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A cutting-edge deep
learning-and-radiomics-based
ultrasound nomogram for
precise prediction of axillary
lymph node metastasis in breast
cancer patients ≥ 75 years
Lang Qian1,2†, Xihui Liu1,2†, Shichong Zhou1,2, Wenxiang Zhi1,2,
Kai Zhang1,2, Haoqiu Li3*, Jiawei Li1,2* and Cai Chang1,2*

1Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China,
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 3School of
Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai, China
Objective: The objective of this study was to develop a deep learning-and-

radiomics-based ultrasound nomogram for the evaluation of axillary lymph node

(ALN) metastasis risk in breast cancer patients ≥ 75 years.

Methods: The study enrolled breast cancer patients ≥ 75 years who underwent

either sentinel lymph node biopsy or ALN dissection at Fudan University Shanghai

Cancer Center. DenseNet-201 was employed as the base model, and it was

trained using the Adam optimizer and cross-entropy loss function to extract

deep learning (DL) features from ultrasound images. Additionally, radiomics

features were extracted from ultrasound images utilizing the Pyradiomics tool,

and a Rad-Score (RS) was calculated employing the Lasso regression algorithm. A

stepwise multivariable logistic regression analysis was conducted in the training

set to establish a prediction model for lymph node metastasis, which was

subsequently validated in the validation set. Evaluation metrics included area

under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value,

negative predictive value, and F1-score. The calibration of the model’s

performance and its clinical prediction accuracy were assessed using

calibration curves and decision curves respectively. Furthermore, integrated

discrimination improvement and net reclassification improvement were utilized

to quantify enhancements in RS.

Results: Histological grade, axillary ultrasound, and RS were identified as

independent risk factors for predicting lymph node metastasis. The integration

of the RS into the clinical prediction model significantly improved its predictive

performance, with an AUC of 0.937 in the training set, surpassing both the clinical

model and the RS model alone. In the validation set, the integrated model also

outperformed other models with AUCs of 0.906, 0.744, and 0.890 for the

integrated model, clinical model, and RS model respectively. Experimental

results demonstrated that this study’s integrated prediction model could

enhance both accuracy and generalizability.
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Conclusion: The DL and radiomics-based model exhibited remarkable accuracy

and reliability in predicting ALN status among breast cancer patients ≥ 75 years,

thereby contributing to the enhancement of personalized treatment strategies’

efficacy and improvement of patients’ quality of life.
KEYWORDS
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Introduction

In recent years, the incidence of breast cancer has been steadily

increasing, which is closely associated with the application and

popularization of imaging diagnostic techniques. According to data

from the Chinese Cancer Registry Annual Report, the proportion of

elderly breast cancer patients in China was approximately 16.5% in

2008 and is projected to increase to 27% by 2030 (1). This suggests

that there is a continuous upward trend in the incidence of breast

cancer among elderly women.

The lymph node metastasis (LNM) status of breast cancer

patients plays a pivotal role in determining disease staging and

predicting prognosis. The sentinel lymph node (SLN), which

receives the initial drainage from the breast cancer, holds

significant importance in predicting the axillary lymph nodes

(ALN) status (2). This information is crucial for establishing

breast cancer staging, formulating treatment plans, and predicting

prognosis. Although SLN biopsy (SLNB) is the standard axillary

staging method, it has limitations including complications such as

arm numbness or lymphedema. While the false-negative rate is

acceptable, there are still cases (7.8–27.3%) that may have been

missed for LNM (3–6). Adjuvant therapies like chemotherapy and

radiotherapy can reduce the impact of false negative SLNB on

prognosis for breast cancer patients of other ages, but not all elderly

patients can receive postoperative adjuvant treatment due to their

complex health status and many complications. These limitations

significantly impact the treatment and prognosis of elderly women

with breast cancer. Elderly women often exhibit relatively favorable

biological features including hormone receptor status, tumor grade,

and proliferation rate (7). However, due to their complex health

conditions and presence of multiple complications, treating elderly

patients with breast cancer can be more challenging (8). Existing

evidence is relatively limited, making it difficult to develop

personalized treatment plans (9–11). The International Society of

Geriatric Oncology and European Breast Cancer Experts have

proposed new recommendations suggesting that ALN surgery

may be spared in clinically negative elderly patients without

axillary nodes involvement (12). Therefore, accurate preoperative

assessment of ALN metastasis becomes particularly significant for

avoiding unnecessary surgeries and developing personalized

treatment plans.
02
Ultrasound is a widely employed technique for preoperative

assessment of ALN due to its simplicity, high-resolution soft tissue

imaging capabilities, and absence of radiation exposure. However, it

has limitations in accurately diagnosing ALN metastasis, with an

area under the curve (AUC) ranging from 0.585 to 0.719, indicating

restricted diagnostic ability (13). To overcome this limitation,

recent research has shifted focus towards the primary breast

lesion with the aim of predicting ALN metastasis by analyzing

imaging features and clinicopathological factors associated with the

primary tumor. Several studies have demonstrated that clinical and

imaging characteristics such as tumor size, histological grade, and

patient age possess significant predictive potential for LNM.

Furthermore, prediction models based on these features have

exhibited robust performance in prognostication (14–16).

Nevertheless, previous studies often lacked representation of

elderly patients while conventional clinical prediction models had

limitations such as subjective interpretation influenced by

individual expertise or insufficiently detailed description of image

analysis features. Future research should prioritize inclusion of

elderly breast cancer patients while enhancing and optimizing

imaging analysis methods to improve prediction model accuracy

and clinical feasibility.

However, new opportunities have emerged in the field of

medical imaging with the rapid development of radiomics and

deep learning (DL). Radiomics and DL have tremendous potential

for application in the diagnosis of breast cancer. Traditional

radiomics offers several advantages, including high reliability,

strong interpretability, and minimal data requirements. On the

other hand, DL possesses distinct strengths such as automatic

feature learning, effective representation of complex structures,

powerful expression ability for features, and enhanced accuracy

(17, 18). By integrating these two techniques, the respective

strengths of each can be effectively harnessed to augment the

precision and dependability of breast cancer diagnostic models.

For instance, the integration of radiomics and DL techniques

enables the identification of characteristic textures and details that

are imperceptible to the human eye, facilitating quantitative and

objective evaluations of tumor properties.

The objective of this study was to establish a predictive model

utilizing DL and radiomics techniques for the assessment of ALN

metastasis risk in breast cancer patients aged ≥75 years. We would
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collect imaging data and clinicopathological information from breast

cancer patients, followed by image analysis and feature extraction

using advanced DL and radiomics techniques. Through comparison

and validation against actual LNM status, we aimed to evaluate the

accuracy and reliability of our model, enabling surgeons to make

more precise and evidence-based clinical decisions.
Methods

Patients

This retrospective study included cases from pathology

examinations of breast cancer surgeries conducted at Shanghai

Cancer Center, Fudan University, between January 2018 and June

2021. The study population comprised patients aged ≥75 years who

underwent either SLNB or ALN dissection (ALND). Cases were

excluded if they had incomplete clinical or pathological data,

received prior neoadjuvant therapy, or presented with other

malignancies. This study was approved by the Ethics Committee

of Shanghai Cancer Institute, Fudan University. As this study is

retrospective in nature and does not disclose any identifiable

information, informed consent was deemed unnecessary.
Clinicopathologic feature

This study comprehensively collected and analyzed various

clinicopathological features, including age, age at menopause

(defined as the year of the last menstrual period), reproductive

age (defined as the age at first childbirth), body mass index (BMI,

calculated based on height and weight), family history, tumor

palpability, tumor location, tumor diameter, anteroposterior

diameter, Breast Imaging Reporting and Data System (BI-RADS)

level, height-to-width ratio, multifocality, histologic grade,

histologic type, estrogen receptor (ER) status, progesterone

receptor (PR) status, human epidermal growth factor receptor 2

(HER-2) overexpression, Ki-67 expression, molecular subtype and

axillary ultrasound.

Immunohistochemistry staining was utilized to assess the

expression of ER, PR, and Ki-67 in breast cancer tissues. Tumors

demonstrating Ki-67 expression levels exceeding 14% were

classified as having high expression. ER and PR positivity were

defined as positive staining observed in at least 1% of tumor cells.

HER-2 overexpression was evaluated following the guidelines

established by the American Society of Clinical Oncology/

American Pathology Association. Breast cancer molecular

subtypes were categorized based on the consensus reached during

the 2019 St. Gallen International Breast Cancer Conference,

including Luminal A, Luminal B (comprising both HER-2

positive and HER-2 negative), HER-2 overexpression type, and

triple-negative breast cancer type. Axillary ultrasound assessment

was performed under ultrasound guidance using BI-RADS

classification criteria. Abnormal lymph nodes detected via axillary

ultrasound were considered suspicious if they exhibited at least one

suspicious feature such as complete or partial substitution with
Frontiers in Endocrinology 03
unclear or irregular masses, complete or partial disappearance of

lymph sinuses, focal or irregular cortical thickening, diffuse cortical

thickening ≥3 mm, presence of microcalcifications within lymph

nodes, or non-lymphatic portal blood flow signals on color doppler;

otherwise, they were deemed negative.

To preserve the scientific validity of our study, we implemented

a blinded assessment protocol for the radiographic analysis.

Radiologists, uninformed about patients’ histopathological results,

were restricted to the evaluation of images alone, with no access to

medical records. An anonymized coding system was employed to

label each case, ensuring that the correlation between radiological

and pathological data was independently analyzed by a third-party

investigator, who was not involved in imaging interpretation or

clinical management. Finally, we maintained a strict separation

between radiologic and pathologic datasets during the statistical

analysis to reinforce the objectivity and accuracy of our assessment.
Deep learning features

Using the graphical image annotation tool Labelme, we

manually selected a rectangular region of interest (ROI) on the

ultrasound image representing the maximum cross-section of the

tumor, encompassing the entire tumor area, including both

the complete hypoechoic tumor region and any present echogenic

halo, as well as additional hypoechoic tumor regions (19).

The grayscale ultrasound images were processed using

DenseNet-201 as the base model, and its generalization

performance was enhanced by incorporating pre-trained weights

from ImageNet (20, 21). To align with the standardized weights of

the ImageNet dataset, we expanded the original single-channel

grayscale ultrasound image into a three-channel image through

contrast enhancement based on histogram equalization and

denoising based on wavelet transform.

In the network training phase, we employed Adam as the

optimizer and selected cross-entropy as the loss function (22). To

enhance model convergence speed and mitigate overfitting

tendencies, we implemented a step-based learning rate decay

strategy and an early stopping training strategy (23). Specifically,

we initialized the learning rate to 0.001 and reduced it by half every

50 epochs. Training was terminated if there was no improvement in

model performance for more than 50 epochs. Additionally, to

facilitate efficient utilization of computing resources and memory

consumption, we set the batch size to 8.

The following methods were employed in this study to

effectively extract DL features. Firstly, during the forward

propagation of the network, we rescaled the feature maps to

match the original input size and extracted radiomics features by

utilizing manually delineated ROI regions. Considering that

DenseNet-201 consists of 1920 nodes in its last layer, for

enhanced computational efficiency and reduced redundancy, we

replaced the softmax activation function in the final layer with

sigmoid and approximated the binary classification task as a

prediction task. Next, we sorted the weights corresponding to

these 1920 nodes based on their absolute values and selected a

subset of “key nodes”. We then filtered these key nodes using
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Spearman correlation coefficient by calculating correlations

between nodes on the training set and removing those unrelated

to key nodes. Finally, we selected 128 nodes from which radiomics

features were extracted from their respective feature maps. It should

be noted that while the feature maps of the network can reflect

characteristics of ultrasound images, they cannot fully represent

them. Therefore, only first-order features were extracted from these

feature maps in this study. The process of DL feature extraction is

shown in Figure 1.
Radiomics features and Rad-
Score calculation

We utilized the Labelme tool for manual annotation of ROI on

maximum cross-sectional ultrasound images of tumors, tracing

along the contours of the tumors. The manual segmentations

were performed by two radiologists who were blinded to the

pathological results. Each manual segmentation was repeated

twice to assess inter- and intra-observer reproducibility (24).

Subsequently, we employed the Pyradiomics tool (25) to extract

features from these ROI regions. These features encompassed 480

radiomics features, shape features, histogram features and texture

features. All feature extraction algorithms adhered to the standards

proposed by the Image Biomarker Standardization Initiative (ISBI).

Next, we validated the stability of these radiomics features using

intra-/inter-class correlation coefficients (ICCs), retaining only

those with an ICC greater than 0.6. Furthermore, we applied the

minimum redundancy and maximum relevance (mRMR) (26)

algorithm to select relevant features from both retained radiomics

and DL ones, resulting in a final selection of 32 features. Finally, we

employed Lasso regression algorithm to calculate Rad-Score (RS).
Nomogram construction

Figure 2 shows the workflow of this study. The data processing

in this study was conducted using SPSS 25.0 and R 4.2.2.

Continuous data were presented as mean ± standard deviation,

while categorical data were presented as frequencies. Univariate
Frontiers in Endocrinology 04
analysis was performed to identify variables (including RS values)

associated with LNM. Fisher’s exact test or chi-square test was used

for between-group comparisons of categorical variables, and the t-

test or Mann Whitney U test was used for continuous variables. In

the training set, a stepwise multivariate logistic regression approach

was employed to establish a predictive model for LNM. Variables

with a P < 0.05 in the univariate analysis were included in the

logistic regression analysis, and those with a P < 0.05 in the

multivariate analysis were included in the final predictive model.

The performance of the model was validated using the validation

set. To achieve better generalizability, we utilized Youden index to

determine the final threshold (cut-off value) (27).
Evaluation index

In this study, the performance and predictive accuracy of the

model were evaluated using AUC, accuracy, sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV),

and F1-score. The calibration curve and decision curve were used to

assess the calibration and clinical prediction accuracy of the model

(28). The added value of RS values to the model performance was

evaluated using the integrated discrimination improvement (IDI)

and net reclassification improvement (NRI) indices (29).
Results

Baseline characteristics

The study included 364 elderly breast cancer patients aged ≥75

years, with a median age of 77 years. All patients underwent either

breast-conserving surgery or mastectomy on the ipsilateral side,

accompanied by SLNB or ALND following a pathological diagnosis

of breast cancer. Among these patients, 281 underwent SLNB, and

106 patients underwent ALND. Based on the pathological findings,

LNM was detected in 118 patients (32.4%), while no evidence of

LNM was observed in 246 patients (67.6%).

The clinical factors are presented in Table 1. To ensure

comparable proportions of positive and negative patients, a
FIGURE 1

Deep learning feature extraction. The 1920 feature maps of the last densely connected convolutional layer are scaled to the input size, and 10
feature maps are selected to extract deep learning features using Radiomics.
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stratified sampling approach was employed to group the training set

and validation set based on time (93/196 in the training set, 25/50 in

the validation set). No significant differences were observed in these

clinical features or LNM status between the training and validation

sets (P > 0.05). Univariate analysis of indicators between positive

and negative cases of ALN metastasis revealed significant

differences in certain features, including location of the mass,

histological type, and axillary ultrasound etc.
Frontiers in Endocrinology 05
Feature screening and Rad-
Score calculation

The DenseNet201 model served as the foundational architecture

in this study, with a prediction approach utilizing the sigmoid

activation function to approximate the classification task.

Subsequently, the last layer consisting of 1920 nodes was sorted

based on their weights, and after analysis using Spearman’s
FIGURE 2

Workflow for constructing a nomogram model based on deep learning and radiomics features to predict the risk of axillary lymph node (ALN)
metastasis in breast cancer patients ≥ 75 years.
TABLE 1 Patients’ characteristics and univariate analysis of variables for lymph node metastasis.

Variables Training set (n=289) Validation set (n=75)

ALN- ALN+ P ALN- ALN+ P

Age(y) 78 ± 3 79 ± 4 0.063 78 ± 3 79 ± 3 0.684

Menopausal age(y) 50 ± 3 50 ± 4 0.188 51 ± 3 50 ± 4 0.086

Reproductive age(y) 26 ± 4 25 ± 4 0.019 25 ± 4 25 ± 3 0.775

BMI(kg/m2) 23.9 ± 3.5 24.1 ± 3.6 0.683 23.2 ± 3.2 24.6 ± 3.0 0.062

Anteroposterior
diameter (mm)

14.0 ± 7.0 16.7 ± 7.4 0.004 14.2 ± 6.3 16.7 ± 8.5 0.159

Maximum
diameter(mm)

21.9 ± 14.8 25.7 ± 14.7 0.042 23.5 ± 11.6 24.9 ± 9.9 0.622

Family history 0.976 0.15

No 162 77 46 20

Yes 34 16 4 5

Palpability 0.852 0.597

(Continued)
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TABLE 1 Continued

Variables Training set (n=289) Validation set (n=75)

ALN- ALN+ P ALN- ALN+ P

No 16 7 2 2

Yes 180 86 48 23

Location of the mass 0.001 0.022

Outer upper 74 56 21 10

Lower outer 27 12 7 7

Upper inner 53 8 16 5

Lower inner 25 10 6 0

Posterior to
the nipple

17 7 0 3

Histological grade 0.269 0.479

I-II 127 54 36 16

III 69 39 14 9

Multifocality 0.472 1

No 180 83 45 23

Yes 16 10 5 2

Histological type <0.001 0.157

IDC 135 83 32 20

Others 61 10 18 5

HER-2 expression 0.117 0.286

Negative 170 74 45 20

Positive 26 19 5 5

ER status 0.889 0.221

Negative 47 23 8 7

Positive 149 70 42 18

PR status 0.271 0.866

Negative 65 37 19 9

Positive 131 56 31 16

Ki-67 expression 0.122 0.867

Low 84 31 19 10

High 112 62 31 15

Molecular type 0.267 0.574

LuminalA 78 28 18 8

LuminalB (HER-2-) 62 35 20 7

LuminalB (HER-2+) 9 8 4 3

HER-2 enriched 17 11 1 2

TNBC 30 11 7 5

Axillary US <0.001 <0.001

Negative 180 47 46 12

(Continued)
F
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correlation coefficient, only 9 nodes exhibiting a correlation

coefficient below 0.1 were retained from the remaining nodes. This

resulted in a total of 190 features derived from these selected nodes.

According to the aforementioned method, each image can

extract a total of 670 features, which included 190 DL features

and 480 radiomics features. Consequently, with two images per

patient, there were a total of 1340 image features. After validation

using ICCs coefficient and mRMR algorithm, only 32 features were

retained. Further analysis utilizing the Lasso algorithm resulted in

the selection of 20 image features for constructing the RS. These

selected features consisted of 7 DL features and 4 radiomics features

as presented in Table 2. The process of feature selection using the

Lasso algorithm is illustrated in Figure 3.
Model construction and result analysis

Variables with P < 0.05 in the univariate analysis were included

in the multivariate analysis. Regression models were constructed for

both pure clinical factors and factors incorporating RS values. As

depicted in Table 3, the multivariate analysis revealed significant

disparities in tissue classification and lymph node description under

both scenarios, while RS values also emerged as an important

predictive factor within the model presented in this study.

The study utilized RS values as a singular variable for predicting

LNM and constructed a univariate regression model, which was

compared to the multivariate model in order to further demonstrate

the enhanced performance contributed by RS values in Table 4 and

Table 5. The proposed model demonstrated exceptional prediction

accuracy and generalization performance, with an AUC of 0.906,

representing improvements of 1.8% and 21.8% when compared to

the RS model and pure clinical model respectively. By incorporating

RS values into the clinical factors, the accuracy of the model

increased from 0.733 to 0.827, indicating an improvement of

12.7%. Furthermore, the F1-score increased from 0.583 to 0.754,

showing an improvement of 29.3% compared to the clinical model
Frontiers in Endocrinology 07
alone. Additionally, inclusion of RS values resulted in an NRI of

0.306 and an IDI of 0.320 when compared to using only pure

clinical factors; this provides compelling evidence that utilizing RS

values obtained through our proposed method enhances both

predictive accuracy and generalization performance.

The ROC curves of the three models on the validation set are

depicted in Figure 4. It is evident that the Rad-Score itself

demonstrates remarkable predictive accuracy, and when

combined with clinical factors, the model achieves its highest
TABLE 1 Continued

Variables Training set (n=289) Validation set (n=75)

ALN- ALN+ P ALN- ALN+ P

Suspicious 16 46 4 13

BI-RADS US <0.001 0.003

3–4A 19 4 5 1

4B or 4C 163 63 44 17

5 14 26 1 7

Taller-than-
wide shape

0.173 0.657

<1 176 88 45 24

≥1 20 5 5 1

RS -1.606 ± 1.43 0.213 ± 0.83 <0.001 -1.770 ± 1.37 0.296 ± 0.63 <0.001
ALN, axillary lymph node; BMI, body mass index; IDC, invasive ductal carcinoma; TNBC, triple-negative breast cancer; US, ultrasound; BI-RADS, Breast Imaging Reporting and Data System;
RS, Rad-Score.
TABLE 2 Radiomics signatures calculation formula.

(Intercept) -1.00838

Deep learning features

original_firstorder_
Range_750_1

0.009664

original_firstorder_Root
MeanSquared_992_0

0.175046

original_firstorder_Stan
dardDeviation_273_1

0.18031

original_firstorder_
Mean_992_0

-0.0043

original_firstorder_
10Percentile_992_1

-0.05537

original_firstorder_
Maximum_750_0

0.060832

original_firstorder_
Minimum_1413_1

-0.10877

Radiomics features

original_glcm_
Correlation.0

0.182627

wavelet.LL_glcm_
ClusterShade.1

0.184388

wavelet.LH_
firstorder_Mean.1

-0.57384

wavelet.LH_
firstorder_Mean.0

-0.59918
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prediction accuracy. In this study, we employed the Youden Index

to determine the classification threshold for optimal balance

performance of the model. The thresholds (cut-off) for clinical

model, RS model, and integrated model were 0.393, 0.375, and 0.266

respectively. From the Figure 5, it can be observed that at their

respective optimal threshold points, compared to clinical model,

our integrated model exhibits an NRI of 0.244 for predicting

positive patients and 0.062 for negative patients.

To facilitate the clinical application, we have developed a

nomogram model based on multiple logistic regression, as

depicted in Figure 6. The decision curve and the Hosmer-

Lemeshow test (with P = 0.613 for the training set and P = 0.979
Frontiers in Endocrinology 08
for the validation set) demonstrate excellent predictive accuracy of

the integrated model on both datasets. Furthermore, we have

visually presented both the decision curve and clinical impact

curve (as illustrated in Figure 7), thereby enhancing its applicability.
Discussion

The objective of this study was to establish and validate a model

based on DL and radiomics, which combines clinical features and

ultrasound imaging, for predicting the ALN status in elderly breast

cancer patients and providing reliable diagnostic information and
BA

FIGURE 3

Feature selection with the LASSO algorithm. (A) LASSO coefficient with different l. The dashed line represents the selection of 11 features using the
optimal l (0.046). (B) The selection of LASSO model’s parameter using 5-fold cross-validation. The dashed lines corresponds to two values which
the smallest mean squared error (MSE) is achieved (0.046) and MSE is within one standard error of the smallest(0.135).
TABLE 3 Variables and coefficients of the clinical model and integrated model

Factors
Clinical model

Factors
Integrated model

b P Adjusted OR b P Adjusted OR

Reproductive age -0.066 0.100 0.936 Histological type -0.979 0.059 0.376

Location of
the mass

-0.202 0.070 0.817 Axillary US 2.560 <0.001 12.931

Histological type -0.981 0.014 0.375 RS 1.613 <0.001 5.018

Axillary US 2.198 <0.001 9.006

Constant 1.990 Constant 0.790
OR, Odds Ratio; US, ultrasound; RS, Rad-Score.
TABLE 4 Performance of the integrated model, RS model and clinical model on training set

Model AUC Accuracy Sensitivity Specificity PPV NPV F1-score

Integrated model 0.937 0.844 0.882 0.827 0.707 0.936 0.785

RS model 0.905 0.782 0.860 0.745 0.615 0.918 0.717

Clinical model 0.784 0.782 0.634 0.852 0.670 0.831 0.652
AUC, area under the curve; RS, Rad-Score; PPV, positive predictive value; NPV, negative predictive value.
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treatment options for clinicians. Integrated model demonstrated

excellent predictive performance on the training and validation sets,

with AUC values of 0.937 and 0.906, respectively. These results

indicate that integrated model can accurately predict the ALN status

in elderly breast cancer patients and provide clinicians with reliable

diagnostic information and treatment options.

Ultrasound has been widely used for preoperative assessment of

ALN status in breast cancer. Although some studies have found that
Frontiers in Endocrinology 09
ultrasound-guided fine-needle aspiration or core needle biopsy,

compared to SLNB, can save costs in clinically negative ALN

patients (30), the accuracy of axillary ultrasound is still insufficient

for predicting ALN status, with reported AUC values ranging from

0.585 to 0.719 (13). This indicates that axillary ultrasound still has

limitations in predicting ALN status and cannot accurately predict

LNM, which in turn may not support fine-needle aspiration or core

needle biopsy. The accuracy of axillary ultrasound assessment in our
BA

FIGURE 4

Receiver operating characteristic (ROC) curves for different models on the training set (A) and validation set (B).
BA

FIGURE 5

Calibration curves of the model on the training and validation sets (A) illustrates the agreement between the risk predicted by the nomogram and
the true outcomes. A closer fit of the solid line to the dotted line indicates better predictive accuracy. The IDI curves of two models (B) shows the
False Positive Rate (FPR) and True Positive Rate (TPR) at different thresholds, highlighting the differences between the models at their respective
optimal threshold points.
TABLE 5 Performance of the integrated model, RS model and clinical model on validation set.

Model AUC Accuracy Sensitivity Specificity PPV NPV F1-score

Integrated model 0.906 0.827 0.800 0.840 0.714 0.894 0.755

RS model 0.890 0.787 0.800 0.780 0.645 0.886 0.714

Clinical model 0.744 0.733 0.560 0.820 0.609 0.788 0.583
AUC, area under the curve; RS, Rad-Score; PPV, positive predictive value; NPV, negative predictive value.
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study was also low, consistent with previous literature reports. Some

studies have aimed to predict ALN status using clinical and imaging

data, such as tumor grade, tumor size, lymphovascular invasion, and

ultrasound spiculated margin (14–16, 31). However, relying solely on

clinical and imaging predictors is not accurate enough, with AUC

values ranging from 0.66 to 0.74 in previous studies. In comparison to

the previous research, our study found that certain factors, such as

histological classification and ultrasound lymph node assessment,

have independent prognostic significance for ALN metastasis in

elderly breast cancer patients. This differs to some extent from

previous studies, which may be because previous research mainly

focused on adult women and did not fully reflect the unique

biological characteristics of elderly breast cancer patients.

Important features, such as lymphovascular invasion, cannot be

directly observed preoperatively, limiting their clinical significance

in predicting ALN status. These differences underscore the

importance of our study in further understanding ALN metastasis

in elderly breast cancer patients.
Frontiers in Endocrinology 10
In recent years, with the development of radiomics and DL, an

increasing number of studies have applied these two approaches in

clinical imaging research. For example, in studies using thyroid

cancer ultrasound images, the application of radiomics allowed for

the establishment of a model for predicting cervical LNM with high

accuracy (AUC 0.914) (32). Similarly, in predicting ALN metastasis

in breast cancer, radiomics and DL have also demonstrated high

accuracy. For instance, Zheng et al. used DL combined with clinical

features to build a model for predicting ALN metastasis based on

ultrasound images of primary breast tumors, achieving a relatively

high predictive accuracy (AUC 0.902) (33).

The novelty of this study resides in the integration of radiomics

and DL techniques for constructing integrated model that

comprehensively analyzes both clinical and ultrasound imaging

features. When compared to conventional image evaluation

methods, integrated model exhibits substantial enhancements in

predicting ALN status, significantly increasing the AUC from 0.744

(as previously reported) to an impressive 0.906, thus demonstrating
FIGURE 6

Nomogram for predicting the probability of axillary lymph node (ALN) metastasis risk in breast cancer patients ≥ 75 years.
BA

FIGURE 7

Decision curve (A) and Clinical Impact Curve (CIC) (B). Decision curve analysis (DCA) allows threshold probability to vary to examine whether one
model is superior to another at a certain range of threshold probability, with respect to “the net benefit”. CIC detects the predictive value, the red
curve indicates the number of people classified as positive at each threshold probability and the blue curve is the number of true positives for each
threshold probability.
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its exceptional accuracy and superiority. The enhanced predictive

accuracy and reliability of integrated model stem from its

comprehensive analysis and complementary interactions, which

fully leverage ultrasound image information. Despite the inherent

opacity limitations of DL models, our integrated approach

incorporates traditional radiomics methods to compensate for

this drawback by combining predictive results with imaging

features. As a result, integrated model not only achieves superior

predictive accuracy but also provides interpretable outcomes that

can effectively aid doctors in understanding and applying them.

To further enhance the accuracy of prediction, we integrated

clinical features with ultrasound imaging features to develop an

integrated predictive model. The results demonstrated that the

integrated model exhibited higher accuracy compared to models

utilizing only clinical features or DL radiomics models. Notably, the

negative predictive value even reached 0.893, indicating a high level

of confidence in the model’s accuracy when predicting a negative

ALN, approaching 90%. This indicates that when the prediction

result of integrated model is no axillary LNM has a high accuracy,

with the actual probability of no metastasis being close to 90%. The

predictions of negative axillary lymph nodes made by integrated

model can serve as a valuable reference for clinicians, enabling them

to avoid unnecessary ALN surgeries and minimize the patient’s

surgical risks and trauma. Instead, they can opt for a relatively

conservative non-surgical treatment strategy such as radiation

therapy, which offers improved disease control.

Despite our study’s achievements, there are still some

limitations that need to be acknowledged. Firstly, we obtained

data from various ultrasound devices and had them assessed by

different physicians; this might introduce variations in equipment

and operator performance that could potentially impact the results.

Additionally, this study only includes ultrasound images which may

underestimate the performance of DL without integrating other

imaging modalities. Furthermore, our study was conducted solely at

one center without external validation, thus restricting its

generalizability. To enhance its credibility further, future research

can utilize multicenter datasets for validation purposes while also

comparing outcomes with other studies.
Conclusion

The deep learning-and-radiomics-based ultrasound nomogram

exhibits high accuracy and reliability in predicting the ALN status of

breast cancer patients ≥ 75 years. It can serve as a valuable reference

for clinicians to enhance the efficacy of individualized treatment

strategies, helping patients to avoid unnecessary axillary lymph

node surgery, thereby minimizing surgical risks and trauma while

improving patients’ quality of life.
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