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Obesity and Type 2 Diabetes (T2D) are two highly prevalent diseases that exhibit a

complex interplay between them. Obesity serves as a primary risk factor for the

development of T2D, and conversely, individuals with T2D often exhibit

comorbid obesity. Renal dysfunction emerges as a critical consequence of the

convergence of obesity and Type 2 Diabetes, contributing significantly to the

overall burden of complications associated with these conditions. Recognizing

the profound implications of renal dysfunction in individuals contending with

both obesity and Type 2 Diabetes, interventions targeting weight loss have

gained prominence as potential therapeutic avenues. Weight loss not only

addresses the primary risk factor of obesity but also holds the promise of

mitigating the progression of Type 2 Diabetes and its associated renal

complications. This comprehensive review aims to explore the impact of

weight loss on renal function in individuals contending with the convergence

of obesity and T2D.
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1 Association between obesity, type 2 diabetes, and
chronic kidney disease

The global prevalence of obesity and T2D has reached alarming levels. As of 2021,

approximately 529 million individuals were living with diabetes globally, with a

standardized prevalence rate of 6.1% (5.8–6.5%) (1). Concurrently, obesity’s prevalence

and severity continue to rise within the T2D and general populations. Startling statistics

from the “National Diabetes Statistics Report (2017)” indicate that an overwhelming 87.5%

of adult diabetic patients are either overweight or obese (2).

Obesity is unequivocally established as a critical risk factor for various diseases,

including diabetes, hypertension, and cardiovascular disorders (3), all of which have

significant adverse effects on kidney health, leading to conditions such as diabetic kidney
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disease (DKD) (4, 5) and end-stage renal disease (ESRD) (6). A

study by Kamel et al. found that the risk of DKD among

individuals with diabetes rises with increasing BMI, ranging

from 0.91 for overweight individuals (BMI > 25 kg/m2) to 2.16

for severely obese individuals (BMI > 40 kg/m2) (7). These effects

are mediated by several factors, including alterations in

glomerular hemodynamics, heightened sympathetic nervous

activity, hypertension, chronic inflammation, endothelial

dysfunction, and so on (8). Intriguingly, even in the absence of

diabetes, obese individuals may experience a heightened frequency

and severity of proteinuria, with obesity independently contributing

to the development of glomerulopathy. Obesity also negatively

impacts key Chronic kidney disease(CKD)-associated risk factors,

encompassing blood lipid levels, blood pressure, blood glucose

control, and the promotion of insulin resistance (9). Notably,

CKD tends to be more prevalent and progresses more rapidly in

obese individuals with T2D compared to those with normal

weight (2).

Given the intricate intertwining of obesity, T2D, and CKD,

weight loss interventions have emerged as prospective strategies to

enhance renal function and overall health in patients grappling with

obesity and T2D (10). Extensive researches underscored the

profound benefits of weight loss on kidney health (11–16).

Rebecca O’Brien et al. discovered that among patients aged 19–79

with T2DM who underwent bariatric surgery, bariatric surgery was

associated with a lower cumulative incidence of diabetic

nephropathy(DN) at 5 years (17). Weight loss interventions,

including lifestyle modifications, pharmaceutical interventions,

and bariatric surgery, have the potential to enhance insulin

sensitivity, regulate glucose levels, and control blood pressure (18,

19). Additionally, weight loss has demonstrated efficacy in reducing

oxidative stress and inflammation, key factors in kidney injury

development (20).

This review aims to provide a comprehensive analysis of the

effects of weight loss interventions on renal function in patients with

obesity and T2D. By examining the existing evidence, we seek to

contribute valuable insights into the potential of weight loss

strategies as renoprotective measures and to advocate for the

adoption of personalized and multidisciplinary approaches in

managing obesity, T2D, and CKD.
2 Obesity and diabetes: primary
mechanisms leading to
renal dysfunction

2.1 Diabetic kidney disease

Hyperglycemia-induced metabolic dysregulation is a widely

recognized primary contributor to the onset and progression of

DKD (21). The pathophysiology of DKD is multifaceted,

encompassing hemodynamic (RAAS activation, endothelial

dysfunction), metabolic (accumulation of advanced glycation end-

products), pro-inflammatory (reactive oxygen species generation,
Frontiers in Endocrinology 02
tumor necrosis factor-a activation), and pro-fibrotic (stimulation of

transforming growth factor-b signaling), but in reality these

elements interact locally and systemically to form a complex and

dynamic interplay resulting in functional and structural changes to

the kidney (22). The Renin-Angiotensin-Aldosterone System

(RAAS) plays a pivotal role in the pathogenesis of DKD, partly

through its promotion of efferent arteriolar constriction and

intraglomerular hypertension, as well as its activation of

inflammatory and fibrotic pathways (23). Furthermore, factors

such as Protein Kinase C-b, oxidative stress mediators, Advanced

Glycation End-products (AGE), as well as various cytokines and

chemokines, play significant roles in driving DKD progression in

the context of hyperglycemic conditions (21, 22).

Obesity, which often co-occurs with diabetes, poses a

substantial risk to renal function (24, 25). Accumulation of

visceral fat triggers an adipocyte stress response and pro-

inflammatory signaling, leading to metabolic dysregulation.

Ectopic lipid deposition within the kidneys and the presence of

intracellular lipid metabolites, such as ceramides, contribute to

oxidative stress and podocyte insulin resistance, resulting in

impairment of the glomerular barrier (26). Obesity also

exacerbates conditions like hypertension, insulin resistance, Type

2 diabetes, and atherosclerosis, all of which contribute to renal

injury and endothelial dysfunction (24, 26). Recent research

indicates that obesity may exert an influence on the composition

of gut microbiota, potentially impacting the development of

diabetic kidney disease (27). Alterations in gut microbiota

associated with obesity, including reduced microbial diversity and

shifts in microbial species composition, have the potential to

compromise gut barrier integrity and promote inflammation,

ultimately affecting renal health (28).
2.2 Obesity-related glomerulopathy

Recent studies identify obesity as an independent risk factor for

renal dysfunction, apart from diabetes and hypertension (29). ORG

has emerged as a distinctive subtype of CKD, characterized by

proteinuria, enlarged glomeruli, and a gradual decline in renal

function (30). Obesity-induced alterations in adipose tissue

impact renal health through diverse mechanisms. Adipose tissue

stress affects adipokine secretion, altering the adiponectin-to-leptin

ratio, associated with renal impairment (26). Obesity also impacts

renal sodium handling and hypertension development, with

elevated leptin levels stimulating the sympathetic nervous system

and activating the renin-angiotensin system (26, 30). Mechanical

effects of adipose tissue deposition, like perirenal and renal sinus

fat accumulation, may also contribute to hypertension and renal

injury (31). These changes may slow peritubular capillary blood

flow, promote sodium retention, and lead to chronic renal

function decline.

The systemic and local disruptions observed in ORG exhibit

similarities to the pathogenesis of DKD. These two diseases interact

with each other, leading to progressive renal damage.
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3 Impact of weight loss on renal
function in diabetic patients

Numerous high-quality clinical studies have provided

substantial evidence supporting the role of weight loss in

alleviating the progression of existing DKD and reducing the

long-term incidence of diabetes-related renal complications. As

previously discussed, O’Brien et al. conducted a retrospective

observational cohort study of 2,205 type 2 diabetes patients who

underwent metabolic surgery. A comparison with 11,059 matched

non-surgical control subjects revealed a remarkable reduction in the

incidence of kidney disease over a 6-year follow-up period.

Specifically, metabolic surgery demonstrated a 6.4% incidence in

surgical patients compared to 14% in non-surgical controls, with an

adjusted hazard ratio of 0.45 [95% CI 0.29-0.71] (17). A matched

cohort study by Madsen et al. showed that RYGB surgery led to a

significant reduction in T2DM microvascular complications (HR

0.53 [95% CI 0.38–0.73]) and the incidence of type 2 DKD

(incidence rate ratio 0.54 [95%CI 0.31–0.94]) (32). Additionally,

Glucagon-Like Peptide-1(GLP-1), an incretin hormone, induces

weight loss by reducing appetite, delaying gastric emptying, and

optimizing insulin and glucagon secretion timing. Studies have

demonstrated that Liraglutide not only leads to weight loss but also

improves blood sugar control, enhances various cardiovascular

markers, and reduces albuminuria. The LEADER RCT (33)

confirmed that Liraglutide can slow the occurrence and

progression of DKD and alleviate the recurrence of type 2

diabetes after metabolic surgery. Therefore, the use of Liraglutide

after metabolic surgery may provide additional renal protective

benefits (34). Some medications may potentiate weight loss but are

not FDA approved for obesity. Sodium glucose co-transporter 2

inhibitors (SGLT2 inhibitors) also have significant weight-reducing

effects. Although their primary purpose is to lower blood sugar by

inhibiting renal sodium-glucose co-transporter-2, rather than being

a weight loss drug, it has been observed that these agents can

substantially improve body weight and exert a potent protective

effect on kidney function. A comprehensive meta-analysis has

underscored the multifaceted benefits of SGLT-2 inhibitors in

patients with T2DM and CKD. These inhibitors not only lowered

glycated hemoglobin (–0.29%, 95% CI –0.39 to –0.19) but also

demonstrated reductions in blood pressure, body weight, and

albuminuria. Furthermore, they mitigated the annual decline in

eGFR slope (placebo-subtracted difference of 1.35 mL/1.73 m2/year,

95% CI 0.78-1.93) and decreased the risk of the composite renal

outcome, encompassing doubling of serum creatinine, end-stage

kidney disease, or renal death (HR 0.71, 95% CI 0.53-0.95) (35).
3.1 Weight loss interventions primarily
alleviate renal damage by improving the
following conditions

3.1.1 Diabetes emission
As mentioned earlier, elevated blood glucose levels are a crucial

factor in the progression of diabetes patients to diabetic kidney disease.
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Numerous studies have demonstrated that weight loss interventions

can significantly enhance insulin sensitivity, thereby improving blood

sugar control and alleviating kidney damage (36). Evidence indicates

that early weight loss surgical interventions in T2DM patients can lead

to diabetes remission and substantially reduce the residual

complications of the disease (36). A notable 10-year follow-up study

revealed that 37.5% of patients who underwent surgical treatment

sustained diabetes remission throughout the decade. This rate contrasts

with 5.5% for medical therapy, 50.0% for biliopancreatic diversion

(BPD), and 25.0% for Roux-en-Y gastric bypass (RYGB) (37).

Mechanistic research suggests that weight loss primarily reduces

intra-abdominal, intramyocellular, and intrahepatocellular lipids

under hypocaloric conditions, rather than generalized body fat (38).

This loss reverses crucial pathophysiological processes in diabetes, such

as enhancing peripheral insulin sensitivity, improving cellular insulin

signal transduction, boosting insulin secretion, and decreasing hepatic

glucose production (38). The resulting improved insulin sensitivity

optimizes glycemic control, thereby preserving glomerular integrity

and function, reducing oxidative stress and inflammation, and

preserving renal unit structure (39).

3.1.2 Reducing proteinuria and improving
kidney structure

Weight loss interventions, particularly surgical procedures,

demonstrate sustained remission of albuminuria post-surgery,

with significant reductions in albuminuria observed across all

baseline albumin-creatinine ratio tertiles, with remission

occurring in 78% of patients and parallel studies in Zucker

diabetic fatty rats revealed that weight loss and improvements in

glycemia following RYGB surgery were accompanied by the

normalization of glomerular tuft size, reduced podocyte

expression of desmin, and preservation of podocyte foot process

morphology (40). Notably, RYGB attenuated podocyte stress and

dedifferentiation in the ZDF rat model, likely due to enhanced

metabolic control, especially its potent glucose-lowering effect post-

surgery (40). Similarly, researchers observed a reduction in urinary

protein and the restoration of glomerular injury, attributed to

improved glomerular filtration membrane ultrastructure and

increased nephrin protein expression (41). Additionally, studies in

obese type 2 diabetic patients revealed that calorie restriction also

improved glomerular hyperfiltration and various cardiovascular

risk factors, while also reducing serum angiotensin II levels,

suggesting reduced RAS activity (14). Furthermore, Glucagon-

Like Peptide-1 Receptor Agonists (GLP1-RA) like liraglutide can

inhibit sodium-hydrogen exchanger 3 in proximal tubular cells,

increasing natriuresis and diuresis (42).
3.1.3 Alleviating inflammatory status
Chronic low-grade inflammation is a hallmark of diabetic

nephropathy and obesity (43). Researchers have uncovered that the

reduction in body weight observed in RYGB rats is associated with a

diminished fibrotic Transforming Growth Factor b (TGFb) signal (44).
TGFb is recognized as a major driver of fibrosis and a key mediator of

the hypertrophic and prosclerotic changes in diabetic nephropathy.

Consequently, its downregulation appears to be a potential favorable
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effect in renal damage in patients with obesity and type 2 diabetes (45).

Similarly, Bariatric surgery in mouse models activated Peroxisome

Proliferator-Activated Receptor Alpha (PPARa), leading to the

inhibition of Reactive Oxygen Species (ROS) generation. This action

mitigates oxidative stress and reduces renal apoptosis, showcasing the

protective effect of bariatric surgery on kidneys affected by diabetic

nephropathy (46). Furthermore, Dietary intervention in mouse models

attenuate progressive urinary protein excretion and renal

inflammation, suggesting that adiposity drives renal inflammation in

DKD (47–51). Reduced expression levels of inflammatory factors such

as C-Reactive Protein (CRP) and C-C Motif Chemokine Ligand 2

(CCL2) enhance kidney function, decrease renal fibrosis, and improve

inflammation control (52). Furthermore, GLP1-RA have been shown

to stimulate pathways that reduce reactive oxygen species in the

kidneys. Additionally, they contribute to lowering inflammation by

decreasing cytokine production and immune cell infiltration (42). This

evidence collectively highlights the intricate interplay between

inflammation, weight loss interventions, and the potential protective

effects on renal health in the context of diabetic nephropathy

and obesity.

3.1.4 Gut microbiota changes
Alterations in gut microbiota following weight loss have been

associated with improvements in energy balance, enhanced intestinal

insulin release, and weight reduction. Recent meta-analyses have

revealed significant alterations in gut microbiota and microbial

metabolites following weight loss surgery. These changes are closely

associated with improved glucose homeostasis, weight reduction, and

modifications in gastrointestinal intake and exercise behaviors (53). A

detailed investigation focused on diabetic patients undergoing

metabolic surgery has unveiled intricate connections among serum

metabolomics, gut microbiota composition, and hormonal profiles,

particularly concerning improvements in diabetes and metabolic

syndrome. Noteworthy correlations between specific gut bacteria,

such as the Eubacterium eligens group, and metabolites like

lacosamide glucuronide and UDP-L-arabinose were identified.

Positive correlations were observed between Enterococcus and

metabolites like glutamic acid and vindoline (54). Furthermore,

research has shown that medical treatments also significantly alter

intestinal microbiota, with observable changes like increased

Proteobacteria and variable Bacteroidetes. These shifts correlate with

changes in patient weight, and glucose metabolism (55). Additionally,

the dysbiotic state induced by a high-fat diet was ameliorated by

transitioning to a lower-fat, higher-fiber control diet, especially when

combined with sleeve gastrectomy. This led to increased microbial

diversity and shifting relative abundances (56). Moreover, the role of

short-chain fatty acids (SCFAs), generated through bacterial

fermentation of dietary fiber in the colon, has been crucial in

protecting mice against the clinical and histologic manifestations of

diabetic nephropathy by activating G Protein-Coupled Receptors

GPR43 and GPR109 (57). Targeted dietary fiber supplementation to

increase SCFA levels has also been found to contribute to better

improvements in hemoglobin A1c levels, partly attributed to

increased production of glucagon-like peptide-1 (GLP-1) (58).

Hence, alterations in gut microbiota composition following weight
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loss may contribute to improved blood glucose and blood pressure

control by enhancing colonic L cell secretion of GLP-1.
4 Impact of weight reduction on renal
function in obese patients

A growing body of evidence suggests that weight reduction

yields positive outcomes in non-diabetic patients with obesity,

Several longitudinal studies, including a large cohort study (59),

observed a substantial decrease in the risk of CKD in obese patients

after weight reduction surgery. Notably, improvements in CKD risk

categories are observed at 1 and 7 years after surgery, particularly in

patients with moderate to high baseline CKD risk. It demonstrated

similarities in the effects of weight reduction on renal function in

both diabetic and non-diabetic obese patients. These effects

encompass reduced adipose tissue, improved lipid metabolism,

and ameliorated inflammatory states.
4.1 The benefit of adipose tissue reduction

Post-weight loss, there is a notable decrease in visceral adipose

tissue and renal sinus fat. This reduction contributes to a favorable

adipokine profile, diminished inflammatory cytokines, and lowered

ROS production, potentially resulting in reduced RAAS activation

levels (60). Obesity-induced metabolic syndrome disrupts lipid

metabolism, leading to abnormal lipid profiles. Weight loss

interventions have consistently proven effective in decreasing blood

lipid levels and fat deposition, while increasing adiponectin levels,

which play a key role in metabolic regulation (15, 61). Adiponectin

plays a multifaceted role in metabolic control, promoting fatty acid

oxidation through AMP-activated protein kinase (AMPK) activation.

AMPK activation enhances insulin sensitivity in crucial insulin-target

tissues like skeletal muscle and white adipose tissue, vital for blood

glucose control. By stimulating fatty acid oxidation and ceramidase

activity, adiponectin counteracts lipotoxicity and oxidative stress (62).

Moreover, both intensive lifestyle interventions and bariatric surgery-

induced weight loss have been found to reduce lipid accumulation and

decrease local and systemic inflammatory microenvironments (60).

Additionally, beyond bodyweight reduction, the improvement of the

metabolic kidney milieu and restoration of endothelial function could

also contribute to the renoprotective effects of regular exercise in

chronic diabetic diseases (63). Furthermore, several longitudinal

studies exploring the reduction of ectopic renal fat post-weight loss

surgery have demonstrated a correlation with improved renal function.

Renal sinus fat (RSF), a fat depot at the hilum of the kidney, has been

studied for its association with hypertension, and its reduction post-

weight loss surgery has been observed. In comparison to the lean

control group, obese patients accumulated more RSF (2.3 [1.7-3.1] vs.

1.8 [1.4-2.5] cm2). Hypertensive patients, when compared to

normotensive subjects, had a larger RSF depot (2.6 [2.0-3.3] vs. 2.0

[1.4-2.5] cm2), even after considering BMI. In combined data, RSF

showed a negative correlation with estimated glomerular filtration rate

(eGFR) but had no association with systolic or diastolic blood pressure.
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After weight loss surgery, RSF decreased along with other obesity

markers. The magnitude of RSF reduction was greater in patients who

experienced hypertension relief compared to those who still had

hypertension (-0.68 [-0.74, -0.44] vs. -0.28 [-0.59, 0] cm2, p = 0.009).

The accumulation of RSF appears to be linked to the pathogenesis of

obesity-related hypertension, and post-surgery, a significant decrease in

RSF was observed, correlating with relief from hypertension (31).

Similarly, in a study involving dietary-induced weight loss over an

18-month period, a correlation was observed between RSF and baseline

eGFR as well as microalbuminuria. After 8 months, RSF decreased by

6.18%, and this reduction was associated with overall body weight loss.

The decrease in RSF was also linked to improvements in lipid profiles

and blood glucose control (37).
4.2 Weight reduction and glomerular
filtration rate

Studies, including one by Lin et al., demonstrate that bariatric

surgery was associated with eGFR preservation in all obese patients

and, particularly, in those with moderate-to-high CKD risks. The study

revealed a significant negative correlation was evident between an

increased eGFR and a reduced BMI (Spearman’s correlation -0.229,

P<0.001),and thebariatric surgerygrouphadasignificantly lower riskof

an eGFRdecline≥25%at 12months [adjustedHR(aHR) 0.47, P=0.03).

After BS, obese patients with hypertension or albuminuria had

significantly lower risks of eGFR declines ≥25% (aHR 0.37, P = 0.02

and aHR 0.13, P = 0.0018, respectively) (64). In a prospective cohort

study, researchers observed analogous trends. Twenty-five individuals,
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comprisingbothobese andnon-diabetic subjects, exhibited considerable

stability in unadjusted mean glomerular filtration rate (mGFR) and a

noteworthy improvement in adjusted mGFR (65). Caloric restriction-

based dietary interventions also exhibit positive effects. Individuals with

eGFR < 120mL experience an overall increase in GFR with weight loss,

while those with hyperfiltration witness a substantial decline in GFR,

indicating a favorable reduction in obesity-associated glomerular

hyperfiltration (66–68). Moreover, utilizing advanced imaging

techniques, researchers provided compelling evidence that obesity

induces structural, metabolic, and hemodynamic changes in the

kidneys. Obese subjects showed higher renal volume but lower

radiodensity, suggestive of potential water and/or lipid accumulation.

Cardiacoutput andeGFRwere increasedbyapproximately25%inobese

individuals. Total renal blood flow was higher in the obese, and FFA

uptake was about 50% higher due to elevated circulating FFA levels.

Importantly, following weight loss (26 ± 8 kg), these changes in eGFR,

total renal blood flow, kidney volume, FFA uptake, and renal density

were partially reversed, thereby mitigating the risk of obesity-induced

progression of chronic kidney disease (69).

In conclusion, weight reduction offers multifaceted benefits for

both diabetes and obesity, including improved metabolic

disturbances, reduced adipose tissue deposition, alleviated chronic

inflammation, and restored renal structure and function. For

patients with obesity and concurrent diabetes, weight reduction

interventions are beneficial for renal health, potentially delaying or

preventing renal function impairment (70).

In Figure 1, we elaborate on the specific mechanisms illustrating

the impact of weight loss intervention on renal function in obese

and diabetic patients.
FIGURE 1

Potential Mechanisms of Weight Loss Intervention in Preserving Renal Function in Obesity and Diabetic Patients. All three approaches—lifestyle
modifications, anti-obesity medications, and metabolic surgeries—result in a reduction in patient body weight. This reduction is characterized by a
decrease in fat deposition, encompassing visceral fat, renal sinus fat, and ectopic adipose tissue. The reduction of fat in these specific regions
promotes the restoration of insulin sensitivity, elevation of peripheral insulin levels, suppression of pro-inflammatory factors, and modulation of
adipokine release. Simultaneously, alterations in the release patterns of adipokines are observed, marked by an increase in adiponectin levels and a
decrease in leptin levels. Furthermore, the renin-angiotensin-aldosterone system (RAS) is inhibited. Additionally, shifts in gut microbiota composition
and increased secretion of hormones such as GLP-1 and PYY contribute to these effects. Collectively, these changes culminate in enhanced
regulation of blood glucose, blood lipids, and blood pressure. The inhibition of the RAS system also leads to reduced urinary sodium retention,
providing a safeguard for the kidneys. These interventions exert a favorable impact on renal function, including the amelioration of glomerular
hyperfiltration, preservation of renal cell integrity, and reduction in renal inflammation. Ultimately, these mechanisms translate into enhancements in
kidney structure, including the attenuation of glomerular and renal tubular atrophy, as well as a reduction in interstitial fibrosis. GLP-1(Glucagon-Like
Peptide-1); PYY(Peptide YY). Red arrows represent an increase, and blue arrows represent a decrease.
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5 Perspectives and conclusion

Obesity combined with diabetes poses a significant health

challenge globally, with the associated renal issues posing a serious

threat to patient health. Weight loss interventions show promising

potential in improving renal function, and current research has made

some encouraging progress. However, future research directions and

key issues still require further exploration to enhance our

understanding of this crucial area and ultimately improve patients’

quality of life. Firstly, mechanistic studies will continue to be a focal

point. Understanding how weight loss interventions impact renal

function through biochemical pathways, and delving into the

molecular and cellular mechanisms between obesity, diabetes, and

renal diseases, is crucial for developing more targeted intervention

strategies. These studies are expected to unveil new therapeutic targets

and opportunities for drug development. Secondly, long-term effects

and safety assessments will be a critical area for future research. Over

time, the long-term impact of weight loss interventions on renal

function needs more attention, especially regarding their role in the

progression of renal diseases. Personalized and comprehensive

interventions represent another important future direction.

Different patients have diverse genetic backgrounds, lifestyles, and

disease stages, making personalized intervention plans crucial.

Integrating drug therapy, lifestyle adjustments, even metabolic

surgery to optimize renal function improvement will be a key goal

of future research and clinical practice.

In conclusion, the impact of weight loss interventions on renal

function in patients with obesity and diabetes is a research area of

significant clinical importance.With further research and technological

advancements, we can not only better comprehend its mechanisms but

also formulate more effective treatment strategies, ultimately offering

diabetic and obesity patients improved health and quality of life.
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