patients, this enzyme is

located in the thyroid gland and plays a key role in thyroid hormone

synthesis, predicting the eventual development of HT (3, 4). The

prevalence of thyroid autoimmune illness is notably high among

women in their reproductive years, with the most prevalent

manifestation being TPOAb-positivity. This condition is

associated with an elevated likelihood of experiencing pregnancy

difficulties, including miscarriage and preterm birth (5–7). In

addition, thyroid autoimmunity may be an independent risk

factor for cardiovascular disease by promoting chronic

inflammation (8, 9). TPOAb serve as a valuable clinical indicator

in the identification of early AITD. The prevalence of AITD has

been escalating, rendering it a significant public health concern in

contemporary times (10).

Metabolic syndrome (MetS), a widely recognized risk factor for

cardiovascular disease, comprises five components: hypertension,

elevated blood glucose (HBG) and triglycerides levels, low high-

density lipoprotein cholesterol(HDL-C), and increased waist

circumference (WC) (11, 12). When a person has three or more

of the components described above, they can be diagnosed with

MetS. A recent meta-analysis conducted on a large-scale dataset

comprising 28 million persons worldwide has provided an

estimation of the global prevalence of MetS. The research

revealed that the prevalence of MetS falls between the range of

12.5% to 31.4%, according to the different definitions used (13).

MetS are estimated to affect more than 1 billion people worldwide

(14). MetS and its components have been linked to various diseases

and increased death rates, hence posing a significant health concern

and imposing a substantial economic burden (15, 16).

Limited knowledge known regarding the correlation between

thyroid autoimmunity and MetS. A research conducted in Korea

revealed that individuals diagnosed with MetS exhibited a

significantly elevated rate of TPOAb-positivity (17). This finding

implies a potential association between thyroid autoimmunity and

MetS. Nevertheless, a separate study indicated that TPOAb-positivity

did not exert any influence on the occurrence of MetS among

postmenopausal women who exhibited normal thyroid function

(18). Another study from Portugal found that TPOAb- positivity

was negatively associated with MetS (19). So we can see that there

may be a potential causal relationship between TPOAb-positivity and

MetS. However, it’s important to recognize that associations between

TPOAb-positivity, MetS, and its components in observational studies

may be influenced by confounding factors, small sample sizes, limited

follow-up, and reverse causation, potentially leading to

misinterpretations (20). Hence, the causative relationship between

TPOAb-positivity and the risk of MetS and its components remains

uncertain, and the reverse scenario is equally uncertain.

Mendelian randomization (MR), which uses single nucleotide

polymorphism (SNP) as a proxy for lifetime exposure risk, can
Frontiers in Endocrinology 02
reduce confounding factors and reverse causation bias and can

overcome the limitations of observational studies (21, 22). This

method is advantageous for investigating causality since genetic

variation is randomly allocated during meiosis, thereby reducing

the impact of confounding variables, measurement inaccuracies,

and the issue of reverse causality that can affect conventional

multivariate regression techniques (23). In this research, we

employed a bidirectional two-sample MR approach to investigate

the reciprocal causation between TPOAb-positivity and MetS and

its components. The objective is to contribute insights for the

development of more efficacious interventions for these conditions.
2 Materials and methods

2.1 Study design

In our current MR investigation, we utilize a bidirectional

framework, with instrumental variables (IVs) derived from seven

genome-wide association studies(GWAS), to assess both the IV-

exposure and IV-outcome associations. For MetS, we used the

National Cholesterol Education Program Adult Treatment Panel

III (NCEP/ATP III) diagnostic criteria, which contain five

diagnostic elements (24). Initially, we acquired data pertaining to

the exposure variables, including Metabolic Syndrome (MetS),

hypertension, waist circumference, fasting blood glucose (FBG),

serum triglycerides, and HDL-C, from the GWAS database to

identify SNPs associated with these exposure factors.

Subsequently, we employed an other GWAS database to access

the data related to the outcome variables, namely, TPOAb-

positivity. According to the description of the GWAS study, it

used TPOAb-positivity thresholds provided by different assay

manufacturers, rather than using a fixed threshold, but the results

were not heterogeneity and were reliable (25). Ultimately, eligible

SNPs were chosen, and MR analysis was employed to ascertain the

causal relationship between the exposure factors and the risk of the

outcome variable. The roles of exposure factors and outcome

variables were interchanged in each analysis to explore the

potential presence of reverse causality between the two. MR relies

on three fundamental assumptions(Figure 1): ① Genetic

instruments must exhibit a significant association with the

exposure of interest. ② Genetic instruments should not have any

connections with confounding factors influencing the exposure-

outcome relationship. ③ Genetic instruments should influence the

outcome exclusively through their impact on the exposure (26). In

order to prevent the influence of different ethnic factors on the

results, only the European population was included in the study.
2.2 Selection of IVs for MR analyses

For each exposure factor, SNPs were screened based on

adherence to the three primary assumptions of MR. The IVs are

established based on the following criteria (1) SNPs exhibiting

genome-wide significance (P < 5 × 10-8). As TPOAb-positive SNPs

are screened too strictly according to this criterion, when using
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TPOAb-positive SNPs as exposure factors, a threshold of ‘P < 5 × 10-

6’ was applied for filtering. (2) To eliminate linkage disequilibrium

among these SNPs, we utilized the 1,000 Genomes European panel as

the reference population, with an r² threshold of 0.001 and clumping

distance of 10,000 kb. (3) Harmonization procedures were carried out

to eliminate ambiguous and palindromic SNPs. (4) The RadialMR

method was used to identify and remove outliers, which ultimately

reduced heterogeneity and horizontal pleiotropy and made the results

more reliable (27). (5) In order to gauge the strength of the

instrumental variables, we computed F-statistics. Typically, an F-

statistics threshold exceeding 10 is recommended for MR

analyses (28).
2.3 Data sources and IVs selection for MetS
and their component

Summary-level data for MetS were sourced from the extensive

GWAS conducted within the UK Biobank (Table 1), encompassing

a dataset of 291,107 individuals of European descent, consisting of

59,677 cases and 231,430 controls, all with complete data on

genotypes, outcomes, and covariates (29). In total, 85

independent genetic SNPs meeting genome-wide significance

criteria (p < 5 × 10-8) were identified and chosen as genetic

instruments for MetS.

Genetic instruments for WC were obtained from the Medical

Research Council Integrative Epidemiology Unit (MRC-IEU) UK

Biobank GWAS pipeline, comprising a dataset of 462,166 individuals

of European descent. When WC was used as an exposure factor, 297

SNPs were extracted as instrumental variables (p < 5 × 10−8).
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As for hypertension, data was similarly sourced from the MRC-

IEU UK Biobank pipeline. The dataset encompassed 54,358 cases

and 408,652 controls, all of European ancestry. After screening (p <

5 × 10-8), a total of 71 SNPs were integrated into the analysis.

Regarding HDL-C and triglycerides, summary statistics were

acquired from the UK Biobank, comprising a dataset of over

400,000 individuals of European descent (30). Following

screening, a total of 362 SNPs for HDL-C and 313 SNPs for

triglycerides were ultimately incorporated into the analysis, with a

significance threshold of p < 5 × 10-8.

Genetic instruments for FBG were sourced from a database

containing 58,074 individuals of European descent (31). The dataset

was appropriately adjusted for body mass index (BMI). After the

screening process, a total of 22 SNPs were recognized for their

robust association with FBG and were subsequently integrated into

the study, adhering to a significance threshold of p < 5 × 10-8.
2.4 GWAS summary-level data for
TPOAb-positivity

Genetic variation data for TPOAb-positivity was obtained from

the Thyroidomics Consortium (Table 1). The summary-level

statistics originate from a substantial study encompassing 1,769

cases and 16,528 controls, all of Caucasian ancestry, with a

predominant representation of individuals of European descent

(25). Subsequent to the screening process, a total of 12 SNPs

demonstrated robust associations with TPOAb-positivity and

were thus incorporated into the analysis, adhering to a

significance threshold of p < 5 × 10-6.
FIGURE 1

Summary of the research design in this bidirectional Mendelian randomization (MR) study. We performed a total of 12 MR analyses to investigate the
bidirectional association between MetS and its components and TPOAb-positivity. MetS metabolic syndrome, FBG fasting blood glucose, WC waist
circumference, HDL-C high-density lipoprotein cholesterol.
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2.5 Statistical analyses

In our analysis, we employed the inverse-variance weighted

(IVW) MR method to estimate the relationships between MetS and

its components and TPOAb-positivity. This method offers a reliable

causal estimate, particularly in the absence of directional pleiotropy.

Additionally, we conducted alternative analyses using the weighted

median, simple mode, weight mode, and MR-Egger methods.

Sensitivity analysis methods encompassed Cochran’s Q test,

funnel plot analysis, leave-one-out (LOO) analyses, and MR-

Egger intercept tests. Heterogeneity among genetic instruments

was assessed using Cochran’s Q test (32). Additionally, the MR-

Egger intercept was utilized to examine potential horizontal

pleiotropy through the intercept term (33). LOO tests were

employed to investigate whether the inference of a causal

association is influenced by a single SNP. This was achieved by

conducting repeated IVW analyses while sequentially excluding

each SNP associated with the exposure.

Statistical significance is set at the threshold of the Bonferroni-

corrected P< 0.004 (0.05/12) in this study. F-statistics were

computed to gauge the robustness of the relationship between

instrumental variables and exposure factors (34). All MR analyses

were conducted utilizing the TwoSampleMR and RadialMR R

packages within R software version 4.2.1.
3 Results

3.1 The causal impact of MetS and its
components on TPOAb-positivity

In the MR analysis, following the exclusion of SNPs that were not

available in the summary-level dataset forMetS, as well as the removal

of palindromic SNPs, and the elimination of abnormal SNPs post

RadialMR screening, we employed 29 genetic variants as instruments

for MetS, 114 variants for WC, 15 variants for hypertension, 98
Frontiers in Endocrinology 04
variants for serum triglycerides, and 100 variants for HDL-C.

Additionally, 18 variants were utilized as instruments for FBG. The

results of the MR analysis and sensitivity analysis are outlined in

Table 2, and scatter plots are provided in Figures 2. Furthermore, it’s

noteworthy that all SNPs exhibited F-statistics exceeding 10, which

enabled the MR analysis (Supplementary Table 1).

The results of the MR analyses were shown in Table 2, the

scatter plots were presented in Figure 2. Our study reveals a negative

causal association between MetS and TPOAb-positivity. The IVW

analysis results (OR = 0.717, 95% CI = 0.584–0.880, P = 0.001)

indicate that MetS serves as a protective factor against TPOAb-

positivity. While not statistically significant, the MR-Egger results

(OR = 0.890, 95% CI = 0.550–1.441), Weighted median (OR =

0.860, 95% CI = 0.642–1.152), Simple mode (OR = 0.869, 95% CI =

0.536–1.410), and Weighted mode (OR = 0.861, 95% CI = 0.609–

1.216) continue to suggest that MetS reduces the risk of TPOAb-

positivity. The MR-Egger (P = 0.666) and IVW (P= 0.666) P-values

from the Cochran Q-test demonstrated the absence of heterogeneity

in our findings, and no significant MR-Egger intercept values were

detected (P = 0.340). The funnel plots exhibited symmetry

(Supplementary Figure S1), and during the LOO sensitivity

analysis, no single SNP was found to exert a significant impact on

the overall outcomes (Figure 3). These observations collectively

reinforce the robustness and stability of the results obtained from

our MR analysis.

Concerning its components, the genetic predisposition to

elevated triglycerides was found to be inversely associated with

TPOAb-positivity. Specifically, the IVW method produced

statistically significant results (OR = 0.603, 95% CI = 0.450–0.807,

P = 6.816E-04). The other four methods, although lacking statistical

significance, still hinted at a negative correlation between

triglycerides and TPOAb-positivity. Specifically, the MR-Egger

method (OR = 0.648, 95% CI = 0.402 - 1.044, P = 0.078), the

Weighted median method (OR = 0.680, 95% CI = 0.424 - 1.092, P =

0.11), the Simple mode method (OR = 0.716, 95% CI = 0.275 -

1.865, P = 0.495), and the Weighted mode method (OR = 0.594,
TABLE 1 TPOAb-positive, Mets and its components GWAS datasets.

TPOAb-positive Mets WC hypertension FBG Triglycerides HDL-C

Year 2014 2019 2018 2018 2012 2020 2020

Population Europeans Europeans Europeans Europeans Europeans Europeans Europeans

Sex male and female male
and female

male
and female

male and female male and female male and female male
and female

Ncase 1,769 59,677 NA 54358 NA NA NA

Ncontrol 16,528 231,430 NA 408652 NA NA NA

Sample size 18,209 291,107 462,166 463,010 58,074 441,016 403,943

Data
sources

Thyroidomics
Consortium

UK Biobank MRC-IEU MRC-IEU Alisa K
Manning et al.

UK Biobank UK Biobank

GWAS ID NA NA ukb-b-9405 ukb-b-12493 ebi-a-GCST005186 ieu-b-111 ieu-b-109
Mets, Metabolic syndrome. WC, waist circumference. FBG, fasting blood glucose. TG, triglycerides. HDL-C, high-density lipoprotein cholesterol. GWAS, genome-wide association studies. NA,
not available.
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95% CI = 0.386-0.916, P = 0.02) provided insights into this potential

relationship. Furthermore, both the Cochran Q test (IVW, P =

0.969; MR-Egger, P = 0.964) indicated the absence of significant

heterogeneity. The consistency and reliability of the results were
Frontiers in Endocrinology 05
further supported by the symmetrical funnel plots (Supplementary

Figure S1) and the leave-one-out method (Figure 3). Notably, the

remaining four components did not exhibit statistically significant

associations with TPOAb-positivity (Table 2).
TABLE 2 Genetic predicted MetS and its components on risk of TPOAb-positivity in the MR analysis.

Exposure Outcome Method Nsnp Pval OR (95% CI) Cochran Q test
P-value

P-Egger_intercept

Metabolic
syndrome

TPOAb-
positivity

MR Egger 29 0.64 0.890(0.550-1.441) 0.666 0.34

Weighted median 0.311 0.860(0.642-1.152)

IVW 1.48E-
03

0.717(0.584-0.880) 0.666

Simple mode 0.575 0.869(0.536-1.410)

Weighted mode 0.402 0.861(0.609-1.216)

FBG TPOAb-
positivity

MR Egger 18 0.076 0.308(0.091-1.039) 0.7 0.081

Weighted median 0.424 0.735(0.345-1.565)

IVW 0.615 0.874(0.517-1.478) 0.517

Simple mode 0.833 1.159(0.301-4.461)

Weighted mode 0.412 0.704(0.311-1.594)

WC TPOAb-
positivity

MR Egger 114 0.974 0.974(0.201-4.720) 0.648 0.55

Weighted median 0.224 0.644(0.317-1.309)

IVW 0.032 0.613(0.392-0.959) 0.664

Simple mode 0.694 1.444(0.232-8.974)

Weighted mode 0.613 0.662(0.134-3.268)

Hypertension TPOAb-
positivity

MR Egger 15 0.255 1.350E+04(0.002-
8.44E+10)

0.508 0.255

Weighted median 0.706 0.399(0.003-47.158)

IVW 0.891 1.283(0.036-46.115) 0.476

Simple mode 0.98 0.907(0.001-1.50E+3)

Weighted mode 0.726 0.364(0.001-93.534)

Triglycerides TPOAb-
positivity

MR Egger 98 0.078 0.648(0.402-1.044) 0.964 0.711

Weighted median 0.11 0.680(0.424-1.092)

IVW 6.82E-
04

0.603(0.450-0.807) 0.969

Simple mode 0.495 0.716(0.275-1.865)

Weighted mode 0.02 0.594(0.386-0.916)

HDL-C TPOAb-
positivity

MR Egger 100 0.06 1.451(0.988-2.13) 0.965 0.261

Weighted median 0.758 1.063(0.721-1.567)

IVW 0.114 1.232(0.951-1.595) 0.962

Simple mode 0.359 1.478(0.644-3.389)

Weighted mode 0.308 1.216(0.837-1.767)
IVW inverse-variance weighted, MetS metabolic syndrome, FBG fasting blood glucose, HDL-C high-density lipoprotein cholesterol.
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3.2 The causal effect of TPOAb-positive on
MetS and its components

In the reverse MR Analysis, after excluding the unavailable

SNPs and the palindromic SNPs, and the abnormal SNPs after

RadialMR screening, we finally included 7, 8, 7, 7, 6 and 7 IVs as

genetic instruments for Mets, FBG, WC, hypertension, triglycerides

and HDL-C in MR analyses, respectively (Table 3). We had high

statistical power (All SNPs have F values greater than 10) to assess

associations of TPOAb-positive and MetS and its components

(Supplement Table 2).

As indicated in Table 3 and the scatter plots (Supplementary

Figure S2), the results of the MR analysis consistently indicated that

neither MetS nor its five constituent elements exhibited a causal

relationship with TPOAb-positivity, as reflected by odds ratios

(ORs) close to 1. Furthermore, both Cochran’s Q test and Egger’s

test (Table 3) suggested the absence of heterogeneity and potential

horizontal pleiotropy in this study. The stability of the findings was

further affirmed by the LOO analysis (Supplementary Figure S3)

and funnel plots (Supplementary Figure S4).
4 Discussion

In the context of this bidirectional two-sample MR study, our

findings revealed a significant and negative association between

genetically predicted MetS and triglycerides with the risk of

TPOAb-positivity. Conversely, the reverse MR analyses yielded

no evidence suggesting that the genetic predisposition to TPOAb-

positivity was linked to MetS and its components.
Frontiers in Endocrinology 06
There are limited studies looking at the effects of MetS on

TPOAb-positive. A cross-sectional study of Portuguese adults found

that MetS was negatively associated with TPOAb-positive, consistent

with our findings (19). Moreover, A large prospective cohort study

from Iran showed that MetS subjects were less frequently TPOAb-

positive than non-MetS subjects during a 10-year follow-up period

(35). However, another cross-sectional study from South Korea linked

TPOAb-positive to an increased incidence of MetS, in addition to

abdominal obesity, low HDL-C, and elevated blood pressure (17).

Different studies have come to different conclusions, which may be

due to confounding factors in observational studies. Our research,

which relied on genetic data sourced from extensive consortia, has

unveiled a potential inverse association between Mets and TPOAb-

positivity. To substantiate these findings, further investigations are

imperative, involving cohort studies characterized by substantial

sample sizes and prolonged follow-up periods, along with MR

studies conducted across diverse populations.

As for MetS components, triglycerides were negatively

associated with TPOAb-positive in this study. Several studies have

shown that thyroid autoimmunity is associated with dyslipidemia,

but studies have come to slightly different conclusions. A

Portuguese study found a significant negative correlation between

TPOAb-positivity and triglycerides composition, which is

consistent with our conclusions in this study (19). However, in a

Turkish study, they found a positive correlation between TPOAb-

positivity and triglycerides (36). In another study, there was no

significant difference in triglycerides levels between TPOAb-

positive and TPOAb-negative people (37). This inconsistent result

may be related to differences in factors such as race, gender, lifestyle,

and age composition.
A B C

D E F

FIGURE 2

The scatter plots of the association between genetic predicted MetS and its components on TPOAb-positivity in MR analysis. (A)MetS on TPOAb-
positivity; (B) triglycerides on TPOAb-positivity; (C) HDL-C on TPOAb-positivity; (D) hypertension on TPOAb-positivity; (E) FBG on TPOAb-positivity;
(F) WC on TPOAb-positivity. MetS, metabolic syndrome; HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; WC,
waist circumference.
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The exact mechanism of the association between triglycerides

and TPOAb-positivity is unclear, but different hypotheses have

been proposed. Firstly, Ghrelin is a 28-amino acid acylated peptide,

serving as an effective inducer of food intake and playing a crucial

role in obesity, inflammation, and autoimmune processes (38).

According to reports, ghrelin can increase the synthesis of

triglycerides by promoting the expression of genes related to fat

production in liver cells (39). Furthermore, clinical studies indicate

that thyroid function-deficient patients with high TPOAb titers

exhibit decreased levels of Ghrelin (40). Thus, we believe that
Frontiers in Endocrinology 07
TPOAb-positivity seems to have a potential negative correlation

with triglyceride levels. Secondly, a role for both IFN-g and IL-4 in

some murine models of experimental autoimmune Graves’ disease

(EAGD) has been proposed (41). In addition, there are many

studies on the pathogenesis of Type-1 helper (Th1) immune

response involved in thyroid autoimmunity (42, 43). Th1

lymphocytes are recruited by Th1 chemokines secreted by

damaged cells. In inflame tissue, attracted Th1 lymphocytes

induce IFN-g and TNF-a release, which stimulates the secretion

of Th1 chemokines (CXCL9, CXCL10, and CXCL11), initiating and
A B C

D E F

FIGURE 3

The leave-one-out analysis of the association between genetic predicted MetS and its components on TPOAb-positivity in MR analysis. (A)MetS on
TPOAb-positivity; (B) triglycerides on TPOAb-positivity; (C) HDL-C on TPOAb-positivity; (D) hypertension on TPOAb-positivity; (E) FBG on TPOAb-
positivity; (F) WC on TPOAb-positivity. MetS, metabolic syndrome; HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; WC,
waist circumference.
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repeating the amplification feedback loop (44). These chemokines

play an important role in the pathogenesis of thyroid autoimmune

diseases, and studies have shown that IFN-g induces the secretion
and expression of CXCL10, CXCL9 and CXCL11 in a dose-

dependent manner (45). In another study, blood sugar and

triglyceride levels in mice were significantly higher when serum

IFN-g concentrations were reduced compared to controls (46).

Therefore, changes in triglycerides and the associated alterations

in inflammatory factors may impact the progression of

autoimmune thyroid diseases. However, this is only a prediction
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based on existing research. It is well known that triglyceride levels

are associated with obesity, and studies have reported that positive

TPOAb antibodies are associated with BMI and abdominal obesity

(47, 48). We know that plasma leptin levels are positively correlated

with BMI and body fat. Leptin-induced inflammation and the

presence of inflammatory cytokines like TNF-a and IL-6 within

the thyroid gland may contribute to the development of thyroid

autoimmunity (49). So triglycerides may also promote

inflammation. This is a controversial topic that may require

further research in the future.
TABLE 3 Genetic predicted TPOAb-positivity on risk of MetS and its components in the MR analysis.

Exposure Outcome Method Nsnp Pval OR (95%CI) Cochran Q test
P-value

P-Egger_intercept

TPOAb-positivity Metabolic syndrome MR Egger 7 0.852 1.011(0.907-1.127) 0.378 0.824

Weighted median 0.998 1.000(0.959-1.043)

IVW 0.923 0.998(0.968-1.030) 0.496

Simple mode 0.803 0.991(0.933-1.054)

Weighted mode 0.370 1.029(0.965-1.097)

TPOAb-positivity FBG MR Egger 8 0.603 0.986(0.937-1.037) 0.543 0.770

Weighted median 0.291 0.989(0.970-1.009)

IVW 0.365 0.993(0.979-1.008) 0.648

Simple mode 0.323 0.983(0.953-1.014)

Weighted mode 0.303 0.982(0.950-1.014)

TPOAb-positivity WC MR Egger 7 0.932 0.998(0.962-1.036) 0.326 0.801

Weighted median 0.093 0.990(0.978-1.002)

IVW 0.152 0.994(0.985-1.002) 0.436

Simple mode 0.276 0.988(0.969-1.008)

Weighted mode 0.252 0.988(0.969-1.007)

TPOAb-positivity Hypertension MR Egger 7 0.710 1.002(0.991-1.013) 0.995 0.991

Weighted median 0.246 1.002(0.998-1.006)

IVW 0.196 1.002(0.999-1.005) 0.999

Simple mode 0.397 1.002(0.997-1.008)

Weighted mode 0.412 1.002(0.997-1.008)

TPOAb-positivity Triglycerides MR Egger 6 0.530 1.014(0.974-1.055) 0.273 0.525

Weighted median 0.712 0.997(0.983-1.011)

IVW 0.942 1.000(0.990-1.011) 0.330

Simple mode 0.752 0.996(0.975-1.018)

Weighted mode 0.725 0.996(0.972-1.019)

TPOAb-positivity HDL-C MR Egger 7 0.720 0.993(0.959-1.029) 0.257 0.940

Weighted median 0.556 0.996(0.984-1.009)

IVW 0.251 0.995(0.985-1.004) 0.364

Simple mode 0.613 0.995(0.976-1.014)

Weighted mode 0.583 0.995(0.978-1.012)
IVW inverse-variance weighted, MetS metabolic syndrome, FBG fasting blood glucose, WC waist circumference, HDL-C high-density lipoprotein cholesterol.
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The remaining MetS components including waist circumference,

hypertension, HDL-C, and fasting blood glucose were not associated

with TPOAb-positivity in this study. However, epidemiological

studies have been inconsistent. Waist circumference is one of the

indicators of obesity, and in many studies, obesity is associated with

TPOAb-positive (18, 48). Gender may have played a role in the

findings. A study encompassing 2,253 participants unveiled a positive

correlation between waist circumference and TPOAb-positivity in

men, while this association was not observed in women. In the case of

women, hip circumference displayed a positive correlation with

TPOAb-positivity (50). However, a nine-year follow-up study in

Iran did not find an association between waist circumference and

TPOAb-positivity (51). For hypertension, a study of 55,891 people in

China showed significantly higher TPOAb-positive systolic and

diastolic blood pressure compared to TPOAb-negative group (48).

But there are also reports that there is no significant difference

between the two (47). From the current published literature, the

relationship between HDL-C and TPOAb-positivity may be positive,

negative, or unrelated, which is also a controversial issue (37, 52, 53).

This study did not find an association between fasting blood glucose

and TPOAb-positivity, and a previous study has also shown no

association between diabetes and TPOAb (47). However, many

studies have also shown a higher prevalence of AITD in people

with type 2 diabetes, so further research is needed to investigate this

relationship (54, 55).

Previous studies have been controversial about the relationship

between MetS and thyroid autoimmunity. We harnessed MR

analysis to establish causal inferences in the bidirectional link

between MetS and TPOAb-positivity. Our research boasts several

strengths. Firstly, our findings successfully circumvented reverse

causality and minimized the impact of residual confounding.

Secondly, we capitalized on the most comprehensive summary-

level data from GWAS concerning MetS and its constituent

components, and TPOAb-positivity, rendering our conclusions

exceptionally robust. Lastly, a battery of sensitivity analyses

further enhances the reliability of our conclusions.

The study also had some limitations. The utilization of GWAS

summary-level data restricted our ability to explore potential

stratification effects by variables such as gender, age, lifestyle

habits, or other factors. Furthermore, the TPOAb-positivity

GWAS data in this study comprised summaries from various

studies, each with distinct definitions of TPOAb-positivity.

Therefore, it is imperative to establish a larger-scale, standardized

GWAS dataset for more comprehensive analysis. In addition, some

patients with chronic thyroiditis lack evidence of TPOAb-positivity.

The diagnosis of thyroiditis is based on thyroid ultrasound

assessment, and this subgroup of patients may not fall within the

scope of the study. Lastly, the study participants exclusively

comprised European residents, thus the generalizability of the

findings is constrained to individuals of European descent.
5 Conclusion

In summary, our bidirectional MR study has unveiled a causal

connection between MetS and its components and TPOAb-
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positivity, and no causal associations were identified in the

reverse direction. Our findings imply that the SNPs of MetS and

triglycerides are associated with TPOAb-positivity. However, this

association would require further large clinical trials and basic

studies to demonstrate a protective effect of MetS and

triglycerides against thyroid autoimmunity.
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