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Association between TyG index
trajectory and new-onset lean
NAFLD: a longitudinal study
Haoshuang Liu1,2, Jingfeng Chen1,2, Qian Qin1, Su Yan1†,
Youxiang Wang1,2, Jiaoyan Li1,2 and Suying Ding1,2*

1Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
2College of Public Health, Zhengzhou University, Zhengzhou, China
Objective: The purpose of this manuscript is to identify longitudinal trajectories

of changes in triglyceride glucose (TyG) index and investigate the association of

TyG index trajectories with risk of lean nonalcoholic fatty liver disease (NAFLD).

Methods: Using data from 1,109 participants in the Health Management Cohort

longitudinal study, we used Latent Class Growth Modeling (LCGM) to develop TyG

index trajectories. Using a Cox proportional hazard model, the relationship between

TyG index trajectories and incident lean NAFLD was analyzed. Restricted cubic

splines (RCS) were used to visually display the dose-response association between

TyG index and lean NAFLD. We also deployed machine learning (ML) via Light

Gradient Boosting Machine (LightGBM) to predict lean NAFLD, validated by receiver

operating characteristic curves (ROCs). The LightGBM model was used to create an

online tool for medical use. In addition, NAFLD was assessed by abdominal

ultrasound after excluding other liver fat causes.

Results: The median age of the population was 46.6 years, and 440 (39.68%) of

the participants were men. Three distinct TyG index trajectories were identified:

“low stable” (TyG index ranged from 7.66 to 7.71, n=206, 18.5%), “moderate

stable” (TyG index ranged from 8.11 to 8.15, n=542, 48.8%), and “high stable” (TyG

index ranged from 8.61 to 8.67, n=363, 32.7%). Using a “low stable” trajectory as a

reference, a “high stable” trajectory was associated with an increased risk of lean-

NAFLD (HR: 2.668, 95% CI: 1.098-6.484). After adjusting for baseline age, WC,

SBP, BMI, and ALT, HR increased slightly in “moderate stable” and “high stable”

trajectories to 1.767 (95% CI:0.730-4.275) and 2.668 (95% CI:1.098-6.484),

respectively. RCS analysis showed a significant nonlinear dose-response

relationship between TyG index and lean NAFLD risk (c2 = 11.5, P=0.003). The

LightGBM model demonstrated high accuracy (Train AUC 0.870, Test AUC

0.766). An online tool based on our model was developed to assist clinicians in

assessing lean NAFLD risk.

Conclusion: The TyG index serves as a promising noninvasive marker for lean

NAFLD, with significant implications for clinical practice and public health policy.
KEYWORDS

triglyceride-glucose index, latent class growth model, lean nonalcoholic fatty liver
disease, health management, trajectory
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Highlights
Fron
• NAFLD can occur in lean individuals and is often

associated with low awareness in the general population.

• Patients with lean NAFLD have worse outcomes than the

general NAFLD population.

• Development of newer marker targets for lean NAFLD

patients for use in future trials.
Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent

chronic liver disease worldwide and increases the risk of

atherosclerosis, cardiovascular disease (CVD), liver cirrhosis, and

liver cancer (1). Obesity is a key factor in NAFLD (2). Most

mathematical prediction models for NAFLD/NASH are based on

obesity and diabetes prevalence (3). 10–20% (4)of NAFLD patients

who are neither overweight nor obese (BMI< 25 kg/m2 or< 23 kg/m2

in Asians) have “lean NAFLD”. Lean NAFLD is a primary source of

cryptogenic liver disease (5), and lean people with NAFLD are more

likely to have impaired glucose tolerance, hypertension, metabolic

syndrome, and cardiovascular mortality (6). Therefore, early detection

of patients at risk for lean NAFLD in a simple and effective manner is

critical. However, the pathogenesis of lean NAFLD remains uncertain.

As the gold standard for diagnosing lean NAFLD,

histopathological examination of liver biopsy has various

limitations, such as invasiveness, poor acceptability, and a higher

cost (7). Therefore, a non-invasive diagnostic approach for lean

NAFLD is urgently needed. The combination of serummarkers and

other indicators is valuable for screening diseases due to their

convenience, low cost and accurate diagnosis. Insulin resistance

(IR) is involved in the pathogenesis and progression of lean NAFLD

(8). Homeostatic model assessment for IR (HOMA-IR) is widely

utilized in IR-related disorders and is the gold standard for

diagnosing lean NAFLD (9). The triglyceride glucose (TyG) index

has been described as a reliable and simple surrogate for measuring

IR and as having substantial relevance in metabolic disorders such

as NAFLD (10). However, most of these studies use a single TyG

index measure to predict lean NAFLD risk, which omits a possible

variability in TyG index trajectories over time.

Machine learning (ML), an emerging component of artificial

intelligence, is gradually being implemented in the analysis of

healthcare data. It serves as an influential tool for assisting the

clinical decision-making process (11, 12). A statistical and

comprehensive review of ML in medical diagnosis by Swanson

et al. shows that ML technologies help medical professionals reduce

diagnostic errors, improve health care delivery, and reduce treatment

costs (13). Therefore, we conducted a lean NAFLD cohort study to

capture longitudinal TyG index change trajectories from 2017 to 2019

and analyze the association between TyG index change trajectories

and lean NAFLD risk through 2020.

We use an ML model to combine TyG index with common

clinical features and predict the probability of patients with lean
tiers in Endocrinology 02
NAFLD. Subsequently, we developed a web-based calculator using

the LightGBM model. This predictive tool can help physicians

assess the risk of lean NAFLD patients and devise personalized

medical strategies while optimizing the allocation of medical

resources. In addition, we assessed the dose-response relationship

between TyG index change trajectories and lean NAFLD risk. This

study would suggest that TyG index trajectories over time may

provide important clues to the development of lean NAFLD and a

basis for health management and risk communication in primary

care practices.
Materials and methods

Study population

At the Health Management Center of the First Affiliated

Hospital of Zhengzhou University, 7,818 individuals aged

between 18 and 98 underwent health checks between 2017 and

2019. If a participant had liver ultrasound at baseline and at follow-

up, they were recruited into the trial, and information about their

medical history and medication use was collected. The following

were the criteria for exclusion (1): aged< 18 years (n=24); (2)

NAFLD diagnosis in 2017–2019 (n=2,346); (3) BMI ≥ 23 kg/m2

(n=2,541); (4) men and women who drink more than 10 and 20

grammes of alcohol daily, respectively (n=839); (5) history of fatty

liver disease (n=138); (6) history of cancer or autoimmune disease

(n=19); (7) usage of medications to reduce cholesterol, blood

pressure (BP), blood sugar, or uric acid levels (n=516); and (8)

less than three medical examinations or missing information in

relevant variables (n=286). A total of 1,109 participants (441 males

and 668 females) met the inclusion and exclusion criteria and were

enrolled (Figure 1).

Following the Helsinki Declaration, this study was carried out.

The study protocol was approved by the ethics committee of the

First Affiliated Hospital of Zhengzhou University, Zhengzhou,

China (approval No. 2018−KY−56). Written informed consent

was obtained from all participants.
Diagnostic criteria

We used two clinical ultrasound systems, ACUSON Oxana2

ultrasonic diagnostic device (Siemens Medical Solutions USA, CA

94043, USA) and 5-12 MHz probe (APLI0500TUS-A500,

TOSHIBA, Tokyo, Japan), for direct post-beamform radio

frequency (RF) data acquisition provided under research

agreements. Three registered diagnostic medical sonographers

(each with > 10 years of overall experience) were trained and had

several months to 2 years of experience performing the research

protocol. Each participant was scanned by one of the three selected

sonographers based on scheduling availability and underwent two

15-20-minute exams on the same day. Each exam was performed

using a different platform in random order. Between exams,

participants took a 5-10-minute break and were repositioned on

the gurney. An average of 50 patients are screened per day.
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NAFLD was identified using Chinese criteria (14)-(1) enhanced

echogenicity in the near field and attenuated echogenicity in the far

field of the liver parenchyma; (2) hepatomegaly is characterized by

relatively opaque intrahepatic ducts and rounded liver margins; (3)

alcohol consumption of ≤ 140 g/week for men and ≤ 70 g/week for

women; and (4) lack of other illnesses or disorders, such as viral

hepatitis, total parenteral nutrition, hepatomegaly, and drug-related

liver disease, which may lead to fatty liver disease. AGA clinical

practice recommends the diagnosis of lean NAFLD in individuals

with NAFLD and a BMI< 25 kg/m2 (non-Asian race) or< 23 kg/m2

(Asian race) (15). The BMI and TyG indices were calculated using

the following formulas (16):

BMI = body weight(kg)=body height2(m)2

TyG  =  Ln ½fasting triglyceride (mg=dl) 

�  f asting plasma glucose (mg=dl)=2�, ðTG:1mmol=L

= 88:5mg=dL;FPG:1mmol=L  = 18mg=dLÞ
Anthropology and laboratory investigations

During the physical examination, the patient’s height, weight,

waist circumference (WC), systolic blood pressure (SBP), and

diastolic blood pressure (DBP) were all measured. Height, weight,

and WC were measured with participants dressed in light, thin
Frontiers in Endocrinology 03
clothing without shoes. BP was measured on the right arm of seated

individuals using electronic sphygmomanometers.

Individuals were sampled following a 12-hour overnight fast.

Fasting laboratory analysis included measurements of triglyceride

(TG), total cholesterol (TC), low-density lipoprotein (LDL-C),

high-density lipoprotein (HDL-C), fasting plasma glucose (FPG),

glycated hemoglobin (HbA1c), aspartate aminotransferase

(AST) , a lamine aminotrans ferase (ALT) , g -g lutamyl

transpeptidase (GGT), serum uric acid (SUA), hemoglobin

(Hb) and white blood cell (WBC). The samples were analyzed

using a chemical analyzer (cobas8000, Switzerland) based on

enzymatic method at the hospital’s central laboratory. FIB-4

was calculated as age (year) x AST (U/L)/[platelet count (109/

L) x √ALT (U/L)] (17). The Fibrotic NASH Index (FNI) can be

calculated online (18).
Questionnaire survey

Information on smoking status (current vs. never smokers) and

drinking status (current drinkers vs. never drinkers vs. drinking

amount) was obtained from self-reported data.
Statistical analysis

First, descriptive analysis findings are reported as mean ±

standard deviation for normally distributed continuous variables,
FIGURE 1

Flow chart of number of participants.
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medians (interquartile range) for non-normally distributed

continuous variables, and number with percentage frequency for

categorical variables. Comparisons of participants’ general

characteristics at baseline were assessed using the Student’s t test

for normally distributed continuous variables, Mann-Whitney U

test for non-normally distributed continuous variables, and Chi-

square test for categorical variables. Second, variables with a P value

of < 0.05 in univariate time-dependent analysis were included in the

Cox multivariate time-dependent regression model. Multivariate

Cox time-dependent regression models were calculated using

hazard ratios (HR) and 95% confidence intervals (95% CI) for

incident lean NAFLD (19). The Schoenfeld scale residuals test is an

accurate tool for confirming proportional hazards (PH).

Third, TyG index trajectory patterns from 2017 to 2019 in the

research population were characterized using semiparametric

Latent Class Growth Modeling (LCGM). Briefly, the “LCTM

Tools” process fitted a semiparametric mixed model using the

maximum likelihood method (20). We empirically compared one,

two, three, four and five group solutions and then optimized the

number of subgroups by Bayesian Information Criterion (BIC)

values (close to zero indicating a good fit), where the shape of

trajectories was determined according to the order of the

polynomial (linear, quadratic, cubic, etc.). The following

parameters established the appropriate trajectory number and

shape (21): (1) improvement in BIC; (2) no less than 5%

membership in each trajectory group; and (3) high average group

posterior probabilities (> 0.7). Four, using the multivariate Cox

proportional hazard model, we created lean NAFLD prediction

models to explore whether temporal patterns in these

characteristics over time may enhance the model’s ability to make

predictions. Based on a multivariate Cox time-dependent regression

analysis, the clinical predictive model contained lean NAFLD risk

variables, and the merged model incorporated metabolic factor

trajectories associated with new-onset lean NAFLD. In addition, a

multivariate Cox time-dependent regression model was used to

adjust for potential risk factors for lean NAFLD as follows: Model 1

was univariate; Model 2 was adjusted for demographics (i.e., age,

WC, and BMI); and Model 3 was adjusted for age, WC, BMI, SBP,

and ALT. A spline regression model with three knots (10th, 50th,

and 90th percentile) was employed to provide more accurate

estimates and investigate the nature of the relationship between

the TyG index and lean NAFLD.

Finally, we employed LightGBM algorithm for classification to

predict the risk of lean NAFLD patients. LightGBM is a gradient-

boosting framework using a tree-based learning algorithm that has

been successfully applied to the construction of medical models in

recent years (22, 23). Patients at the Health Management Center

were randomly divided into a training set and an internal test set

using R with a ratio of 7:3. To improve the effectiveness of the

model while ensuring the authenticity of the data, we use a

synthetic minority oversampling technique (SMOTE) for the

database to solve the problem of data imbalance (24, 25). The

training set was used to build the model, and the internal test set

was used for model validation and evaluation. In the training set,
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k-fold cross-validation (k =5) is performed, and a grid search is

used to find the best combination of parameters. Subsequently, the

model performance is initially evaluated in the internal test set.

Model performance is assessed by area under the curve (AUC),

predictive accuracy, sensitivity, specificity, and F1-score. Our

primary evaluation metric for ML models is AUC, calculated

from ROC curves, which are graphical plots showing the

diagnostic power of binary classifiers as their discriminative

thresholds change (26). It is also combined with other metrics

for a comprehensive assessment to determine the best model.

Meanwhile, a web-based calculator was able to estimate the

probability of lean NAFLD in individuals.

For all analyses, a two-tailed P value of < 0.05 is considered

statistically significant. A general descriptive analysis was conducted

on SPSS software (version 26.0; IBM, Chicago, USA). R statistical

software (version 4.0.2; R Foundation for Statistical Computing,

Vienna, Austria) was used to construct univariate and multivariate

Cox time-dependent regression models using LCTM tools. In this

study, a newly developed gradient boosting model (GBM), known

as LightGBM, was implemented using “LightGBM,” packages, and

“pROC,” packages to generate ROC curves, respectively. The

authors make all the R and code for these tools available at

www.github.com/hlennon/LCTMtools.
Results

The trajectory of TyG index

Supplementary Table 1 displays the LCGM fitting results. We

modeled linear, quadratic, and cubic curves from 1 to 5 classes. This

table excludes five classes due to low group membership (<1%). Due

to the small size of group 4 (0.27%), the quadratic curve model of

group 5 was ruled out. Based on the above criteria, a cubic

parametric model with 3 groups with a low BIC, relatively high

posterior probability, and a high percentage of group membership

was selected. The LCTM model was used to fit TyG index change

trajectories to normal BMI. When divided into 4 groups, the results

of the LMR-LRT likelihood ratio test had no statistical significance

(P=0.389), and there was one group whose sample size was only 38

(< 5% of the total sample size), so it was rejected. The results showed

that the optimal fitting results were divided into three groups (BIC:

P<0.001; Entrop:P<0.001; LMR-LRT:P<0.001; Group: 206/541/

363). Detailed information for calculating TyG index trajectories

is provided in Supplementary Table 1.

We classified the study population based on TyG index

trajectories from 2017 to 2019, labeled as low stable (TyG index

ranged from 7.66 to 7.71, n=206, 18.5%), moderate stable (TyG

index ranged from 8.11 to 8.15, n=542, 48.8%) and high stable (TyG

index ranged from 8.61 to 8.67, n=363, 32.7%). Study participants

were divided into three categories based on the trajectory of their

TyG index over time. According to the initial value, all change

trajectories are upward trends and are divided into low stable,

moderate stable and high stable (Figure 2).
frontiersin.org

http://www.github.com/hlennon/LCTMtools
https://doi.org/10.3389/fendo.2024.1321922
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1321922
Characteristics of various TyG index
trajectories at baseline

Table 1 shows the demographics of the 1,109 individuals whose

risk factors for developing lean NAFLD were analyzed. Over a

median follow-up of 389.22 days (329.59–448.85 days), 81 (7.3%)

participants developed lean NAFLD. The incidence rates of lean

NAFLD were 3.8%, 8.6%, and 11.7% from low to high in men, 2.5%,
Frontiers in Endocrinology 05
4.5%, and 11.4% in women, respectively (P<0.05). There were

significant differences in the incidence of lean NAFLD between

the three latent classes. Not only the baseline TyG index, but more

importantly, TyG index trajectories in later life account for the

incidence of lean NAFLD.

In this study, data from the first physical exam in 2017 were

used as baseline data. There were 53 males (25.7%) and 153 females

(74.3%) in the low stable TyG index group, and 209 males (38.7%)
FIGURE 2

TyG index trajectories of lean NAFLD patients from the Health Management Center.
TABLE 1 Baseline demographic clinical characteristic according to TyG index trajectories.

Variables Total (n=1,109) Low-stable Moderate-stable High-stable F/c2 P value

male/female N (%) 441/668 53/153 209/331a 179/184a 31.36 <0.001

Age, years 46.48±14.32 40.02±12.12 46.18±14.15a 50.60±14.32a,b 38.45 <0.001

WC, cm 75.49±6.18 72.70±5.64 75.03±6.07a 77.76±5.82a,b 51.25 <0.001

SBP, mmHg 117.49±16.10 111.96±13.10 116.99±15.54a 121.40±17.44a 24.01 <0.001

DBP, mmHg 70.78±9.90 67.95±8.95 70.23±9.60a 73.22±10.31a 20.95 <0.001

BMI, kg/m2 21.23±1.20 20.92±1.33 21.15±1.27a 21.51±1.24a 15.82 <0.001

ALT, U/L 16.37±11.22 14.85±8.47 16.18±13.35 17.50±8.74 3.82 0.020

AST, U/L 19.28±7.01 18.76±5.70 19.23±8.46 19.65±5.03 1.08 0.340

GGT, U/L 16.67±11.41 13.66±7.19 15.52±9.78a 20.10±14.44a,b 27.49 <0.001

ALP, U/L 63.25±6.62 60.69±21.43 62.00±15.09 66.56±15.13b 11.36 <0.001

SUA, mmol/L 278.07±69.35 257.98±67.42 274.23±65.98a 295.23±71.56a 21.31 <0.001

TC, mmol/L 4.43(3.89,4.99) 3.95(3.60,4.48) 4.40(3.94,4.86)a 4.74(4.20,5.37)a 66.76 <0.001

TG, mmol/L 0.90(0.69,1.21) 0.57(0.50,0.66) 0.85(0.72,0.99) 1.34(1.13,1.59) 680.49 <0.001

HDL-C, mmol/L 1.51±0.33 1.64±0.34 1.56±0.33a 1.37±0.29 56.60 <0.001

LDL-C, mmol/L 2.69±0.70 2.21±0.51 2.62±0.62a 3.08±0.71a 126.84 <0.001

FBG, mmol/L 4.90(4.65,5.20) 4.73(4.50,4.95) 4.88(4.64,5.18) 5.05(4.77,5.34) 40.69 <0.001

HbA1c, % 5.58(5.40,5.65) 5.58(5.37,5.61) 5.58(5.40,5.64)a 5.60(5.40,5.83)b 12.75 <0.001

TyG 8.18±0.41 7.66±0.24 8.10±0.23a 8.61±0.26a,b 1022.64 <0.001
WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; ALT, alamine aminotransferase; AST, aspartate transaminase; GGT, g-
glutamyltransfer; HbA1c, glycated hemoglobin; ALP, alkaline phosphatase; SUA, Serum uric acid; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; FBG, fasting blood glucose; TyG, triglyceride glucose.
The three groups were represented with a: low stable group; b: moderate stable group; If a significant level p<0.05 was achieved between any two of the three groups, a superscript was added to the
corresponded columns.
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and 331 females (61.3%) in the moderate stable TyG index group.

There were 179 males (49.3%) and 184 females (50.7%) in the high

stable TyG index group. Compared with the low stable TyG index

group, age, WC, SBP, DBP, BMI, ALT, GGT, SUA, TC, TG, FPG

and TyG, the stable and high stable TyG index groups significantly

increased, and LDL-C significantly decreased, with statistical

significance (P<0.001).
Association of TyG index changing
trajectory and lean NAFLD Risk

Table 2 displays univariate time-dependent Cox regression

findings. Except for sex, all variables were significantly associated

with new-onset lean NAFLD (HR>1, P<0.05). Table 3 shows the

multivariate time-dependent Cox regression estimates under the

PH assumption. In multivariate Cox analysis, age, WC, SBP, BMI,

and ALT were correlated and independent risk factors for lean

NAFLD development. Subjects in the moderate stable and high

stable groups showed 1.767 (95% CI: 0.730-4.275) and 2.668 (95%

CI: 1.098-6.484) fold higher risk of developing lean NAFLD,

respectively, than those in the low stable group.
Dose-response relationship between TyG
index and lean NAFLD

The RCS model with four knots (25th, 50th, 75th, and 95th

percentile) at various time periods simulated the longitudinal

change in TyG index and lean NAFLD. A significant nonlinear

dose-response association was found between TyG index change
Frontiers in Endocrinology 06
and lean NAFLD. After adjusting for age, WC, BMI, SBP, and ALT,

these associations remained significant (c2 = 11.5, P=0.003).

Figure 3 shows a positive linear dose-response relationship for

TyG index and lean NAFLD. As TyG index levels increased, the

detected risk of lean NAFLD showed a clear upward trend. When

the TyG index exceeds 8.2, the risk of disease increases rapidly (all p

for non-linearity > 0.1).
The performance of machine
learning model

The performance evaluation of the model uses the Receiver

Operating Characteristic (ROC) curve and calculates the Area

under the ROC (AUC) as descriptors in Figure 4. A higher AUC

value indicates a stronger generalization capability of the model, as

seen by the ROC curve approaching the top left corner of the graph.

The LightGBM performs well, with AUC values all above 70%

(Train AUC 0.870, Test AUC 0.766). Based on the information

from the confusion matrix showing prediction results, we calculated

accuracy, precision, recall, and F1 score in Supplementary Table 2.
Web-based calculator

Although LightGBM has shown excellent predictive ability in

lean NAFLD patients, it is intricate and complex, which is not

conducive to clinical dissemination. Therefore, this study developed

an online web calculator for predicting lean NAFLD patients. The

calculator can be easily extended clinically and requires only the input

of patient clinicopathological information to derive the probability of
TABLE 2 Univariate time-dependent Cox regression analysis of new-onset lean NAFLD.

Variables b SE Waldc2 HR (95%CI) P value

male 0.411 0.225 3.344 1.510 (0.970-2.342) 0.067

Age, years 0.031 0.007 18.604 1.031 (1.017-1.046) <0.001

WC, cm 0.068 0.018 15.048 1.071 (1.034-1.108) <0.001

SBP, mmHg 0.024 0.007 13.179 1.024 (1.011-1.037) <0.001

BMI, kg/m2 0.350 0.085 16.734 1.419 (1.200-1.677) <0.001

ALT, U/L 0.011 0.006 4.205 1.011 (1.001-1.023) 0.040

GGT, U/L 0.016 0.005 9.377 1.016 (1.006-1.027) 0.002

ALP, U/L 0.012 0.006 4.201 1.012 (1.001-1.024) 0.040

SUA, mmol/L 0.004 0.001 6.398 1.004 (1.001-1.007) 0.011

TC, mmol/L 0.281 0.130 4.683 1.325 (1.027-1.709) 0.030

LDL-C, mmol/L 0.353 0.147 5.720 1.423 (1.066-1.899) 0.017

FIB-4 0.171 0.150 1.300 1.186 (0.884-1.591) 0.254

FNI 2.609 3.021 0.746 13.579 (0.036-58.923) 0.388

TyG 1.078 0.256 17.727 2.938 (1.779-4.853) <0.001
WC, waist circumference; SBP, systolic blood pressure; BMI, body mass index; ALT, alamine aminotransferase; GGT, g-glutamyltransfer; ALP, alkaline phosphatase; SUA, Serum uric acid; TC,
total cholesterol; LDL, low-density lipoprotein; FIB-4, Fibrosis-4; FNI, Fibrotic NASH Index; TyG, triglyceride glucose; NAFLD, non-alcoholic fatty liver disease; HR, hazard ratio; CI,
confidence interval.
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lean NAFLDwhile stratifying patients into high and low risk. (https://

liuhaoshuang.shinyapps.io/lightgbm_shiny/) (Figure 5).
Discussion

This study assessed longitudinal TyG index trajectories from

2017 to 2019 in a Chinese cohort using LCGM analysis. TyG index

change trajectories were classified into three trajectories. In

addition, higher TyG index change trajectories were positively

associated with lean NAFLD risk. Age, WC, SBP, BMI, and ALT

were correlated and independent risk factors for lean NAFLD in

Cox multivariate studies. In routine clinical practice, the TyG index

may be a valuable measure for evaluating lean NAFLD. Prior studies

have established a link between TyG index and NAFLD incidence

(27, 28). However, the LCGM analysis used in this study differs

from previous cross-sectional and longitudinal analyses. To our

knowledge, this is the first study to explore the association between

TyG index trajectories and the incidence of lean NAFLD. LCGM is

able to distinguish between different latent TyG indicator groups,

highlighting individual differences in development. This approach

differs significantly from traditional TyG index studies. In

traditional studies, TyG trends in subjects are assumed to follow

the same pattern, ignoring individual development. Therefore,

traditional studies may not adequately reflect the association of

the TyG index with incident lean NAFLD. Given these limitations,

this study used machine learning techniques based on clinical

indicators to develop a predictive model to identify high-risk

patients. This model could help clinicians develop personalized
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treatment plans for lean NAFLD patients, including asymptomatic

NAFLD patients. Thus, the individual TyG analysis provides a

novel perspective for understanding TyG’s effect on lean NAFLD.

An important metabolic organ, the liver, controls the

metabolism of lipids and glucose. The etiology and evolution of

lean NAFLD are influenced by the interaction of IR and glucose/

lipid dysmetabolism, which are also important variables in lean

NAFLD (29). Under physiological conditions, insulin regulates

glucose metabolism by processing glucose in insulin-sensitive

tissues, while IR involves reduced tissue sensitivity to insulin and

impaired regulation of glucose metabolism, resulting in impaired

function of multiple organs, including the liver. IR causes excessive

intrahepatic triglycerides by stimulating hepatic de novo lipogenesis

(DNL) and hepatic gluconeogenesis, etc. Activated hepatic

gluconeogenesis also increases glucose levels (30).

The TyG index, which is produced from fasting triglyceride and

glucose levels, has been widely used as a key marker of IR,

particularly peripheral and hepatic IR. Several epidemiological

studies have reported a significant association of higher TyG

scores with the risk of type 2 diabetes mellitus (T2DM) (31, 32),

prediabetes (33), hypertension (34), cardiovascular disease (CVD)

(35), coronary artery calcification (36), and polycystic ovary

syndrome (PCOS) (37), which can be explained by IR.

Mechanically, IR may explain the link between the TyG index

and lean NAFLD. The liver functions as an endocrine organ by

secreting hepatokines, metabolites, and noncoding RNA, which

influence various aspects of metabolism, including glucose and

lipid metabolism and insulin action. Lean NAFLD may impair its

function, resulting in IR.

Our results were in line with Xue’s findings, which

demonstrated that the TyG index is a valid diagnostic for

detecting NAFLD in those who are neither overweight nor obese

(38). In a retrospective observational study of 24,825 healthy

Japanese people, Naoya et al. found similar results. They found a

significant positive link between TyG-BMI and NAFLD in non-

obese subjects (39). In addition, a Chinese study with a 5-year
FIGURE 3

RCS plots of the association between TyG index and lean NAFLD.
TABLE 3 Association between TyG index trajectories and lean NAFLD
risk during follow-up.

Models
Total

HR(95%CI) P value

Model 1

low 1.000

moderate 2.424(1.015-5.789) 0.046

high 4.524(1.921-10.655) 0.001

Model 2

low 1.000

moderate 1.767(0.730-4.275) 0.207

high 2.668(1.098-6.484) 0.003

Model 2

low 1.000

moderate 1.699(0.700-4.119) 0.241

high 2.550(1.046-6.212) 0.039
Model 1: unadjusted model.
Model 2: adjusted for age, WC, BMI, SBP.
Model 3: adjusted for age, WC, BMI, SBP, ALT.
All data are expressed as HR with 95%CI.
NAFLD, non-alcoholic fatty liver disease; HR, hazard ratio; CI, confidence interval; WC, waist
circumference; BMI, body mass index; SBP, systolic blood pressure; ALT, alamine aminotransferase.
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follow-up that included 841 individuals who had ultrasound

revealed favorable relationships between TyG-BMI and NAFLD

in the non-obese (40).

Consistent with the conventional view, this study found that

BMI was associated with an increased risk of NAFLD in patients.

Abdominal obesity is a significant risk factor for NAFLD (41).

Waist circumference (WC) and trunk fat have been shown to

significantly predict the risk of NAFLD (42). Although BMI is

one of the risk factors for NAFLD, it has been argued that BMI is
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limited compared to other anthropometric measures (e.g., body fat

distribution) in identifying lean NAFLD individuals (43).

The presence of liver fibrosis in NAFLD patients is considered

the strongest predictor of long-term outcomes (44). The NAFLD

Fibrosis Score (NFS), Fibrotic NASH Index (FNI) and Fibrosis-4

(FIB-4) have been recommended as appropriate methods for the

initial assessment of fibrosis in NAFLD patients (17). Both methods

use a combination of variables, including age, BMI, and biochemical

measures (i.e., aspartate aminotransferase (AST), alanine

aminotransferase (ALT), platelets, etc.). Graupera et al. concluded

that NFS and FIB-4 are not optimal for screening because they do

not correlate well with liver stiffness (45). In their study, WC was

found to be the ideal measure for screening for fibrosis in high-risk

individuals in the general population. However, other studies have

found that FNI and FIB-4 have the potential to detect advanced

fibrosis and fibrosis progression in people with NAFLD (46, 47).

NFS and FIB-4 appear to be more useful in the diagnosis of fibrosis

in NAFLD but not for screening for fibrosis in the general

population. Further studies could explore a combination of these

methods, including anthropometric, body composition, and

biochemical variables altogether.

Recently, a Delphi multisociety conference proposed a new

nomenclature for metabolic dysfunction-associated steatotic liver

disease (MASLD) (48, 49). However, the shift from NAFLD to an

inclusion-based definition of MASLD has yet to be extensively

studied. An analysis by the LITMUS consortium showed 98%

overlap between patients with conventional NAFLD and those

with the newly suggested MASLD (50). However, further research

is needed to adapt this new nomenclature to a specific group with

lean NAFLD or SLD without any metabolic risk factors. As for
FIGURE 5

Machine learning model-based web predictor for predicting Iean NAFLD patients.
FIGURE 4

The ROC curve of LightGBM LightGBM, light gradient boosting.
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prevalence, a recent meta-analysis involving 17 studies found that

MAFLD has a higher prevalence than NAFLD (33.0% vs. 29.1%),

and future studies should compare MASLD prevalence with

NAFLD (51).

There are several limitations to this study. First, ultrasonography

is used to identify lean NAFLD, but it cannot assess the degree of

steatosis. Ultrasound, on the other hand, is commonly used for

population-based research with acceptable accuracy. But due to the

low sensitivity of ultrasound in diagnosing mild fatty liver disease,

there may be a proportion of individuals in the early stages of lean

NAFLD during the 2017-2019 period. And the mild lean NAFLD

may have an impact on TyG’s changing trajectories from 2017 to

2019. Therefore, we cannot rule out the possibility of reverse causality

between lean NAFLD and TyG index changes. Further research,

including on individuals diagnosed with liver biopsies, is needed to

answer this question. Second, the data came from routine health

checks. The findings of this cohort may not be generalizable to the

general public. Finally, our study did not consider some potential

effects of unmeasured confounders on primary outcomes, including

dietary changes or comorbidities. Therefore, our results should be

interpreted with caution.

Even with these problems, our findings have therapeutic

implications for the prevention of lean NAFLD, specifically in

terms of alerting patients to TyG index levels and their shifting

trajectories, and give valuable insights into the occurrence of lean

NAFLD and its association with TyG index trajectories. Moreover,

LCGM does not presuppose the existence of specific morphological

trajectories, while it allows for distinct latent developmental

trajectories that can be learned from data (52). As a result, the

focus of this LCGM investigation may be to alter TyG index

trajectories to isolate different, mutually exclusive groups.

This research reveals that changes in the TyG index over time

are associated with an increased risk of new-onset lean NAFLD.

Overall, the TyG index may be a practical and straightforward way

to predict lean NAFLD, and individuals with high TyG indices

should be screened for lean NAFLD and undergo extra screening

and preventative measures.
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