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José O. Aleman3 and Jonathan D. Newman2

1Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United
States, 2Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU)
Langone Health, New York, NY, United States, 3Division of Endocrinology, Grossman School of
Medicine, New York University (NYU) Langone Health, New York, NY, United States
The prevalence of diabetes is estimated to reach almost 630million casesworldwide

by the year 2045; of current and projected cases, over 90% are type 2 diabetes. Air

pollution exposure has been implicated in the onset and progression of diabetes.

Increased exposure to fine particulate matter air pollution (PM2.5) is associated with

increases in blood glucose and glycated hemoglobin (HbA1c) across the glycemic

spectrum, including normoglycemia, prediabetes, and all forms of diabetes. Air

pollution exposure is a driver of cardiovascular disease onset and exacerbation

and can increase cardiovascular risk among those with diabetes. In this review, we

summarize the literature describing the relationships between air pollution exposure,

diabetes and cardiovascular disease, highlighting how airborne pollutants can disrupt

glucose homeostasis. We discuss how air pollution and diabetes, via shared

mechanisms leading to endothelial dysfunction, drive increased cardiovascular

disease risk. We identify portable air cleaners as potentially useful tools to prevent

adverse cardiovascular outcomes due to air pollution exposure across the diabetes

spectrum, while emphasizing the need for further study in this particular population.

Given the enormity of the health and financial impacts of air pollution exposure on

patients with diabetes, a greater understanding of the interventions to reduce

cardiovascular risk in this population is needed.
KEYWORDS

air pollution, cardiovascular risk, environmental exposure, inflammation, oxidative
stress, particulate matter, prevention
1 Introduction

Since antiquity, physicians have suspected that air quality could alter human health.

Indeed, the Hippocratic Corpus details the importance of clean air, and the philosopher

Seneca noted the deleterious health effects of Rome’s contaminated air (1). Research in the

past few decades has implicated air pollution in the development of non-communicable
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diseases, with a strong body of observational and experimental

studies establishing a link between air pollution and cardiovascular

disease (CVD), encompassing coronary heart disease, heart failure,

stroke, peripheral artery disease, and hypertension (2). For example,

airborne co-pollutants have been observed to increase hospital

admissions for CVD (3, 4). More recently, evidence has

implicated air pollution in the onset and progression of type 2

diabetes mellitus (hereafter referred to as diabetes), a widely

recognized and significant cardiovascular risk factor (5, 6).

Converging lines of evidence in a growing body of literature

support the notion that air pollution, especially fine particulate

matter (PM2.5), can markedly exacerbate CVD risk in patients with

diabetes and prediabetes, referred to as the “diabetes spectrum” in

this review.

Globally, exposure to air pollution is the fourth leading risk factor

for early death and the fourth leading modifiable risk factor for

cardiovascular disease (CVD) (7, 8). In the US, exposure to fine

particulate matter (PM2.5) has been estimated to result in 8.2 million

healthy life-years lost annually from diabetes (9). The magnitude of this

ongoing and ubiquitous risk factor for diabetes and CVD would be

difficult to overstate. Yet, the problem remains absent from most

discussions of risk in health education (10–12). As such, in this review

we aim to summarize this existing evidence supporting the relationship

between air pollution, diabetes and CVD (Figure 1), including the

biological mechanisms underlying this phenomenon. Furthermore, this

review will discuss potential interventions to reduce air pollution

exposure among patients with diabetes and barriers to effective

implementation of such interventions. Lastly, this review will identify

gaps in the current research landscape and suggest future directions.
2 Scope of the problem

2.1 Diabetes and CVD

Globally, an estimated 536 million adults have diabetes, either

diagnosed or undiagnosed, a number that will increase to 783
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million by 2045, driven by expanding populations in middle-

income countries (13). In the United States, approximately 37.3

million people have diagnosed or undiagnosed diabetes, with this

number expected to increase to over 54.9 million by 2030 (14, 15).

Similarly, impaired glucose tolerance has a global prevalence of 464

million that is projected to increase to 638 million by 2045 (16).

Whereas in the United States, 96 million adults have prediabetes,

estimated to increase to 107 million in 2030 (14, 15). The projected

increase in diabetes and prediabetes is partially driven by an aging

population in conjunction with climbing obesity rates; increased

body mass index (BMI) is strongly related to increased diabetes risk

(17). The annual total cost of diagnosed diabetes in the United

States is estimated at $327 billion, taking into account healthcare

utilization and lost productivity (18). These data make evident the

pressing need to identify ways to minimize the incidence and

progression of diabetes spectrum disorders, including attention to

emerging modifiable risk factors such as environmental exposures.

Like diabetes, CVD is on the rise worldwide, with ischemic

heart disease now the second leading cause of morbidity and

mortality globally (19). In the United States, nearly 128 million

adults live with at least one manifestation of CVD, and 928,741

deaths were attributed to CVD in 2020 alone (20). This heavy

burden of CVD in the United States comes at a substantial price,

necessitating $407 billion in direct and indirect costs in 2018 (20).

By 2060, an estimated 234 million Americans will have CVD, with

racial and ethnic minorities bearing the majority of this increased

burden (21). As these statistics demonstrate, CVD is and will

remain a tremendous problem that will require a multimodal

approach to prevention and treatment.

These two chronic conditions separately affect massive

populations worldwide with substantial economic and quality of

life impact. However, we know there is significant interplay between

diabetes and CVD. A long history of prospective cohort studies

dating back to the first Framingham Heart Study has established

diabetes as a major risk factor for CVD (22). In 2010, the Emerging

Risk Factors Collaboration published a meta-analysis of 102

prospective cohort studies, concluding that diabetes confers an
FIGURE 1

Relationships between air pollution, diabetes and CVD. Multiple physiologic pathways are affected by exposures and drive numerous subclinical and
clinical outcomes. Created with BioRender.com.
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approximate 2-fold risk increase for coronary heart disease (95% CI

[1.83, 2.19]), with similar risk increases for ischemic (2.27 [1.95,

2.65]) and hemorrhagic stroke (1.84 [1.59, 2.13]) (23).

Subsequently, a competing risks analysis using data from 12

Spanish prospective cohorts followed for a median of 10 years

found that diabetes increased cumulative risk of cardiovascular

death by 1.5-2.5% in both men and women (24). In addition,

diabetes appears to not only confer its own risk, but also to

accelerate the age-related increase in CVD. A retrospective cohort

study found that adults with diabetes develop a high risk of CVD on

average 14.6 years sooner versus their counterparts without

diabetes (25).

In contrast with older thinking that diabetes increases disease

risk only beyond a certain threshold of HbA1c, it appears that CVD

risk increases across the continuum of glucose intolerance. An

international prospective cohort study of nearly 19,000 adults

without diabetes at baseline found that the risk of incident CV

events increased by 1.16 [1.11, 1.22] per 1 mmol/L increase in

fasting plasma glucose (26). These findings suggest that glucose

intolerance should be considered along a continuum, similar to

blood pressure (27). There is also evidence linking insulin resistance

to CVD. For example, in a prospective cohort study of elderly men

in Sweden, insulin resistance was associated with an increased risk

of developing congestive heart failure over 7-12 years of follow-up

(HR 1.44, 95% CI 1.08-1.93 per 1-SD increase in oral glucose

tolerance test glucose level) (28). After 20 years of follow-up in the

same cohort, insulin resistance at age 50 was associated with left

ventricular dysfunction at age 70 (29). Further supporting a link

between diabetes and heart failure, a Swedish cohort study of over

270,000 adults demonstrated that, even with other risk factors in

target ranges, patients with diabetes still had an excess risk for

hospitalization due to heart failure (HR 1.45 [1.34, 1.57]) (30).

Given the significant CVD risk that increases across the diabetes

spectrum, developing personal and public strategies to mitigate

glucose intolerance at every stage is paramount to preventing excess

morbidity and mortality worldwide.
3 Air pollution as a risk factor

3.1 Background on air pollution

The World Health Organization (WHO) has defined air

pollution as “contamination of the indoor or outdoor

environment by any chemical, physical, or biological agent that

modifies the natural characteristics of the atmosphere” (31). Air

pollution is a heterogeneous mixture of particles and gases, much of

which is anthropogenic in origin. Nitrogen oxides (NOx), including

nitrogen dioxide (NO2), and carbon monoxide (CO) are generated

by fossil fuel combustion, with traffic as a major source. Sulfur

dioxide (SO2) is generated by fossil fuel combustion for heating

homes and generating power (32). Ozone (O3) forms in reactions

between light and various compounds, including CO and NOx.

Particulate matter (PM) air pollution is composed of sulfates,

nitrogen oxides, ammonia, sodium chloride, black carbon,

mineral dust, organic compounds, and products of incomplete
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combustion of petroleum. PM is generated from many sources,

including traffic, industrial, construction, fires, and trash burning,

and is typically described in terms of particle size. Coarse PM

(PM10) is defined as PM with a diameter between 2.5 and 10 mm
and fine PM (PM2.5) with a diameter less than 2.5 mm; ultrafine PM

is PM smaller than 0.1 mm (PM0.1). Most studies examine the effects

of PM2.5, since this is the most widely available data. Thus, the most

conclusive effects are seen for this particular pollutant.
3.2 Epidemiologic studies on air pollution
and diabetes

As early as 1967, researchers probed Public Health Service data

to investigate the relationship between air quality and diabetes

death rate in urban populations across the US (33). Since then, the

body of research on air pollution and diabetes has expanded,

especially in the past two decades. This research is summarized in

Table 1. A 2002 ecological study demonstrated a significant positive

correlation between industrial air emissions and diabetes prevalence

by state in the US (r = 0.54, p = 5.7x 10-5) (34). Another ecological

study in 2010 conducted a county-level analysis across the US,

showing a 1% increase in county diabetes prevalence per 10 mg/m3

per average county increase in PM2.5 (b = 0.81 [0.48, 1.07], p <

0.001) (35). Many observational studies over the following decade

supported the early ecological findings. A cross-sectional analysis of

a Swiss cohort study showed a positive association between 10-year

average PM10 and NO2 exposure and diabetes prevalence, even at

levels below the World Health Organization air quality guidelines

(OR: 1.40 [1.17 – 1.67], 1.19 [1.03 – 1.38] per 10 mg/m3 increase in

pollutant, respectively) (45). A cross-sectional study of 69,000

adults in China without a prior history of diabetes demonstrated

that for each standard deviation increase in 3-year average

concentration of PM2.5 there were increased odds of diagnosed

diabetes (OR: 1.04 [1.01, 1.07]) by fasting blood (46). Another

cross-sectional study of 11,847 adults in China found that annual

average PM2.5 exposure was associated with diabetes prevalence

(PR: 1.14 [1.08, 1.20] for a 41.1 mg/m3 increase in PM2.5), with a

greater effect seen in subjects who were male, smoking, elderly, or

had high BMI or less education (38).

The findings from these cross-sectional studies have been

recapitulated in prospective data with mixed results. Particulate

matter-associated diabetes incidence was investigated in a

prospective cohort study of over 61,000 elderly Hong Kong

residents without diabetes at baseline followed from 1998 to 2010.

The analysis showed an increased risk of incident diabetes (HR: 1.15

[1.05, 1.25]) per 3.2 mg/m3 increase in average annual PM2.5

exposure (39). A Canadian cohort study followed 62,000 adults

without diabetes in Ontario for up to 15 years, during which time a

10 mg/m3 increase in average PM2.5 exposure was associated with an

increased risk of incident diabetes (HR 1.11 [1.02, 1.21]) (47). A

Danish prospective cohort study from 1993 until 2013 found that

annual average PM2.5 was significantly associated with increased

diabetes incidence (HR: 1.11 [1.02, 1.22]), especially in patients with

obesity (40). Additionally, a 16-year-long cohort study of women in

Germany without diabetes at baseline demonstrated a 15% [4%,
frontiersin.org

https://doi.org/10.3389/fendo.2024.1321323
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bonanni et al. 10.3389/fendo.2024.1321323
27%] increase in the risk of incident diabetes per 1 interquartile

range increase in traffic-related PM (a composite of particles

derived from traffic) and NO2 exposure, but no significant risk

increase due to PM10 exposure (41). In contrast, an analysis of

participants in the Nurses’ Health Study and the Health

Professionals Follow-Up Study found no significant association

between 1-year average PM2.5 or PM10 and incident diabetes,

although the direction of effect was weakly positive (1.03 [0.96,
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1.10] and 1.04 [0.99, 1.09] for PM2.5 and PM10, respectively) (42).

Differences across these studies may be due to varying exposure

assessments or particle compositions, or due to differences in cohort

characteristics (e.g., diet, BMI). Thus, despite conflicting results, the

majority of studies support an association between particulate

matter air pollution exposure and diabetes incidence.

Similar to particulate matter, there are differing reports on

associations between NO2 exposure and diabetes. NO2 exposure
TABLE 1 Studies of links between air pollution and DM incidence and prevalence.

First
Author
(Year) Design Location

Population/Health
Data Source Pollutants Relevant Outcomes

Lockwood
(2002)
(34)

Ecological;
state-level

United
States

Behavioral Risk Factor Surveillance
System, 184,450 respondents

State industrial air
pollutant releases

DM prevalence; linear regression
r = 0.54, p < 0.0001

Pearson
et al.
(2010)
(35)

Ecological;
county-
level

United
States

CDC DM statistics, nationwide Annual PM2.5
1% increase in DM prevalence for 10 mg/m3 increase in
PM2.5, b = 0.81, p < 0.001

Eze et al.
(2014)
(36)

Cross-
sectional

Switzerland SAPALDIA cohort, 6,392 adults 10-year PM10, NO2
DM prevalence per 10 mg/m3 increase in: PM10 OR
1.40, NO2 1.19

Li et al.
(2023)
(37)

Cross-
sectional

Southwest
China

CMEC cohort, 69,210 adults
3-year PM2.5, BC,
NH4

+, NO3
-,

OM, soil

DM prevalence at follow-up per SD increase in: PM2.5

OR 1.08, BC 1.07, NO3
- 1.08, OM 1.09, soil 1.09;

Nonsignificant positive association for NH4
+

Liu et al.
(2016)
(38)

Cross-
sectional

China CHARLS cohort, 11,847 adults Annual PM2.5 DM prevalence per IQR increase in PM2.5 PR 1.14

Qiu et al.
(2018)
(39)

Prospective
cohort

Hong Kong EHS cohort, 61,447 older adults
Annual PM2.5 for
10 years

DM prevalence per IQR increase in PM2.5 OR 1.06
DM incidence per IQR increase in PM2.5 HR 1.15

Chen et al.
(2013)
(14)

Prospective
cohort

Ontario
National Population Health Survey and
Canadian Community Health Survey,
62,012 adults, no baseline DM

6-year PM2.5 DM incidence per 10 mg/m3 increase in PM2.5 HR 1.11

Hansen
et al.
(2016)
(40)

Prospective
cohort

Denmark
Danish Nurse Cohort, 24,174 female
nurses, no baseline DM

Annual PM2.5,
PM10, NO2, NOx

for 15 years

DM incidence per IQR increase in: PM2.5 HR 1.11.
Nonsignificant positive associations for NO2, NOx

Krämer
et al.
(2010)
(41)

Prospective
cohort

Germany
SALIA cohort, 1,775 adult women, no
baseline DM

Annual PM10,
NO2, Traffic-
related PM for
16 years

DM incidence per IQR increase in: traffic-related PM
HR 1.15, NO2 HR 1.34. Nonsignificant positive
association for PM10

Puett et al.
(2011)
(42)

Prospective
cohort

United
States

NHS and HPFS cohorts, 89,460 adults,
no baseline DM

Annual PM10,
PM2.5, PM10-2.5

DM incidence per IQR increase in pollutant.
Nonsignificant positive associations for all pollutants.

Eze et al.
(2014)
(36)

Prospective
cohort

Switzerland
SAPALDIA cohort, 2,631 adults, no
baseline DM

Annual NO2 at
beginning and end
of 9-years

DM incidence per IQR increase in NO2, nonsignificant
negative association

Coogan
et al.
(2016)
(43)

Prospective
cohort

United
States

BWHS cohort, 43,003 black women, no
baseline DM

Annual NO2 for
10 years

DM incidence per IQR increase in NO2, nonsignificant
negative association

Andersen
et al.
(2012)
(44)

Prospective
cohort

Denmark
Danish DCR cohort, 51,818 middle-aged
adults, no baseline DM

35-year NO2
DM incidence per IQR increase in NO2, nonsignificant
positive association
Outcomes column reports results for fully adjusted models when applicable. Means reported for significant results.
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was studied in a prospective study of 2,631 Swiss adults without

baseline diabetes followed from 2002 to 2011; results showed no

significant association between average annual NO2 exposure and

diabetes incidence (RR: 0.87 [0.60, 1.22]). However, few incident

diabetes cases in the cohort may have diminished the ability to

detect an effect (36). A similar negative finding for NO2 was found

in a prospective cohort of African American women residing in US

cities (HR: 0.90 [0.82 – 1.00] for a 9.7 ppb increase in NO2 in the

fully adjusted model); this negative result was purported to be due

to confounding by socioeconomic status (SES) given the inverse

correlation between neighborhood SES and NO2 in this cohort (43).

Among women in the Nurses’ Health Study, there was, however, a

significant association between increased proximity to a roadway

and developing diabetes (HR: 1.14 [1.03, 1.27] for living < 50 m

vs. ≥00 m from a roadway). Because motor vehicles are a major

generator of NO2, and proximity to roadways has been used as a

surrogate marker for exposure, the authors suggest this result may

support a link between NO2 and diabetes in females (42). Similar to

the Nurses’ Health Study results, a Danish prospective cohort study

using a national public register found a nonsignificant but positive

association between NO2 exposure and confirmed diabetes (HR:

1.04 [1.00, 1.08] per 4.9 mg/m3 increase in average NO2), with the

strongest associations in women and subjects with elevated waist-

to-hip ratio (44). A cross-sectional study of respiratory clinic

patients in two Canadian cities found a positive association

between NO2 exposure and diabetes diagnosis but only for

women (OR: 1.04 [1.00, 1.08]) (48). A comparable cross-sectional

study in the Netherlands showed a non-significant association

between increasing levels of NO2 exposure and diabetes diagnosis,

with the direction of effect stronger in women (OR: 1.48 [1.07,

2.04]) (49). Given that air pollution is a complex mixture of

particles and gases, it is challenging to interpret studies of the

health effects of individual component pollutants. Regardless,

evidence continues to mount in support of the association

between increasing air pollution exposure and increases in

incident and prevalent diabetes.

3.2.1 Short-term effects of air pollution on
diabetes and glucose homeostasis

In addition to the literature supporting associations between air

pollution exposure and incidence of diabetes, there is growing

literature showing worsening of glucose metabolism with air

pollution exposure for patients that already have a diabetes

diagnosis. Furthermore, short-term exposures to air pollution,

over days to weeks, seem to cause dysregulated glucose

homeostasis, even among those without diabetes. The following

studies examining short-term air pollution exposures and diabetes

are summarized in Table 2.

A cross-sectional study of 2,840 patients with diabetes

hospitalized from 2013-2016 in Chongqing, China, investigated

the impact of short-term, 15-day average air pollution exposure on

length of stay and cost of admission. The study authors found a

positive correlation between a 10 mg/m3 increase in sulfur dioxide

(SO2) and carbon monoxide (CO) exposure and prolonged length

of stay, increased by 0.487 days [0.318, 0.656] and 0.013 days [0.003,

0.022], respectively, with a concordant increase in the cost of
Frontiers in Endocrinology 05
hospitalization (50). In Israel, a retrospective study between 2001-

2012 of over 1 million fasting blood glucose tests from

approximately 130,000 patients found a significant positive

association between fasting blood glucose and 24-72 hour

averages for NO2 and SO2 in all patients regardless of diabetes

status. A 6.36 ppb increase in NO2 was associated with a 0.40%

[0.31%, 0.50%] increase in fasting glucose in patients without

diabetes, 0.56% [0.40%, 0.71%] in those with prediabetes, and

1.08% [0.86%, 1.29%] in those with diabetes.; for a 1.17 ppb

increase in SO2 fasting glucose increased by 0.29% [0.22%,

0.36%], 0.20% [0.10%, 0.31%], 0.33% [0.14%, 0.52%], in these

same groups (51). A similar retrospective study in the same

Israeli population found that 12-week average PM10 and PM2.5

exposure was associated with increased fasting blood glucose in all

patients (0.30% [0.153%, 0.452%]; 0.02% [-0.12%, 0.18%],

respectively) and this increase was more pronounced in those

with diabetes (0.57% increase [0.29%, 0.85%], 0.41% increase

[0.12%, 0.69%]). Also, HbA1c increases were found in patients

with diabetes (3.58% [1.03%, 6.20%]; 2.93% [0.35%, 5.59%] for

PM10 and PM2.5 respectively). The 1-7 day average PM10 and PM2.5

exposure windows had no or negligible association with fasting

blood glucose and HbA1c (55).

Prospective data have corroborated the retrospective data

suggesting short-term effects of air pollution on blood glucose. A

German prospective cohort study between 2000-2008 of 7,108

adults without diabetes at baseline evaluated short-term

associations between air pollution exposure and fasting blood

glucose levels and HbA1c. Increases in 28-day average

accumulation mode particle number (PNAM, PM between 0.1-

1mm in aerodynamic diameter) and PM2.5 concentrations were

both positively associated with increasing blood glucose (0.64 mg/

dL [0.07, 1.21] per 2,142.3 n/mL increase and 0.91 mg/dL [0.38,

1.44] per 5.7 mg/m3 increase, respectively) (52). In the US

Framingham Heart Study, increased 7-day moving average BC

and NOx exposures were positively associated with higher fasting

glucose among adults without diabetes. In contrast, an increased

short-term O3 exposure was inversely associated with blood glucose

(exact numbers not provided by the study authors) (56). A

prospective cohort study of approximately 28,000 adults in China

followed from 2006-2008 found that a 100 mg/m3 increase in the 4-

day average of NO2, SO2, or PM10 exposure was associated with

elevated fasting blood glucose (0.53 mmol/L [0.42, 0.65], 0.17

mmol/L [0.15, 0.19], 0.11 mmol/L [0.07, 0.15], respectively), with

increased elevations among female, elderly, or overweight subjects

(53). A recent study of 2 large Indian cities (Chennai and Delhi)

found that a 10 mg/m3 difference in 1-month average exposure to

PM2.5 was associated with a 0.40 mg/dL increase in fasting plasma

glucose (95% CI 0.22 to 0.58) and 0.021 unit increase in HbA1c

(95% CI 0.009 to 0.032) (57).

Some studies have been conducted on short-term air pollution

exposure and glucose metabolism using the homeostasis model

assessment of insulin resistance (HOMA-IR). In one study, 25

adults without diabetes who resided in rural Michigan were

exposed to urban ambient air for 4-5 hours per day for 5 days.

HOMA-IR was measured before, during, and after the air

pollution intervention. A positive correlation was found between
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each 10 mg/m3 increase in measured PM2.5 exposure and study

subjects’ HOMA-IR (+0.7 [0.1, 1.3]). A 3.5 mg/m3 increase in

PM2.5 was associated with worsening HOMA-IR (+0.25 [0.04,

0.46], indicating potential adverse effects even at low

concentrations of PM2.5 (54). A cross-sectional analysis of

Mexican American women with a personal or family history of

gestational diabetes but without diabetes at the time of the study

revealed that up to 40 days of daily PM2.5 exposure and up to 37

days of daily NO2 exposure were associated with increased

HOMA-IR (b = 6.99, p = 0.002 for PM2.5; b= 6.63, p = 0.009 for

NO2). However, no significant associations were found for O3

exposure (58). Last, a clinical trial testing 48 hours of portable air

cleaner (PAC) intervention in healthy college students in China

showed an approximately 10% increase in HOMA-IR per 10 mg/
m3 increase in PM2.5 (exact numbers not provided) (59).

In summary, the collective evidence supports short-term

associations between air pollution exposure and fasting glucose

and dysregulated glucose metabolism evidenced by HOMA-IR, but

not HbA1c.
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3.2.2 Long-term effects of air pollution on
diabetes and glucose metabolism

Long-term exposures to air pollution also have been shown to

affect glucose homeostasis. Studies examining this phenomenon

have been summarized in Table 3. Cross-sectional analyses of a

Chinese cohort found 1-year average PM2.5 to be positively

associated with both elevated fasting glucose (0.26 mmol/L

increase [0.19, 0.32]) and HbA1c (0.08% increase [0.06%, 0.10%])

for a large, 41.1 mg/m3 increase in PM2.5 (38). Furthermore, a

secondary analysis of a Taiwanese cohort found 1-year average

PM2.5, PM10, O3, and NO2 to be positively associated with fasting

glucose and HbA1c; a 20.42 mg/m3 increase in PM2.5 was associated

with 34.6 mg/dL [16.5, 52.7] increase in fasting glucose and 2.1%

[1.5, 2.7] increase in HbA1c (60). The air pollution exposures

experienced by this cohort were substantially above the WHO

guidelines. A subsequent cross-sectional study of 2,895 adults in

the Dunkirk and Lille areas of France, regions with relatively low

concentrations of air pollution, found that HbA1c was 0.044%

higher [0.021%, 0.067%] with a 2 mg/m3 increase in annual mean
TABLE 2 Studies of short-term effects of air pollution on glucose homeostasis.

First
Author
(Year) Design Location

Population/
Health

Data Source Pollutants Relevant Outcomes

Li et al.
(2018)
(50)

Cross-
sectional

China
Xinqiao Hospital, 2,840
hospitalized
DM patients

15-day SO2,
CO, NO2

LOS per 10 mg/m3 rise in: SO2 0.487 days increase, CO 0.013 days increase,
NO2 0.359 days decrease

Yitshak-
Sade et al.
(2015)
(51)

Retrospective
cohort

Israel
Clalit Health Services,
131,882 adult members

24–72-hour
SO2, NO2

FBG increase: per IQR increase in: NO2 in healthy adults 0.40%,
prediabetes 0.56%, diabetes 1.08%; SO2 in healthy adults 0.29%, prediabetes
0.20%, diabetes 0.33%

Yitshak-
Sade et al.
(2015)
(51)

Retrospective
cohort

Israel
Clalit Health Services,
73,117 adult members

1-7-day and
12-week
PM10, PM2.5

Overall FBG increase per IQR increase in: 12-week PM10 0.30%.
Nonsignificant positive association for 12-week PM2.5 and negligible
associations for 1-7-day PM10 or PM2.5. In people with diabetes, HbA1c
increase per IQR increase in: 12-week PM10 3.58%, PM2.5 2.93%

Lucht
et al.
(2018)
(52)

Prospective
cohort

Germany
HNR study cohort,
7,108 adults, no
baseline DM

28-day
PNAM, PM2.5

FBG increase per IQR increase in: PNAM 0.64 mg/dL, PM2.5 0.91 mg/dL

Li et al.
(2018)
(50)

Prospective
cohort

United
States

Framingham cohorts,
5,958 adults, no
baseline DM

1-3-7-day BC,
NOx, PM2.5,
O3, SO4

2-

FBG increase: 7-day BC approx. 0.5%, 7-day NOx approx. 0.5%. Other
results nonsignificant or neglibible

Chen et al.
(2016)
(53)

Prospective
cohort

China
Kailuan cohort,
27,685 adults

4-day NO2,
SO2, PM10

FBG increase per 100 mg/m3 increase in: NO2 0.53 mmol/L, SO2 0.17
mmol/L, PM10 0.11 mmol/L

Brook
et al.
(2013)
(54)

Experimental
United
States

25 adults, no DM

5 days PM2.5

from ambient
urban air, 4-5-
hr/d

HOMA-IR increase per 10 mg/m3 increase in PM2.5 0.7

Chen et al.
(2016)
(53)

Cross-
sectional

United
States

BetaGene cohort, 1,023
adult Mexican
Americans, personal or
family history of GDM

37-40-days
PM2.5, NO2

HOMA-IR increase for PM2.5 b = 6.99 p = 0.002, NO2 b = 6.63, p = 0.009

Li et al.
(2018)
(50)

Randomized,
double-blind,
crossover
trial

China
55 college students,
no DM

9-day PM2.5

during trial
HOMA-IR increase per 10 mg/m3 increase in PM2.5 approx. 10%
Outcomes column reports results for fully adjusted models when applicable. Means reported for significant results.
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PM10 and 0.031% higher [0.010%, 0.053%] with a 5 mg/m3 increase

in annual mean NO2. However, neither NO2 nor PM10 were

significantly associated with diabetes prevalence, likely due to a

low number of patients with diabetes in the study sample.

Moreover, neither pollutant had an association with fasting blood

glucose (61).

Large prospective cohort studies repeatedly demonstrate the

long-term effects of air pollution exposure on diabetes outcomes. A

German prospective cohort study without baseline diabetes

demonstrated that 91-day average exposure to PNAM and PM2.5

was associated with increased random blood glucose and, more

strongly, with increased HbA1c. There was a 0.67 mg/dL [0.10,

1.24] and 0.81 mg/dL [0.05, 1.58] increase in random blood

glucose (adjusted for time since last meal) per interquartile range

(IQR) increase in PNAM (1,352.7 n/mL) and PM2.5 (4.0 mg/m3),
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respectively. In this German study, HbA1c increased by 0.09% [0.07,

0.11] and 0.07% [0.04, 0.10] per IQR increase of each pollutant,

respectively) (52). A census data analysis of 2.1 million randomly

selected Canadian adults, followed from 1991 to 2001, found that a 10

mg/m3 increase in average PM2.5 exposure over a 5-year period was

associated with a hazard ratio of 1.49 [1.37, 1.62] for diabetes-related

mortality. This association was consistent across subgroups of age,

sex, education, income, community, and at low concentrations of

PM2.5 (<5 mg/m3). The risk of diabetes-related mortality was most

pronounced in participants with lower SES as well as aboriginal

ancestry (62). Similar effects on HbA1c have been observed in U.S.

cohort studies. For example, in a probability sample of U.S. adults

with diabetes over 57 years of age (n= 4121) followed from 2005 to

2011, a 3.7 mg/m3 increase in 2-year moving average PM2.5 was

associated with an increase in HbA1c of 1.8% ± .6% (p<0.01). In
TABLE 3 Studies of long-term effects of air pollution on glucose homeostasis.

First
Author
(Year) Design Location

Population/
Health

Data Source Pollutants Relevant Outcomes

Liu et al.
(2016)
(38)

Cross-
sectional

China
CHARLS cohort,
11,847 adults

Annual PM2.5
FBG increase per 41.1 mg/m3 increase in PM2.5 0.26 mmol/L. HbA1c
increase per 41.1 mg/m3 increase in PM2.5 0.08%

Chuang
et al.
(2011)
(60)

Cross-
sectional

Taiwan
SEBAS sample, 1,023
older adults

Annual PM10,
PM2.5, O3,
NO2, SO2

FBG increase per IQR increase in: PM10 22.88 mg/dL, PM2.5 36.55 mg/dL,
O3 21.10 mg/dL, NO2 17.03 mg/dL, SO2 positive but nonsignificant. HbA1c
increase per IQR increase in: PM10 1.40%, PM2.5 2.24%, NO2, O3, and SO2

positive but nonsignificant

Riant et al.
(2018)
(61)

Cross-
sectional

France
ELISABET survey,
2,895 adults

Annual
PM10, NO2

HbA1c increase per 2 mg/m3 increase in PM10 0.044%, per 5 mg/m3

increase in NO2 0.031%. Nonsignificant associations for FBG

Lucht
et al.
(2018)
(52)

Prospective
cohort

Germany
HNR study cohort, 7,108
adults, no baseline DM

91-day PNAM,
PM2.5,
PM10, NO2

FBG increase per IQR increase in: PNAM 0.67 mg/dL, PM2.5 0.81 mg/dL.
HbA1c increase per IQR increase in: PNAM 0.09%, PM2.5 0.07%, PM10

0.04%. No association for NO2

Brook
et al.
(2013)
(62)

Prospective
cohort

Canada
Canadian census
mortality follow-up
study, 2.1 million adults

5-year PM2.5 Diabetes related mortality per 10 mg/m3 increase in PM2.5 HR 1.49

Hwang
et al.
(2022)
(63)

Cross-
sectional

South Korea
Seoul National University
Health Examination
Center, 4,251 adults

Annual
PM10

exposure
HOMA-IR increase per 11 mg/m3 increase in PM10 14%

Honda
et al.
(2017)
(64)

Prospective
cohort

United
States

NSHAP cohort, 4,121
older adults

2-year
PM2.5 NO2

In people with diabetes, HbA1c increase per IQR increase in: PM2.5 1.8%,
NO2 2.0%

Khafaie
et al.
(2018)
(65)

Cross-
sectional

India
WellGen study cohort,
1,213 young adults
with DM

1-year PM10 HOMA-IR increase per 43.83 mg/m3 increase in PM2.5 4.89%

Chen et al.
(2016)
(53)

Cross-
sectional

United
States

BetaGene cohort, 1,023
adult Mexican
Americans, personal or
family history of GDM

Annual PM2.5,
NO2, O3

HOMA-IR increase for PM2.5 b = 5.81 p = 0.016, no association for NO2

or O3

Wolf et al.
(2016)
(66)

Cross-
sectional

Germany
KORA study,
2,944 adults

2-year
PM2.5, NO2

HOMA-IR increase per IQR increase in: PM2.5 15.6%, NO2 19.2%. Insulin
increase per IQR increase in: PM2.5 14.5%, NO2 17.2%
Outcomes column reports results for fully adjusted models when applicable. Means reported for significant results.
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subjects without diabetes, a significant positive association with

HbA1c was found for NO2 exposure (0.8% ± .2%, p<0.01) (64).

The prospective cohort study from Chennai and Delhi showed that a

1-year increase in PM2.5 exposure of 10 mg/m3 was associated with

increased HR for incident diabetes (1.22 [1.09, 1.36]), with similar

significant estimates for 1.5-year and 2-year exposures as well (57).

In addition to the long-term associations with HbA1c, long-

term exposures have been associated with measures of insulin

resistance. A cross-sectional study of long-term air pollution

exposure in Korea found that the relationship between HOMA-IR

and PM10 observed in studies of short-term air pollution exposures

retained significance even with rigorous adjustment for visceral

adiposity, with a dose-dependent increase in HOMA-IR by 14%

[8%, 21%] for men and 14% [7%, 21%] for women, per 11 mg/m3

increase in PM10 (63). Other cross-sectional studies have found

similar associations with HOMA-IR. A cross-sectional study

investigating the effect of PM10 exposure in young-onset (before

age 46) patients with diabetes at a clinic in India found that a 43.83

mg/m3 increase in 1-year average PM10 exposure was associated

with increased HOMA-IR of 4.89% [0.59%, 9.37%], with a

significantly greater effect in female and patients with obesity

(65). In the cross-sectional analysis of Mexican American women

discussed previously, annual PM2.5 exposure was associated with

increased HOMA-IR (beta coefficient 5.81, p = 0.016), without

significant associations for annual NO2 or O3 exposures (58). A

German prospective cohort study of nearly 3,000 adults with and

without diabetes/prediabetes found that a 7.9 mg/m3 increase in 2-

year average PM2.5 exposure was associated with increased HOMA-

IR (15.6% [4.0%, 28.6%]) and insulin (14.5% [3.6%, 26.5%]). In

contrast, an 11.9 mg/m3 increase in 2-year average NO2 exposure

was associated with increases in HOMA-IR by 19.2% [7.7%, 31.6%],

insulin by 17.2% [6.6%, 29.0%], glucose by 1.7% [0.1%, 3.3%], and

leptin by 15.3% [6.8%, 24.5%]. However, there was no association

between either pollutant and HbA1c (66).

While effect sizes have varied across cohorts and pollutants, the

directionality of the relationships between long-term air pollution

exposures and HbA1c remains generally consistent. If short-term air

pollution exposure induces hyperglycemia, then we would expect

increases in medium- and long-term exposure to have the effect of

raising HbA1c. As expected, most studies to date support that months-

long exposures are more strongly associated with HbA1c, indicating a

potential cumulative effect of shorter-term air pollution exposure.
3.3 Diabetes may confer increased
vulnerability to the cardiovascular effects
of air pollution

Patients with diabetes appear to be more vulnerable to the

vasculotoxic effects of air pollution exposure. Studies examining

this potential predisposition have been summarized in Table 4. A

cross-sectional analysis using Illinois Medicare data from 1988-1994

found that a 10 mg/m3 increase in ambient PM10 exposure in the 24

hours prior to admission was associated with a 2.01% [1.40%, 2.62%]

increase in hospital admission for CVD in patients with diabetes, a

two-fold higher increase in CVD hospitalizations than that observed
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for adults without diabetes (67). A case-crossover study examining

emergency department visits in Atlanta reported increased odds of

visits for dysrhythmia with increasing NO2 exposure for people with

diabetes (OR 1.158 [1.046, 1.282]) compared to people without

diabetes (1.014 [0.988, 1.040]; p<0.05 for regression coefficient

difference between diabetes vs. no diabetes) (72). However, this

study did not find significant associations for other pollutants such

as PM10 and O3, perhaps due to estimating air pollution exposures

using central monitors rather than patient residential addresses.

In addition to clinical outcomes, exposure to air pollutants has

also been associated with subclinical effects. In 2005, a cross-sectional

study of 270 adults in Boston found that, among subjects with

diabetes, PM2.5 exposure was associated with a 7.6% decrease in

nitroglycerin-mediated vascular reactivity [-12.8%, -2.1%], while

black carbon exposure was associated with a 10.7% decrease in

flow-mediated reactivity [-17.3, -3.5]. However, there was no such

association among subjects without diabetes (68). That same year, a

cross-sectional study of participants in the Veterans Administration

Normative Aging Study observed that the association between PM2.5

exposure and reduced heart rate variability (HRV) was more

pronounced in participants with diabetes. Indeed, the percent

change in the standard deviation of normal-to-normal intervals (a

measure of HRV) due to PM2.5 exposure, although not significant,

was nearly 4-fold higher in participants with diabetes (-16.6% [-36.3,

9.2] compared to -4.7% [-11.4%, 2.6%]) (69). A double-blind,

crossover exposure study of 17 never-smoker adults with diabetes

found that 2 hours of controlled exposure to PM0.1 reduced heart rate

variability (p = 0.014) and also increased average heart rate by

approximately 8 beats per minute over a day after the exposure

(74). These data point to the synergistic interaction between diabetes

and air pollution in driving CVD.

Not all studies support an interaction between diabetes and air

pollution. A case-crossover study examining emergency department

visits for acute coronary syndrome in Utah found little difference in

the PM2.5 risk estimate for people with diabetes compared to those

without (71). A similar case-crossover study of death records from 20

cities in the United States found no significant effect modification of

the PM10-CVD death association by diabetes status, although the

point estimate for the association between PM10 and all-cause

mortality was higher for people with diabetes compared to those

without (70). Moreover, in an analysis of 22 years of follow up in the

American Cancer Society Cancer Prevention Study II cohort, people

with diabetes had a higher risk of CVDmortality at both high (HR 2.4

[2.3, 2.5]) and low PM2.5 exposure (2.2 [2.1, 2.3]) compared to people

without diabetes. However, when comparing high to low PM2.5

exposure, the CVD mortality risk increase was similar in both

groups, and formal tests of interaction between diabetes status and

PM2.5 exposure were nonsignificant (73).
3.4 Environmental inequities contribute to
unequal diabetes and cardiovascular
disease risk

Consistently, research in the United States has shown that racial/

ethnic minority communities, and individuals with low education and
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income, have greater diabetes prevalence (75) and mortality (76).

Racial/ethnic minorities also develop diabetes at lower BMIs

compared to white people, and the strength of the association

between BMI and diabetes is weaker in racial/ethnic minorities,

highlighting the complexity of factors that may contribute to this

disproportionate burden (77). Recent work in the US and limited

research in Asia and Africa has shown that low-SES communities are

subject to higher air pollution exposures (78). In the United States,

black and Hispanic minority groups are disproportionately exposed to

the air pollution generated by the white majority (79). This

disproportionate exposure translates into a greater burden of death

due to air pollution. A retrospective cohort study of US Veterans

Administration patients found that excess death due to PM2.5 exposure

was disproportionately borne by black patients (55.2 deaths per

100,000 [50.5, 60.6]) compared to nonblack patients (51.0 [46.4,

56.1]), as well as by patients living in low SES counties (65.3 [56.2,

75.4]) compared to those living in high SES counties (46.1 [42.3, 50.4]).

Notably, 99% of these excess deaths were due to PM2.5 concentrations

below the US Environmental Protection Agency (EPA) recommended

limit of 12mg/m3 (80). These findings are put into historical context

when considering that historically redlined neighborhoods face greater

PM2.5 and NO2 exposures compared to other communities in the same

cities. Even within redlined neighborhoods, racial and ethnic disparities

in air pollution exposure persist (81). Thus, multiple traditional and

non-traditional risk factors are disproportionately concentrated in

minority communities and may act in concert to further widen

health disparities.
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3.5 Inconsistencies in the data

As noted previously in this review, some studies have not

detected an association between air pollution and incident or

prevalent diabetes. Moreover, associations between long-term air

pollution exposure and HbA1c were, though not entirely consistent,

generally positive. Results for gaseous pollutants appear to be more

heterogeneous than particulates; however, since there are

correlations between these pollutants, it can be challenging to

parse out outcomes for individual components in epidemiological

studies. Some associations appear to be only in, or stronger in,

subgroups; additionally, some effects appear to be attenuated by

other factors such as medications (45). Regional, cultural, gender,

socioeconomic or other differences in work or lifestyle can influence

how people spend time in different geographical areas, thereby

changing both pollution sources and exposures. Given the temporal

and spatial heterogeneity of air pollution concentration and

composition, accurate and precise exposures are extremely

difficult to assess making some degree of variation in these results

unsurprising. Lastly, although experimental studies suggested that

having diabetes can exacerbate the cardiovascular derangements

induced by air pollution exposure, and epidemiologic observations

often reported greater associations between air pollution and death

for people with diabetes, the evidence of an effect modification on

air pollution-CVD death by diabetes status or an air pollution-

diabetes interaction on CVD death remains lacking. The lack of

detectable effect modification could be due to inaccurate reporting
TABLE 4 Studies examining the increased CVD risk for people with diabetes exposed to air pollution.

First
Author
(Year) Design Location

Population/Health
Data Source Pollutants Relevant Outcomes

Zanobetti
& Schwartz
(2000) (67)

Cross-
sectional

IL, USA
Medicare claims data, years
1988-1994

24-hr PM10

2.01% greater hospital admissions for CVD in people with
diabetes per 10 mg/m3 increase in PM10 vs. 0.94% greater
CVD admissions for people without diabetes.

O’Neill
et al.
(2005) (68)

Cross-
sectional

MA, USA Boston-area residents, 270 adults
24-hr
PM2.5, BC

7.6% decrease in nitroglycerin-mediated vascular reactivity
and 10.7% decrease in flow-mediated reactivity in people
with diabetes. Null findings for people without diabetes.

Park et al.
(2005) (69)

Cross-
sectional

MA, USA
VA Normative Aging study,
603 adults

4-24-48-hr
PM2.5, PN, BC,
O3, NO2,
SO2, CO

Nonsignificant but marked trend toward reduced HRV in
people with diabetes compared to people without diabetes.

Zeka et al.
(2006) (70)

Case-
crossover

United
States

National Center for Health Statistics,
1,896,306 deaths

PM10 0-3d
before death

No significant effect modification of PM10-CVD death
association by diabetes status.

Pope et al.
(2006) (71)

Case-
crossover

UT, USA
Intermountain Health Collaborative
Study, 12,865 adults

PM10, PM2.5
Similar PM2.5 risk estimates for people with vs.
without diabetes.

Peel et al.
(2007) (72)

Case-
crossover

GA, USA
Emergency department data,
4,407,535 visits

24-hr PM10, 8-
hr O3, 1-hr
NO2, SO2, CO

For increasing NO2 exposure, 15.6% greater odds of visit
for dysrhythmia in people with diabetes compared to 1.4%
greater odds in people without diabetes.

Pope et al.
(2014) (73)

Prospective
cohort

United
States

American Cancer Society Cancer
Prevention Study II, 669,049 adults
with varying diabetes status
at baseline

Monthly PM2.5

People with both diabetes and >75th percentile for exposure
to PM2.5 at highest risk of CVD death. No evidence of
interaction between diabetes status and PM2.5 exposure.

Vora et al.
(2014) (74)

Double-blind,
randomized,
crossover trial

NY, USA 19 adults with diabetes
PM0.1 vs.
filtered air

8 beats/min greater heart rate in PM0.1 condition.
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on surveys and death records. Alternatively, the majority of the

effect of air pollution on CVD death may be attributable to air

pollution promoting a cardiometabolic disease state. Thus, some of

this effect could be lost when stratifying by diabetes status (73).
3.6 A word on the exposome

Although this review is concerned with the health effects of air

pollution exposure, it is important to note that such exposure does

not occur in a vacuum. Instead, air pollution exposure often co-

occurs with a variety of other environmental exposures, such as

noise pollution, nighttime light, and temperature, especially in

urban areas (82). Originally conceived as a complement to the

genome (83), the term “exposome” aims to capture the host of

biological responses to the myriad environmental exposures

experienced throughout the life course. In recent years, there has

been a growing call to consider each environmental exposure in

context of the entire exposome. Much of the prior observational

analysis has focused on single exposures in isolation. To completely

understand the health implications of environmental exposures,

including air pollution, experts have argued in favor of advanced

analytic methods that consider diverse, simultaneous exposures,

their interactions, and their measurable biological effects (84). Such

analytic methods will need to venture beyond standard univariate

and multivariate regression models to tease out the likely non-linear

effects of a multitude of co-occurring exposures (85). Taking a page

from studies of genetic associations, a novel method known as

environment-wide association study might identify the effects of

mixtures of exposures (86). Future observational studies examining

the air pollution, diabetes, and CVD link should take into account

the exposome concept to more accurately reflect the reality of how

people experience these exposures.
3.7 The global variability of air pollution
and its health implications

It is worth noting that although air pollution is experienced by

nearly all people globally, the burden of air pollution varies by

region. Over the past two decades, average airborne PM2.5

concentrations have declined in North America, Europe, and East

Asia, whereas the opposite has occurred in the Middle East, Africa,

and South Asia (87, 88). Despite this increase in ambient PM

concentration in the Middle East and North Africa, morbidity and

mortality rates due to air pollution have decreased in these regions,

which might be due to a declining rate of indoor fuel burning (89).

Nevertheless, ambient air pollution remains an urgent public health

concern, with approximately 22% of deaths due to ischemic heart

disease and 21% of deaths due to diabetes attributed to air pollution

in the Middle East and North Africa (89).

Among global regions, substantial differences have been noted

in the magnitude of the association between higher PM exposure

and increased mortality (90). Such differences are likely due to a

variety of factors. Countries vary in the relative contributions of

traffic, industry, and biomass burning to the generation of PM (91).
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These pollution sources differ in the exact chemical composition

PM (92), which might explain the global differences in mortality

risk due to PM exposure. Moreover, indoor burning of biomass fuel,

such as wood, crops, and manure, for heating and cooking can

drastically worsen indoor air quality (93). The greater indoor

burning of such fuels in lower- and middle-income countries

(LMIC) could alter the observed association between outdoor air

pollution and mortality while also placing people in these countries

at higher risk (90). As discussed previously in this review, LMIC

face a greater projected increase in prediabetes and diabetes

compared to high-income countries. Many of these countries also

face trends of worsening air quality. Evidently, the combined

epidemics of air pollution exposure and diabetes represent an

urgent threat to global public health.
3.8 Conclusions from epidemiological data

Overall, the studies to date indicate that PM2.5, PM10, PNAM,

black carbon, SO2, and CO may have deleterious effects on glucose

homeostasis in the short- and long-term. Consistently, PM2.5 had

the most consistently demonstrated effect on glucose across

multiple populations. The inconsistent results for NO2 may be

due to low diabetes event rate in the study subjects and/or low

overall levels of NO2 leading to small effect size. Acute air pollution

exposure is more strongly associated with increased fasting blood

glucose, whereas chronic exposure has a stronger association with

worsened HbA1c. Susceptible subgroups demonstrate stronger

effects of air pollution on glucose metabolism as well as diabetes

prevalence and incidence among those with overweight and obesity.

Consequently, air pollution appears to have stronger effects on

adverse CV outcomes among those with dysregulated

glucose homeostasis.

While there is a growing body of work in this field, most

epidemiological studies to date have been conducted in populations

residing in the US, Canada, western Europe, and East Asia. Most of

these regions have experienced improvements in air pollution levels

in recent decades, while LMIC have experienced an increase in

morbidity and mortality due to air pollution (94). With diabetes

prevalence on the rise worldwide, more studies are needed to

investigate the effects of worsening pollution on the metabolic

health of people living in LMIC. Results from wealthier countries

cannot be extrapolated to LMIC, given the known differences in air

pollution exposures and population characteristics between

these regions.
4 Shared mechanisms

While human epidemiological studies can identify associations,

mechanistic evidence is important to define the affected biological

pathways. Such data can assist in identifying susceptibility factors,

specific pollutants to target with regulation, or molecular targets for

pharmaceutical interventions. To date, mechanistic studies in this

field include known exposure studies in cell lines and in animal

models, exposure chamber studies, and natural experiments with
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humans. In this section, we will review these types of studies and

summarize the identified mechanisms that underlie the associations

between air pollution, dysregulated glucose metabolism, and

increased CVD risk.
4.1 Mechanisms in animal studies

There are multiple convening pathways by which air pollution,

diabetes, and cardiovascular disease interact (Figure 2). Much of the

data to date suggests two primary culprits are inflammation and

oxidative stress, themselves intertwined, which often form self-

perpetuating feedback loops.

4.1.1 Inflammation in animal models
4.1.1.1 Hypothalamic inflammation, diabetes, and
air pollution

Inflammation plays a dominant role in the development and

progression of diabetes (95, 96). Hypothalamic inflammation is

proposed to be a major driver of disorders of glucose homeostasis

due to its role in regulating energy intake and expenditure via

insulin and leptin (97). Animal models show that recurrent

hypothalamic inflammation, via diet-induced increases in TNFa
expression (98–100), leads to a dysregulated body weight set-point,

driving increased energy intake and decreased energy expenditure.

These behaviors serve to increase adiposity that further increases

inflammation (101). These appear to be independent, yet

synergistic, effects on inflammation. In fact, a study in a mouse

model of diabetes and prediabetes suggested that differences in

hypothalamic inflammation could be to blame for the observed

variation in the onset and progression of prediabetes to diabetes

within the group of mice (102).
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The hypothalamus appears to be susceptible to the

inflammatory effects of particulate matter pollution. A mouse

model was exposed to PM2.5 or clean air, and inhibitor of nuclear

factor kappa-B kinase subunit beta (IKK2), an NF-kB inhibitor that

interferes with inflammatory signal transduction. Pollution-

exposed mice treated with cerebral IKK2 demonstrated an

attenuation of the insulin resistance shown in pollution-exposed

mice not treated with IKK2; they also had evidence of inhibition of

hepatic gluconeogenesis enzymes. Overall, this suggests that PM

likely increases the production of these enzymes in part via

inflammatory signaling through NF-kB (103). In a separate study,

mice were fed a normal chow diet and exposed to PM2.5 or filtered

air. After five days of PM2.5 exposure, there was chemical and

histologic evidence of a heightened inflammatory response within

the hypothalamus, with accompanying food-seeking, exercise-

avoidant behavior changes, and adipose gain. After exposure to

PM2.5 for twelve weeks, the mice developed increased toll-like

receptor 4 (TLR4) and Ikbke (related to NF-kB) expression, leptin

and insulin resistance, and a worsening of their energy homeostasis

and development of frank obesity. In this study, knockdown of

TLR4 and Ikbke completely attenuated the effects of PM2.5 exposure

on leptin and insulin (104). Together, these suggest that

hypothalamic inflammation could lie along a potential causal

pathway between air pollution exposure and dysregulated

glucose homeostasis.

4.1.1.2 Inflammation, vascular disease, and air pollution

In addition to the hypothalamic inflammation, air pollution has

been shown to exacerbate inflammation systemically. In airway

epithelial cells and macrophages, O3 exposure has been shown to

induce the production of inflammatory cytokines, interleukin-6 (IL-

6), and interleukin-8 (IL-8) (105). Animal experiments show that
FIGURE 2

Multiple overlapping mechanisms by which air pollution, diabetes, and cardiovascular disease interact. (AGEs, advanced glycosylation end products;
CRP, C-reactive Protein; CVD, cardiovascular disease; IL-6, Interleukin-6; NFkB, Nuclear factor kappa-light-chain-enhancer of activated B cells; NO,
nitric oxide; RhoA, Ras homolog family member A; ROS, reactive oxygen species; TNFa, tumor necrosis factor alpha). Created with BioRender.com.
frontiersin.org

https://biorender.com/
https://doi.org/10.3389/fendo.2024.1321323
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bonanni et al. 10.3389/fendo.2024.1321323
excess glucose and triglycerides cause inflamed adipose tissue to

secrete adipokines, driving insulin resistance and pancreatic b cell

exhaustion, thereby exacerbating nutrient excess and leading to

further inflammation (106). In a C57BL/6 mouse model, male mice

fed a high-fat diet were randomly assigned to PM2.5 exposure or

clean, filtered air. Compared to the control, clean air group, the

mice in the exposed group developed elevated insulin resistance,

increased visceral fat, and increased adipose inflammation (107).

Furthermore, the exposed mice exhibited decreased vascular

relaxation in response to insulin and acetylcholine, indicating

insulin resistance (107). In mice, co-exposure to SO2, NO2, and

PM2.5 increased circulating levels of the inflammatory molecules

TNF-a, IL-6, and cyclooxygenase-2, while also dose-dependently

increasing endothelin-1 and decreasing endothelial nitric oxide

synthase, which reflect impaired endothelial function (108). This

finding is consistent with prior animal research that implicates

inflammatory cytokines in the impairment of vascular tone

(109, 110).

Air pollution exposure may also potentiate atherosclerosis

progression. PM2.5 exposure in mouse models accelerates

atherosclerosis and increases inflammation compared to filtered

air, with stronger effects in mice on a high-fat diet (111, 112).

Notably, inflammasome activation plays a central role in this

process (113). These results demonstrate the indirect effects of air

pollution on vascular function. Interestingly, inhaled nanoparticles

in rats accumulate in areas of vascular inflammation, including

atherosclerotic plaques, suggesting the direct effects of PM exposure

on vascular tissue may also be relevant. Together, these studies

support that particulate matter pollution can accumulate in, and

worsen the inflammation of, adipose and vascular tissue, potentially

worsening already impaired vascular and endothelial function

(114). Overall, animal experiments to date suggest that air

pollution exposure may independently promote the development

and worsening of both diabetes and atherosclerosis with a central

role for inflammation in each of these processes.

4.1.2 Oxidative stress
Separate from inflammation, air pollution exposure induces

oxidative stress, which refers to the state of imbalance in reactive

oxygen species (ROS) and antioxidant mechanisms such that ROS

may induce damage to cellular structures or other biomolecules of

importance (115). PM2.5 and PM0.1 were shown to accumulate in

mitochondria, causing damage to the mitochondria and possibly

potentiating the effect of ROS (37). Transition metals, present in

PM2.5 and PM0.1, generate ROS at the particle surface, causing

oxidative stress and mitochondrial damage (37). Furthermore,

polycyclic aromatic hydrocarbons, quinones, and peroxyacetyl

nitrate found in the organic carbon fraction of PM are potent

inducers of oxidative stress (116, 117). Even O3, when dissolved in

plasma, or serum, or saline, generates H2O2 (118).

Multiple studies in vivo and in vitro have shown that oxidative

stress drives many of the vascular complications of diabetes (119).

In particular, hyperglycemia appears to promote mitochondrial

generation of superoxide (120), while interfering with this

production attenuates the damaging effects of hyperglycemia on
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the endothelium (121). ROS also produce nitrotyrosine, which has

been shown to accumulate in necrotic and apoptotic cardiac

myocytes from patients with diabetes and from a rat model of

diabetes (122). Generation of superoxide by NADPH oxidase also

appears to play a significant role in the micro- and macro-vascular

complications of diabetes (123).

Oxidative stress is extensively implicated in the development of

CVD (124) and has been shown in animal models to play a key role

in mediating the cardiovascular effects of air pollution exposure

(125). After 10 weeks of exposure to 14.1 mg/m3 PM2.5 and PM0.1,

rats had increased superoxide concentrations in their aortas with

signs of oxidative stress due to both impaired endothelial nitric

oxide synthase and impaired hepatic synthetic function. In these

rats, ROS generation from both PM2.5 and PM0.1 activated RhoA, a

known mediator of vasoconstriction and acute hypertension. RhoA

activation correlated with an increased mean arterial pressure of the

rats exposed to the PM versus control (126). Compared to clean air

controls, rats exposed to concentrated PM for 5 hours had twice the

amount of oxidative stress in cardiac tissue (127).

4.1.3 Conclusions on mechanisms from
animal studies

Numerous studies show increases in both inflammation and

oxidative stress. The specific vascular impact of air pollution-related

oxidative stress in animal models of diabetes has not been

extensively studied. However, evaluating the evidence discussed in

this section, it is reasonable to hypothesize that air pollution can

exacerbate vascular complications of diabetes via increased

oxidative stress. Air pollution-induced inflammation and diabetes

may then synergistically exacerbate cardiac and vascular

dysfunction, providing plausible causal explanations for the links

between air pollution, diabetes, and cardiovascular disease in

epidemiological studies.
4.2 Mechanisms in human studies

Human studies are limited in the ability to test exposures and

outcomes ethically. Some experimental exposure studies in healthy

volunteers have investigated the molecular mechanisms

underpinning the adverse health effects associated with air

pollution exposure. There have also been some epidemiological

studies with molecular testing that is suggestive of mechanisms.

While limited, these studies can confirm animal studies and validate

these pathways in humans.

4.2.1 Inflammation in humans
4.2.1.1 Inflammation and diabetes

Inflammation appears to play a role in the pathogenesis of

diabetes. Studies investigating this relationship have been outlined

in Table 5. Multiple nested case-control studies have investigated

the role of inflammatory cytokines in the development of diabetes.

In the Women’s Health Study, there was an increased risk of

developing diabetes for those in the highest vs. lowest quartile of

baseline IL-6 (RR: 2.3 [0.9, 5.6]) and CRP (RR: 4.2 [1.5 – 12.0])
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(128). Similarly, in the EPIC-Potsdam study, IL-6 and CRP were not

only significantly correlated with HbA1c (0.099, p = 0.019, and 0.1,

p = 0.017, respectively), but also with odds of developing diabetes

(OR: 2.57 [1.24 – 5.47] and 1.9 [1.2 – 3.2], respectively) in models

adjusting for traditional diabetes risk factors and HbA1c (129). A

nested case-control analysis within a prospective study of 3,842

Swiss adults without baseline diabetes followed for 5.5 years on

average showed that diabetes risk increased with highest vs. lowest

quartile of baseline IL-6 (OR 1.58 [1.02 – 2.45]) and CRP (OR 4.63

[2.85 – 7.53]) (130). Finally, the Cardiovascular Health Study in the

United States showed that having baseline CRP in the highest

quartile was associated with increased odds of developing diabetes

(OR 2.03 [1.44 - 2.86]) versus the lowest quartile (131). Related to

metabolism and inflammation, the Framingham Heart Study

showed a positive correlation between exposure to PM2.5 and

SO4
2- with adipokines adiponectin and resistin, respectively.1

The hypothalamic inflammation linked with obesity and

diabetes in mouse models recapitulates in humans with multiple

magnetic resonance imaging (MRI) studies (100, 132–135).

However, while growing evidence implicates hypothalamic

inflammation in abnormal glucose homeostasis in humans, we

are aware of no human studies investigating this as a direct result

of air pollution exposure. Such investigation, using quantitative

MRI methods similar to the other studies in this section, may

confirm the air pollution and hypothalamic inflammation link

observed in animal studies.

4.2.1.2 Inflammation, atherosclerosis, and air pollution

There is a well-known association between inflammation and

clinical atherosclerosis (136, 137). Multiple recent reviews (138–

142), as well as a meta-analysis (143), discuss the associations

between inflammatory biomarkers and air pollution exposure.
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The most commonly studied inflammatory biomarkers include

CRP, IL-6, and TNF-a, but others demonstrate associations with

pollution exposure. Literature exploring air pollution promoting

CVD via inflammation has been listed in Table 6. Experimental

exposure studies in healthy volunteers have shown increases in

biomarkers of inflammation with controlled exposure to urban air

pollution (147, 148), but not wood smoke (149), indicating the

importance of pollution composition. Gene expression studies show

increased activation of anti-inflammatory pathways that support

inflammation as a mediator for air pollution exposure-related

adverse effects (150). A study of traffic-related air pollution

exposure in adolescents and young adults with type 1 diabetes

showed increases in IL-6 and CRP as well (151).

Several recent studies have investigated the role of inflammation

as a mediator of air pollution-linked CVD risk. Inflammation and

CVD biomarkers were examined in a cross-sectional analysis of 6,103

participants with and without CVD in a Swiss cohort. A 5 mg/m3

increase in annual mean PM2.5 exposure was associated with

increased ceruloplasmin (b = 0.1328 [0.0898, 0.1757]) alpha-1-

antitrypsin (b = 0.105 [0.0564, 0.1537]), Lp-PLA2 (b = 0.085

[0.0303, 0.1397]), neutrophil-leukocyte ratio (0.074 [0.0054, 0.14]),

C3 (b = 0.1618 [0.1302, 0.2071]), haptoglobin (b = 0.0981 [0.0075,

0.1886]), and orosomucoid (b = 0.205 [0.1505, 0.2595]) (144).

Increased exposure to metals frommeasured PM2.5 is associated

with increased inflammatory biomarker sCD36, which in turn has a

significant mediating effect on the association of these metals with

pulse pressure, providing further evidence that inflammation

appears to occur upstream of CVD in the context of PM2.5

exposure. No significant associations were found for total PM2.5,

highlighting that the individual components of PM2.5 likely have

differential effects on inflammation and oxidative stress in humans,

which should prompt further investigation (146).
TABLE 5 Cited literature regarding the link between inflammation and diabetes in humans.

First
Author
(Year) Design Location

Population/
Health

Data Source Biomarkers Relevant Outcomes

Pradhan et al.
(2001) (128)

Prospective,
nested
case-control

United
States

Women’s Health
Study, 188 cases,
362 controls

IL-6, CRP Diabetes incidence RR 7.5 for IL-6, 15.7 for CRP

Spranger et al.
(2003) (129)

Prospective,
nested
case-control

United
States

EPIC-Potsdam, 192
cases, 384 controls

IL-1b, IL-6, TNF-
a, CRP

Diabetes incidence OR 2.57 for IL-6, 1.9 for CRP. No
association for TNF-a, IL-1b

Marques-Vidal
et al.
(2012) (130)

Prospective Switzerland
CoLaus Study, 3,842
adults, no
baseline DM

IL-1b, IL-6, TNF-
a, CRP

Diabetes incidence, unadjusted OR 1.58 for IL-6, 4.63 for CRP.
No significant associations for any biomarker after adjustment.

Barzilay et al.
(2001) (131)

Prospective
United
States

Cardiovascular Health
Study, 4,481
older adults

CRP, WBC, platelets,
fibrinogen, factor
VIIIc, albumin

Diabetes incidence OR 2.03 for CRP, no associations for
other biomarkers

Li et al.
(2018) (50)

Prospective
cohort

United
States

Framingham cohorts,
5,958 adults, no
baseline DM

adiponectin,
resistin, leptin

Positive association between 7-day PM2.5 and adiponectin, 7-
day SO4

2- and resistin; negative association between 7-day
NOx and adiponectin

Krämer et al.
(2010) (41)

Prospective
cohort

Germany
SALIA cohort, 1,775
adult women, no
baseline DM

C3c
C3c significantly associated with PM10 and diabetes incidence,
HR 1.12 per 10 mg/dL increase
Outcomes column reports results for fully adjusted models when applicable. Means reported for significant results.
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Vascular inflammation is seen in subclinical atherosclerosis

using PET/MRI hybrid imaging techniques (152), implying that

inflammation has a role early in the development of the disease.

Inhalable particles likely have direct local effects on arterial disease

and indirect systemic effects. For example, when human volunteers

at risk for stroke were exposed to inhalable gold nanoparticles, these

particles were then detected in their diseased carotid arteries (153).

Advanced imaging techniques have been implemented to

investigate a direct link between PM, inflammation, arterial

damage, and CVD outcomes in humans (145), supporting likely

direct vascular inflammatory effects of air pollution exposure. These

studies suggest air pollutants may act via both systemic and direct

vascular inflammatory actions to promote CVD, corroborating the

epidemiological studies and animal models. Additional research

may more fully elucidate which specific components of pollutants

may act on which pathways to identify potential targets

for intervention.

4.2.2 Oxidative stress in humans
The effect of air pollution on oxidative stress, demonstrated

robustly in animal models, has had inconsistent evidence in

humans, likely because measuring oxidized DNA and lipids in

humans can be a technological challenge (154, 155). However, a

meta-analysis of studies examining oxidized DNA and lipids in

subjects exposed to air pollution that had minimal measurement

error demonstrated a consistent association between PM2.5 and

these measures of oxidative stress (156).

In particular, a study in healthy adults and adults with diabetes

found that inducing labile blood glucose via clamp resulted in

elevations of the markers of oxidative stress plasma 3-nitrotyrosine

and PGF2a, a decrease in NO synthesis, as well as impaired

endothelial function in the presence of vasodilating agents (157).

Furthermore, peroxynitrite, generated by the reaction of superoxide

and endothelial NO, has been detected at elevated concentrations

(158) and shown to induce platelet damage in the blood of patients

with diabetes (159).
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4.2.3 Inflammation and oxidative stress promote
endothelial dysfunction

Endothelial dysfunction mainly refers to the impairment of

endothelium-mediated relaxation of vascular tone. Human studies

have consistently reported an association between traditional

cardiovascular risk factors and endothelial dysfunction (160).

Furthermore, endothelial dysfunction can predict progression and

long-term outcomes of coronary heart disease (161).

Inflammation is known to promote endothelial dysfunction in

humans (110, 162) in a variety of disease states, including obesity

and diabetes (163). This link between inflammation and endothelial

dysfunction appears to be present in the context of air pollution

exposure. In a study of healthy volunteers with experimental

exposure to PM2.5, higher TNF-a just after air pollution exposure

was associated with poorer endothelial function a day later,

suggesting that endothelial dysfunction seen with air pollution

may be mediated by an inflammatory cascade that begins acutely

during and after exposure, even in people that are free of diagnosed

disease (164). Research in animals has demonstrated that the

production of ROS by inflammatory cytokines, as well as the

formation of advanced glycation end products (AGEs), alter the

availability of endothelial NO, leading to endothelial dysfunction

(110). ROS occurs in hypertension, hyperlipidemia, and diabetes,

providing a likely explanation for the link between these traditional

risk factors and endothelial dysfunction (165). The mechanistic

inclusion of AGEs in this pathway is of special interest, as diabetic

hyperglycemia promotes the endogenous production of AGE by

irreversibly glycating tissue proteins and lipids (166).

Recently, endothelial dysfunction of arterioles and

microvessels was demonstrated to predict the development and

progression of diabetes in a German prospective cohort study of

15,000 adults without baseline diabetes or prediabetes (167).

Mechanistically, microvascular endothelial dysfunction may

impair insulin action in skeletal muscle and favor blood flow to

nonnutritive tissues, thereby promoting hyperglycemia (168).

Moreover, experiments in animal models have demonstrated
TABLE 6 Cited studies investigating the impact of air pollution driving CVD via inflammation.

First
Author
(Year) Design Location

Population/Health
Data Source Pollutants Relevant Outcomes

Azzouz
et al.
(2022) (144)

Cross-
sectional

Sweden
Malmö Diet and Cancer,
Cardiovascular
Subcohort, 6,103 adults

Annual PM2.5,
PM10, NOx

PM2.5 and PM10 associated with increased ceruloplasmin, alpha-1-
antitrypsin. PM2.5 associated with Lp-PLA2, NLR, C3, haptoglobin,
orosomucoid. No associations for NOx

Abohashem
et al.
(2021) (145)

Retrospective
cohort

United
States

Massachusetts General
Hospital, 503 adults

Annual 24-
hr PM2.5

PM2.5 associated with bone marrow and splenic activity, arterial
inflammation, and MACE (HR 1.404)

Brook et al.
(2008) (48)

Randomized,
double-
blind,
crossover

Canada 31 healthy adults
2-hr exposure
to PM2.5, O3

PM2.5 and O3 increased WBC, decreased FMD. PM2.5 increased
neutrophils and diastolic BP.

Zhang et al.
(2023) (146)

Panel China
45 healthy
college students

1-, 2-, 3-day
PM2.5 and
metal fractions

Association between metal fractions and sCD36, CRP, and
pulse pressure.
Outcomes column reports results for fully adjusted models when applicable. Means reported for significant results.
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that microvascular disease in pancreatic ß cells may drive the

pathogenesis of diabetes (169, 170).

Lastly, accumulating evidence has demonstrated a link between

air pollution and endothelial dysfunction mediated by

inflammation and oxidative stress (171). Taken together, it

appears that endothelial dysfunction may partly explain the air

pollution-diabetes link while also providing a mechanism for the

accelerated development of CVD in people with diabetes exposed to

air pollution.
4.3 Conclusions from mechanistic data

Systemic inflammation and oxidative stress, converging at

endothelial dysfunction, represent common mechanisms whereby

air pollution induces glucose dysregulation and exacerbates CVD

risk. Due to its role in the onset and progression of both diseases, air

pollution represents a critical target in promoting the health of the

public and individuals. The next section will explore interventions

directed toward mitigating the effects of inflammation and

oxidative stress.
5 An eye toward prevention

Despite inconsistencies in the observational literature, the overall

balance of evidence across all the tiers of evidence quality supports a

deleterious effect of short- and long-term air pollution exposure on

metabolic health. Given that the global population will remain exposed

to air pollution, for which a completely benign dose has yet to be

established, efforts have been made to counter these adverse effects.

This section will detail the research concerning such interventions, with

close attention paid to barriers to effective implementation.
5.1 Interventions to reduce air pollution as
driver of CVD risk in people with diabetes

There is a burgeoning body of literature demonstrating that the

use of portable air cleaners (PAC), which are known to reduce PM2.5

exposure, can reduce serum concentrations of CRP, IL-6, and TNFa.
An overview of this research can be found in a recent systematic

review and meta-analysis written by our group (172). PACs may also

reduce blood pressure (173, 174). Given the importance of

inflammation in CVD progression in diabetes, interventions to

attenuate the upregulation of these pathways are appealing.

However, most of the trials that intervened with PACs were

conducted in healthy volunteers for short periods of time and in

very controlled settings. Functioning similarly to PACs, a series of

trials that used N95 respirators on participants in China demonstrated

benefits on systolic blood pressure, HRV, and IL-1 (175).

The testing of interventions to ameliorate the adverse effects of

air pollution exposure on glucose metabolism has been limited. A

randomized, double-blind crossover trial in 55 healthy college

students residing in Shanghai placed sham or real air purifiers in

participants’ dormitories for 1 week, followed by a 17-day washout
Frontiers in Endocrinology 15
period, then 1 week of the alternate treatment. The investigators

found that serum glucose, glucose-6-phosphate, insulin, and

HOMA-IR were lower during the real air purification period

compared to the sham period (59).

Diet patterns and nutritional supplementation with antioxidants

or vitamins have been examined for their potential to protect against

the adverse cardiometabolic effects of air pollution. Numerous studies

have investigated the anti-inflammatory effects of dark chocolate

(176–181). Supplementation with L-arginine has been shown to

mitigate air pollution-related blood pressure increases among adults

with hypertension (182), while in adults with diabetes, L-arginine was

shown to improve glucose control, blood pressure, and forearm blood

flow (183). Vitamin E has also been studied and shown in vitro to

reduce inflammatory biomarker expression after PM2.5 exposure to

endothelial cells (184) and to reduce oxidative stress in humans with

occupational exposures to air pollutants (185, 186). In a cross-

sectional study of 47,000 adults, those in the highest quartile of

compliance to the Dietary approaches to stop hypertension (DASH)

diet had no significantly increased risk of PM2.5-associated

hypertension. In contrast, the lowest quartile had significantly

increased risk (OR: 1.20 [1.10, 1.30]) (187). While generally low-

risk, none of these studies were adequate to conclusively recommend

specific dietary interventions for protection against the adverse

cardiometabolic effects of air pollution. However, they are

suggestive of potential options that warrant further investigation.
5.2 Other interventions to reduce the
cardiovascular harms of air pollution

Although the literature investigating interventions to reduce the

cardiovascular harms of air pollution exposure in persons with

diabetes may be limited, there are additional interventions that are

low-risk and readily accessible. These other interventions may

provide protection against air pollution exposure or mitigate its

harms, despite a weaker evidence base compared to PACs.

First, observational evidence suggests that central air

conditioning might mitigate the adverse cardiovascular effects of

PM exposure (188–191), even though the filters commonly used in

air conditioning systems are less efficient at removing airborne

particulate matter compared to HEPA filters. Thus, people with

prediabetes or diabetes could be encouraged to use central air

conditioning, if accessible and affordable, instead of electric fans

and especially instead of opening windows for indoor temperature

regulation. The results of a few experimental studies also support

the use of in-vehicle air conditioning to reduce air pollution

exposure while driving (192–194).

Second, the use of cigarettes and other combustible tobacco

products indoors generates smoke that reduces indoor air quality

(195, 196). Residue from cigarette smoke can adhere to indoor

surfaces, creating thirdhand smoke that may continue to harm

health after a smoking session has ended (197). Furthermore,

although the health effects of electronic cigarettes are still under

active investigation, electronic cigarette vapors contain some of the

same pollutants as tobacco smoke (198) and therefore may also

worsen air quality when used indoors. Tobacco product and
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electronic cigarette cessation should be strongly encouraged in all

people, especially those with diabetes. However, if a person with

diabetes is unable to quit, they should be counseled to avoid

smoking indoors.

Other practical advice includes limiting outdoor activities during

periods of poor air quality. The Air Quality Index, an easily

understandable scale that describes outdoor air quality (199), is

available on the internet for many cities around the world,

especially in North America, East Asia, and Europe. People with

diabetes can be advised to regularly check the air quality index (AQI)

for their location and adjust activity accordingly. Keeping windows

closed can also mitigate exposure to poor outdoor air quality, as can

the avoidance of walking beside roads with heavy traffic.
5.3 Policy implications and public health
initiatives for prevention

Given the worldwide contributions of traffic, industry, and

biomass burning to the generation of ambient PM, policies that

address these sources would reduce the ambient air pollution in

urban environments (91). Furthermore, policies aimed at

improving capture of industrial air pollution, developing more

efficient industrial and agricultural systems, promoting

electrification of motor vehicles, decreasing meat consumption,

and reducing carbon emissions have been identified as feasible

ways to improve global air quality within the next few decades if

sufficient political will is generated (200).

Regular use of screening tests such as HbA1c and fasting plasma

glucose alone do not appear sufficient to identify all people at risk

for diabetes and its complications (201), therefore, diabetes

prevention would likely benefit from population-level

interventions. Cross-sectional evidence suggests that policies and

public health initiatives that aim to improve the walkability of urban

spaces and access to green space should be pursued (202). Although

enhancing access to healthy food might theoretically reduce the

population risk for diabetes (203), the evidence supporting such an

initiative is limited due to relatively few studies and heterogenous

measures of the food environment (202, 204).
5.4 Prevention conclusions

Overall, there is a dearth of data on individual-level

interventions to prevent PM-related CVD in people with diabetes.

PACs have the most robust experimental evidence to support their

use to lower blood pressure, reduce inflammation, and potentially

improve glucose control. However, whether PACs can reduce the

macrovascular or microvascular complications of diabetes is

unknown. Efforts are ongoing to regulate pollutant concentrations

on a societal level, but more research is needed to identify

susceptible subgroups and effective interventions for them.

Avoiding traffic exposure, closing windows, and using air

conditioning at home and in vehicles are commonsense actions

unsuited for a clinical trial. Thus, data on these preventive strategies

are limited (205). However, that should not preclude
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recommending these low-risk interventions, particularly for those

at increased risk.
6 Summary of key points
• Air pollution exposure, especially fine particulate matter, is

known to increase the risk of incident CVD and worsened

CVD outcomes. There is no known safe dose of air pollution.

• Air pollution exposure increases the risk of incident

diabetes and prediabetes in diverse populations and

perturbs glucose homeostasis.*

• Prediabetes and diabetes confer an increased susceptibility

to the cardiovascular harms of air pollution exposure.

• Air pollution exposure promotes local and systemic

inflammation, which exacerbates atherosclerosis

progression as well as endothelial dysfunction. In animal

experiments, air pollution contributes to ROS formation

and excess oxidative stress, as well as hypothalamic

inflammation which may promote excess nutrient intake

and resultant diabetes.

• Inflammation and oxidative stress are associated with

dysregulated glucose metabolism in humans and animals.

Hyperglycemia promotes further oxidative stress and

inflammation, which may explain the progression from

prediabetes to diabetes as well as the well-known

increased CVD risk observed in people with diabetes.

• * Mechanistic evidence supports the role of inflammation,

oxidative stress, and hyperglycemia in the development of

endothelial dysfunction. Air pollution and diabetes are both

associated with endothelial dysfunction, which has been

shown to predict CVD outcomes and incident diabetes.

• The study of interventions in people with diabetes to reduce the

CVD risk due to air pollution has been limited. Some evidence

points to the potential usefulness of portable air cleaners.

Suggestive evidence supports further research into the effects

of certain dietary and nutritional supplement interventions.
7 Conclusion

The importance of minimizing the impact of air pollution on a

global scale cannot be overstated. The impact of air pollution on

driving both the development of diabetes and exacerbating CVD risk

in patients with diabetes is a topic that needs more research to reach a

complete understanding of the interactions and mechanisms at play.

Although there is heightened awareness of the adverse health effects

of air pollution, further study on preventive strategies in people across

the spectrum of dysregulated glucose homeostasis is greatly needed.

An improved understanding of the mechanisms by which air

pollution, diabetes, and cardiovascular disease interact would

hasten the development of interventions to minimize the risks of

exposure and slow disease progression. Furthermore, insights from

this would greatly benefit a range of parties, including individuals
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concerned about their risks, healthcare providers wanting to provide

optimal care and recommendations, and governments aiming to

promote public health.
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Glossary

AQI air quality index

BC black carbon

BP blood pressure

C3c complement component 3

CVD cardiovascular disease

DM diabetes mellitus type 2

FBG fasting blood glucose

FMD flow-mediated dilation

GDM gestational diabetes mellitus

HOMA-IR homeostasis model assessment of insulin resistance

HRV heart rate variability

IL-1b interleukin-1 beta

IL-6 interleukin-6

IL-8 interleukin-8

LMIC lower- and middle-income countries

LOS length of stay

Lp-PLA2 lipoprotein-associated phospholipase A2

MACE major adverse cardiovascular events

NFkB Nuclear factor kappa-light-chain-enhancer of activated B cells

NLR neutrophil-lymphocyte ratio

OM organic matter

PAC portable air cleaners

PM particulate matter

PM2.5 fine particulate matter

PM10 coarse particulate matter

PM2.5-10 PM between 2.5 and 10 mm in aerodynamic diameter

PNAM PM between 0.1-1 mm in aerodynamic diameter

ROS reactive oxygen species

sCD36 soluble CD36

SES socioeconomic status

TLR4 toll-like receptor 4

WBC white blood cell count

WHO World Health Organization
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