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Predictive model and risk
analysis for peripheral vascular
disease in type 2 diabetes
mellitus patients using machine
learning and shapley
additive explanation
Lianhua Liu1†, Bo Bi1†, Li Cao1, Mei Gui1 and Feng Ju2*

1International School of Public Health and One Health, Hainan Medical University, Haikou,
Hainan, China, 2Department of Endocrinology, Second Affiliated Hospital of Hainan Medical
University, Haikou, Hainan, China
Background: Peripheral vascular disease (PVD) is a common complication in

patients with type 2 diabetes mellitus (T2DM). Early detection or prediction the

risk of developing PVD is important for clinical decision-making.

Purpose: This study aims to establish and validate PVD risk predictionmodels and

perform risk factor analysis for PVD in patients with T2DM usingmachine learning

and Shapley Additive Explanation(SHAP) based on electronic health records.

Methods: We retrospectively analyzed the data from 4,372 inpatients with

diabetes in a hospital between January 1, 2021, and March 28, 2023. The data

comprised demographic characteristics, discharge diagnoses and biochemical

index test results. After data preprocessing and feature selection using Recursive

Feature Elimination(RFE), the dataset was split into training and testing sets at a

ratio of 8:2, with the Synthetic Minority Over-sampling Technique(SMOTE)

employed to balance the training set. Six machine learning(ML) algorithms,

including decision tree (DT), logistic regression (LR), random forest (RF),

support vector machine(SVM),extreme gradient boosting (XGBoost) and

Adaptive Boosting(AdaBoost) were applied to construct PVD prediction

models. A grid search with 10-fold cross-validation was conducted to optimize

the hyperparameters. Metrics such as accuracy, precision, recall, F1-score, G-

mean, and the area under the receiver operating characteristic curve (AUC)

assessed the models’ effectiveness. The SHAP method interpreted the best-

performing model.

Results: RFE identified the optimal 12 predictors. The XGBoost model

outperformed other five ML models, with an AUC of 0.945, G-mean of 0.843,

accuracy of 0.890, precision of 0.930, recall of 0.927, and F1-score of 0.928. The

feature importance of ML models and SHAP results indicated that Hemoglobin

(Hb), age, total bile acids (TBA) and lipoprotein(a)(LP-a) are the top four important

risk factors for PVD in T2DM.
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Conclusion: The machine learning approach successfully developed a PVD risk

prediction model with good performance. The model identified the factors

associated with PVD and offered physicians an intuitive understanding on the

impact of key features in the model.
KEYWORDS

type 2 diabetes mellitus, peripheral vascular disease, predictive model, risk factor,
machine learning, shapley additive explanation
1 Introduction

Diabetes is a rapidly escalating global health emergency of the

21st century. The number of people with diabetes is projected to rise

from 536.6 million adults (20-79 years) (10.5% global prevalence) in

2021 to 783.2 million (12.2% global prevalence) in 2045. Over 3 in 4

people with diabetes live in low- and middle-income countries.

China is expected to have 174.4 million people with diabetes by

2045, ranking first in the world (1). Type 2 diabetes mellitus

(T2DM) is the most prevalent form, accounting for nearly 90% of

all diabetes worldwide (2). Complications from diabetes are

widespread, with over 50% of individuals with T2DM

experiencing microvascular complications and 25% suffering from

macrovascular complications (3). These complications not only

affect patients’ quality of life and can even lead to death (4–7),but

also impose a significant economic burden on society (8–10).

Peripheral vascular disease (PVD) is considered as one of the

major macrovascular complications in T2DM due to its wide range

of clinical features and consequences (11). It is primarily caused by

arterial atherosclerosis and increased blood viscosity, resulting in

vascular stenosis or occlusion in the lower limbs. Severe cases may

result in foot ulcers, ischemic necrosis, and various other

complications, leading to a poor long-term prognosis (12, 13). As

a common complication, PVD affects over 10%-20% of individuals

with diabetes (14), and approximately 50% in developed countries.

In high-income countries, individuals with diabetes now develop

PVD as their initial vascular disease (15). Up to 50% of patients with

diabetic foot ulcers suffer from peripheral artery disease, and it is an

independent risk factor for its development (16). Additionally, PVD

is a major cause of amputation and also increases the risk of stroke

and death (17). Given the numerous adverse effects of PVD on

diabetic patients, early diagnosis and treatment are very crucial to

manage it effectively and prevent progression to more severe health

issues. However, due to the complex pathogenesis of PVD and often

asymptomatic in the early stages (14), there is a high risk of

misdiagnosis. Therefore, developing PVD risk prediction models

and analyzing the influencing factors for individuals with diabetes is

essential to assist clinicians in early prevention and treatment.

With the rapid development of artificial intelligence, machine

learning(ML) algorithms are commonly used to build risk
02
predictive models in medicine, as they offer a powerful tool for

analyzing large amounts of clinical data and identifying patterns

and trends behind the data, which help healthcare professionals

better understand the factors that contribute to various diseases (18,

19). In recent years, multiple ML-based prediction models have

been developed for assessing the risk of diabetes complications,

such as diabetes-related kidney disease (20–23), diabetic

retinopathy (24–27) and diabetic peripheral neuropathy (28, 29).

However, to date, no ML-based risk prediction model has been

specifically developed for PVD in patients with T2DM.

The aim of this study was to develop and evaluate prediction

models specifically for PVD in T2DM, as well as to identify risk

factors. The most effective model was selected for further analysis

using the SHAP method to improve the clinical applicability of the

models and ultimately to improve patient outcomes.
2 Materials and methods

In this retrospective modeling study, a three-step process was

utilized for model development, validation, and interpretation.

Initially, models were developed using six ML methods.

Subsequently, model performance was assessed using an internal

validation dataset. Finally, the optimal model was interpreted using

the SHAP method. Figure 1 depicts the entire research process,

including inclusion and exclusion criteria, feature selection, dataset

division, data balancing, model development and validation, model

comparison, and optimal model selection and interpretation. The

preprocessing of the data, the implementation of the ML models,

and the model interpretation were implemented in Python 3.9 by

using scikit-learn 1.2.2.
2.1 Data collection and
candidate predictors

The study was approved by the Ethics Committee of Hainan

Medical University(HYLL-2021-388). It was a retrospective study.

Data were sourced from the Electronic Health Medical Record

System of the Second Affiliated Hospital of Hainan Medical
frontiersin.or
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University. Included were hospitalized diabetic patients admitted to

the Endocrinology Department between January 1, 2021, and

March 28, 2023, comprising total of 4,372 inpatients records. The

data consists of three parts: demographic information of 4,372

patients, discharge diagnosis information, and 948,900 laboratory

test results. Informed consent was waived as all data were de-

identified. The diagnosis of PVD was made according to current

guidelines and ancillary tests, and the tests were primarily based on

the use of color Doppler ultrasound to observe the presence or

absence of atherosclerotic plaques. Inclusion criteria were: (1)

confirmed T2DM patients; (2) aged ≥18 years. Exclusion criteria

included: (1) other types of diabetes; (2) aged<18 years. Applying

these criteria, 4,070 T2DM patients were selected for the study.

The original dataset contained over 300 variables. We selected

67 potential predictors that could influence PVD progression
Frontiers in Endocrinology 03
based on current relevant research (4, 30–32) and clinician

recommendations. The selected variables included: demographic

and clinical characteristics (7 variables), such as age, weight, height,

body mass index (BMI), diastolic blood pressure (DBP), systolic

blood pressure (SBP), and blood pressure difference (BP diff);

discharge diagnosis characteristics (15 comorbidities), including

hypertension, diabetic retinopathy (DR), diabetic nephropathy

(DN), diabetic peripheral neuropathy (PND), and other related

complications; biochemical characteristics (45 variables), including

hemoglobin (Hb), glycated Hemoglobin (HbA1c), lipoprotein (a)

(LP-a), total bile acids (TBA), total cholesterol (TC), triglycerides

(TG), high-density lipoprotein(HDL), low-density lipoprotein

(LDL), cystatin c (CysC), alkaline phosphatase (ALP), gamma-

glutamyl transpeptidase (GGT), aspartate aminotransferase

(AST), alanine transaminase (ALT), total protein (TP), total
FIGURE 1

Work flow for prediction model developing, evaluation and interpretation.
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bilirubin (TBIL), albumin (ALB), blood urea nitrogen (BUN),

creatinine (Cr), and so on.
2.2 Data pre-processing

Data preparation is crucial in big data applications. We first

extracted complication information from the discharge diagnosis

and then extracted the biochemical indicators from 948,900

laboratory tests. For variables with multiple measurements, values

nearest to the discharge time were extracted. Indicators with over

25% missing data were eliminated, except for retained C-reactive

protein, Hb, and TBA, due to their relevance to PVD. Samples with

over 30% missing values were excluded. The study ultimately

included 3,982 samples, with 3,065 cases of PVD and 917

without. Indicators with missing values under 30% were filled

using the median for each category. For values with missing data

over 30%, were filled with Random Forest (33), which imputes

missing values using random forests in an iterative fashion (34).

Considering most of the variables in the dataset are numerical and

the range of different variables widely varied. To ensure model

accuracy, we standardized the training set using a normalization

and applied the same scaling to the test set.
2.3 Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics

version 22.0. The Kolmogorov-Smirnov (K-S) method tested the

normality of continuous variables, expressed as mean± SD or

median (P25, P75) for skewed distributions. Categorical variables

were described as n (%). Comparisons between the PVD and non-

PVD (NPVD) groups utilized Student’s T-test, Mann-Whitney U

test, or Chi-squared test, depending on the variable distribution. A

p-value less than 0.05 was considered statistically significant.
2.4 Feature selection

Feature selection is a vital aspect of ML as it can reduce

dimensionality, increase model interpretability, enhance

prediction performance and reduce training time. To select the

optimal predictors for PVD prediction, we included all variables

statistically significant in the univariate analysis and those clinically

relevant. The RFE method was applied. We systematically explored

feature quantities from 1 to the maximum, for each specific feature

quantity, we employed random forest classifier to select the optimal

feature subset. In order to evaluate the discriminative capability of

different feature subsets, six well-known ML classifiers: Decision

Tree (DT) (35), Logistic Regression (LR) (36), Random Forest (RF)

(37), Support Vector Machine (SVM) (38), Extreme Gradient

Boosting (XGBoost) (39), Adaptive Boosting (AdaBoost) (40)

which are widely used in medical research, were used along with

5-fold cross-validation. By comparing the AUC values of the six ML

models across different feature subsets, the best feature subset was

identified for further model training.
Frontiers in Endocrinology 04
2.5 Dataset division and data balancing

A common challenge in ML is overfitting, where the model fits

the training data too well but performs poorly on new data. To

address this issue, we split the dataset into a training set for model

development and a test set for evaluation, maintaining an 8:2 ratio

while preserving the balance of positive and negative samples.

Because the dataset comes from hospitalized diabetic patients,

the patients with PVD is more than that of without PVD. If

unadjusted, the minority class could be overwhelmed by the

majority class, leading to suboptimal performance as general ML

algorithms often struggle with imbalanced datasets, resulting in bias

towards the majority class (41, 42). To address this issue, we applied

the Synthetic Minority Oversampling Technique (SMOTE) to the

training data, generating synthetic samples for the minority class

(43, 44).
2.6 Model development and evaluation

We developed six ML models using the balanced training set in

a pipeline, including LR, DT, RF, SVM, XGBoost and AdaBoost,

and use test set for internal validation. A grid search in combination

with 10-fold cross-validation was conducted to optimize the

hyperparameters of six ML models to achieve the best AUC

score. The details of hyperparameter optimization for each model

are listed in Table 1. Grid searches determined the best

hyperparameter value based on a set of given values (5, 10, 45),

all other parameters were set to be default. The performance of each

model on the test dataset was assessed using metrics such as

accuracy, precision, recall, F1-score, G-mean and AUC-ROC

(area under curve of sensitivity versus false positive rate) (34).

The overall performance of the prediction model was evaluated

using AUC-ROC. Through comprehensive evaluation of multiple

metrics, the best performing model was selected for further risk

prediction and analysis.
2.7 Feature importance and
model interpretation

Traditional ML models are often viewed as ‘black boxes’ due to

their inability to transparently reveal how features influence

predictions, a limitation impeding their clinical application. To

improve the interpretability of ML model results and analyze

influencing factor, we evaluated feature importance within the

models and utilized the SHAP method for visual analysis. SHAP,

grounded in game theory and first proposed by Lloyd Shapley,

offers a framework based on additive feature attribution (46). Its

basic idea is to explain the model by calculating the marginal

contribution of each feature when added to the model. It can be

used to explain various black-box models. This method first

calculates the contribution value of each feature, which can be

positive or negative, and then accumulates the contribution values

of all features to obtain the final prediction. Compared to other
frontiersin.org
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methods, it has a solid theoretical foundation and can provide both

local and global interpretability simultaneously (47). We leveraged

SHAP to provide an explanation for the best-performing model,

illustrating feature importance rankings and relationship between

the features and the outcomes.
3 Results

3.1 Baseline characteristics

Following the predefined exclusion and inclusion criteria, 3982

patients were include in our study, with 67 variables extracted. The

average age of the patients with T2DM was 60.34 ± 13.55 years,

Moreover, baseline characteristics such as age, TBA, BUN, LP-a, the

prevalence of DPN, diabetic Retinopathy, Diabetic foot,

Hypertension, Diabetic Nephropathy, Cardiac insufficiency and

Heart failure (CHF) and Atherosclerosis were significantly higher
Frontiers in Endocrinology 05
in PVD patients compared to NPVD patients(p<0.001). Table 2

displays the baseline characteristics and the results of the univariate

analysis for these significant indicators.
3.2 Feature selection

As previously mentioned, this study, utilized the RFE method

and six ML algorithms to identify the optimal number of features

that have the best prediction performance. We included 53 variables

in the RFE method, comprising 47 variables identified as significant

in univariate analysis and 6 clinically relevant variables. Figure 2

illustrates the variation in AUC based on the number of features in

each classification algorithm. According to the result,12 variables

were selected to build the prediction models: age, Hb, TBA, LP-a,

24-hour urine protein (UPR-24), GGT, glycated serum protein

(GSP), BMI, Lactate Dehydrogenase (LDH), ALP, apolipoprotein

A1 (APOA1) and BUN.
3.3 Modeling and evaluation

The training set comprised 2452 positive samples and 733

negative samples before balancing. After oversampling with the

SMOTE algorithm, the number of negative samples also increased

to 2452. The validation set included 613 positive samples and 184

negative samples. Models including DT, LR, RF, SVM, XGBoost

and AdaBoost were developed using the training set with the above-

mentioned 12 variables. The performance assessment results,

including accuracy, precision, recall, F1-score, G-mean, and ROC-

AUC, are detailed in Table 3; Figure 3. The results showed that in

the validation set, XGBoost achieved the highest AUC (0.945),

accuracy (0.890), recall (0.927), and F1-value (0.928). Adaboost

exhibited the highest precision (0.943), G-mean (0.853). Overall, the

performance of the XGBoost and Adaboost were significantly

superior to the other four models, and XGBoost is the best

model. Thus, XGBoost was selected for further prediction

and analysis.
3.4 Feature importance and SHAP values

Figure 4 illustrates the feature importance rankings for four ML

models. The rankings are not quite the same. Key factors impacting

PVD were identified as age, Hb, TBA and LP-a. Since XGBoost was

the optimal model for predicting PVD, we used SHAP to elucidate

the relationship between the features and the output of the XGBoost

model. Figure 5A demonstrates the average effect of each risk factor

on the magnitude of the model output. As can be seen, Hb, age,

TBA, LP-a and UPR-24 have large contribution to the model

output, while factors such as LDH, ALP, APOA1 and BUN have

a small impact on the model output. Figure 5B offers an insight into

the positive or negative effects of these factors on the XGBoost

model. The summary SHAP values of the risk factors in Figure 5B

are shown in descending order in a top-down view, with the most

influential risk factors at the top. Higher SHAP values suggest an
TABLE 1 Hyperparameters of machine learning models.

Model Hyperparameters Range
Optimal
values

LR penalty [l1, l2] l1

C
[0.01, 0.1, 1.0,
10.0, 50.0]

0.1

solver liblinear liblinear

max_iter [100, 500, 1000] 100

DT max_depth
[3, 4, 5, 6, 7, 10,
20,None]

7

min_samples_split [2, 5, 10] 10

min_samples_leaf [1, 2, 3, 4, 5] 5

criterion [gini, entropy] entropy

RF n_estimators
[10, 15,
20,100, 300]

300

max_depth
[None, 1, 3, 5,
7, 10]

None

min_samples_split [2, 3, 5, 7, 10] 2

min_samples_leaf [1, 2, 4, 5] 1

SVM C [0.1, 1, 10] 10

kernel [linear,rbf] rbf

XGBoost learning_rate [0.01, 0.1] 0.1

max_depth [1, 3, 5, 7, 9] 9

min_child_weight [1, 3, 5, 6, 8, 10] 1

gamma
[0, 0.1, 0.2, 0.4,
0.8, 1]

0

n_estimators [100, 300] 300

AdaBoost learning_rate [0.01, 0.1, 1, 10] 1

n_estimators [50, 100, 200,300] 300
LR, Logistic regression; DT, Decision Tree; RF, Random Forest; SVM, Support Vector
Machine; XGBoost, Extreme Gradient Boosting; Adaboost, Adaptive Boosting.
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TABLE 2 Baseline analysis result of 3982 patients with and without PVD in T2DM.

Variable Total (n=3982) NPVD (n=917) PVD (n=3065) P value

Age (years) 60.34 ± 13.55 51.57 ± 15.44 62.96 ± 11.73 <0.001**

Weight (kg) 63.61 ± 13.31 66.71 ± 15.16 62.68 ± 12.56 <0.001**

Height (m) 163.00 (158.00,169.00) 165.00 (160.00,170.00) 163.00 (158.00,168.00) <0.001**

BMI (kg/m2) 23.15 (21.55,25.22) 23.86 (22.03,26.23) 23.15 (21.48,25.00) <0.001**

SBP (mmHg) 133.99 ± 19.30 129.98 ± 17.74 135.19 ± 19.58 <0.001**

Blood pressure difference (mmHg) 55.97 ± 15.71 51.54 ± 14.48 57.29 ± 15.82 <0.001**

UPR-24 (mg/24 h) 86.95 (40.00,189.00) 67.00 (36.10,122.45) 86.95 (40.90,215.30) <0.001**

HbA1c (%) 8.80 (7.30,10.90) 9.30 (7.40,11.30) 8.80 (7.30,10.80) 0.005**

UCr (mmol/L) 6662.50 (4718.75,9710.25) 7754.009 (5360.50,10955.50) 6611.00 (4590.00,9384.50) <0.001**

Hb (g/L) 130.00 (115.00,142.00) 133.10 (118.00,146.33) 129.00 (114.07,141.00) <0.001**

P (mmol/L) 1.17 ± 0.23 1.19 ± 0.27 1.16 ± 0.22 0.001**

APOA1 (g/L) 1.28 (1.16,1.40) 1.27 (1.14,1.40) 1.28 (1.16,1.41) 0.001**

CO2-BC (mmol/L) 23.80 (22.10,25.30) 23.60 (21.65,25.10) 23.80 (22.20,25.40) <0.001**

GSP (mmol/L) 2.37 (2.11,2.72) 2.42 (2.09,2.77) 2.37 (2.12,2.71) 0.013*

TG (mmol/L) 1.45 (1.05,2.07) 1.49 (1.09,2.15) 1.45 (1.03,2.04) 0.011*

TBA (mmol/L) 4.40 (3.00,6.10) 3.90 (2.80,5.60) 4.40 (3.10,6.20) <0.001**

CysC (mg/L) 0.86 (0.69,1.10) 0.78 (0.64,0.99) 0.88 (0.71,1.14) <0.001**

GGT (U/L) 25.00 (19.00,36.00) 28.00 (20.00,40.00) 25.00 (19.00,34.00) <0.001**

ALT (U/L) 19.00 (14.00,29.00) 21.00 (15.00,34.00) 19.00 (13.00,28.00) <0.001**

GFR (ml/min) 109.00 (72.00,158.00) 129.00 (87.00,179.00) 105.00 (68.00,151.00) <0.001**

IBili (umol/L) 7.50 (5.30,10.30) 7.70 (5.55,10.90) 7.40 (5.20,10.20) 0.005**

TBili (umol/L) 10.20 (7.50,13.80) 10.60 (7.70,14.60) 10.10 (7.30,13.70) 0.006**

GLO (g/L) 25.80 (22.70,29.40) 25.10 (22.10,28.50) 26.00 (22.95,29.70) <0.001**

ALB (g/L) 40.00 (36.80,42.70) 40.70 (37.40,43.30) 39.90 (36.60,42.50) <0.001**

A/G Ratio 1.54 (1.30,1.80) 1.60 (1.36,1.86) 1.53 (1.29,1.78) <0.001**

LDH (U/L) 159.00 (139.00,183.00) 151.50 (134.50,176.00) 159.00 (140.00,184.00) <0.001**

ALP (U/L) 75.00 (66.00,87.00) 77.00 (66.00,89.00) 75.00 (66.00,87.00) <0.001**

AST/ALT 0.95 (0.75,1.25) 0.89 (0.67,1.16) 1.00 (0.77,1.27) <0.001**

LP-a (mg/L) 58.00 (28.00,117.25) 46.00 (26.00,108.50) 58.00 (29.00,122.00) <0.001**

BUN (mmol/L) 5.60 (4.40,7.10) 5.10 (4.00,6.50) 5.70 (4.54,7.27) <0.001**

SCr (mmol/L) 71.00 (57.00,89.00) 65.00 (53.50,81.00) 73.00 (58.00,92.00) <0.001**

CP (ng/ml) 2.04 (1.43,2.76) 1.97 (1.32,2.66) 2.04 (1.46,2.79) 0.003**

PT (%) 102.90 (99.40,105.70) 103.40 (100.50,106.20) 102.90 (99.40,105.70) 0.002**

FIB (g/L) 3.54 (2.92,4.42) 3.34 (2.79,4.17) 3.54 (2.94,4.53) <0.001**

MA (mg/L) 20.40 (8.20,76.23) 15.70 (7.70,47.40) 20.40 (8.30,89.45) <0.001**

UMACR 25.90 (10.30,113.33) 18.00 (9.00,56.80) 26.20 (10.80,139.10) <0.001**

DPN 3494 (87.75) 682 (74.37) 2812 (91.75) <0.001**

DR 574 (14.41) 100 (10.91) 474 (15.46) 0.001**

DF 607 (15.24) 89 (9.71) 518 (16.90) <0.001**

(Continued)
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increased likelihood of PVD occurrence. The red dots represent

higher feature values, and the blue dots represent lower feature

values. This analysis identifies Hb as the most critical factor in PVD,

with its relationship to PVD risk being complex and non-linear. Age

ranks as the second most influential factor, exhibiting a strong

positive correlation with the risk of PVD.
3.5 Model application for individual

SHAP method can also be used to analyze the influencing

factors of an individual developing PVD (Figure 6). Here, red area

indicates that the feature increases the probability of PVD, while the

blue indicates the feature decreases the probability of PVD. The

wider the width of the color region, the greater the impact of the

feature on PVD. The value f(x) represents the cumulative SHAP

value for each patient. The base value is the average SHAP value of

all patients. The upper panel demonstrates accurate prediction of a

PVD patient. The reasons for predicting it as PVD are older age and
Frontiers in Endocrinology 07
larger TBA among others. Conversely, The panel below shows

correct identification of a non-PVD patient. The reasons for

predicting it as NPVD are younger age, lower levels of TBA, and

normal BUN level. The XGBoost model can effectively distinguish

between PVD and NPVD patients, providing tailored risk

assessments for each individual.
4 Discussion

PVD is a prevalent macrovascular complications of T2DM and

is a long-standing complication. It can increase the risk of

cardiovascular complications, and it’s a major contributor to the

development of diabetes-related foot disease (DFD), diabetes-

related foot ulceration(DFU), and lower-limb amputation (LLA)

(48). DFU, LLA are associated with significant disability and

increased mortality, with a 5-year mortality risk of 70% after LLA

and 50% after DFU (49). Most PVD patients have systemic

atherosclerosis, and many die from cardiovascular and
TABLE 2 Continued

Variable Total (n=3982) NPVD (n=917) PVD (n=3065) P value

Hypertension 1931 (48.49) 278 (30.32) 1653 (53.93) <0.001**

Fatty liver 1346 (33.80) 341 (37.19) 1005 (32.79) 0.014*

DN 1361 (34.18) 243 (26.50) 1118 (36.48) <0.001**

CHF 893 (22.43) 116 (12.65) 777 (25.35) <0.001**

DK 497 (12.48) 225 (24.54) 272 (8.87) <0.001**

Acidosis 189 (4.75) 96 (10.47) 93 (3.03) <0.001**

Atherosclerosis 409 (10.27) 57 (6.22) 352 (11.48) <0.001**

Hypertensive heart disease 557 (13.99) 55 (6.00) 502 (16.38) <0.001**
fro
*, p value<0.05; **,p value<0.01. BMI, body mass index; SBP, systolic blood pressure; UPR-24,24-hour Urine Protein; HbA1c, glycated hemoglobin; UCr, Urinary Creatinine; Hb, hemoglobin; P,
Inorganic Phosphate; APOA1, Apolipoprotein A1; CO2-BC, Carbon Dioxide Binding Capacity; GSP, Glycated Serum Protein; TG, triglycerides; TBA, Total Bile Acids, CysC, Cystatin; GGT,
Gamma-Glutamyl Transpeptidase; ALT, Alanine Aminotransferase; GFR, Glomerular Filtration Rate; IBili, Indirect Bilirubin; TBili, Total Bilirubin; GLO, Globulin; ALB, Albumin; A/G Ratio,
Albumin/Globulin Ratio; LDH, Lactate Dehydrogenase; ALP, Alkaline Phosphatase; LP-a, lipoprotein (a); BUN, blood urea nitrogen; SCr, serum creatinine; CP, C-peptide; PT, Prothrombin
Activity; FIB, Fibrinogen; MA, Microalbuminuria Testing; DPN, Peripheral Neuropathy desease; DR, diabetic Retinopathy; DF, Diabetic foot; DN, Diabetic Nephropathy; CHF, Cardiac
insufficiency and Heart failure; DK, Diabetic Ketos.
FIGURE 2

Change of AUC based on the number of features. AUC, area under the curve; LR, Logistic regression; DT, Decision Tree; RF, Random Forest; SVM,
Support Vector Machine; XGBoost, Extreme Gradient Boosting; Adaboost, Adaptive Boosting.
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cerebrovascular events. PVD is a global health problem that affects

over 200 million people worldwide. One reason for high prevalence

is that in many cases, PVD is silent and less than 20% of patients

report typical symptoms of PVD. Due to peripheral neuropathy, the

prevalence of asymptomatic PVD is even higher in diabetic patients,

estimated to be almost one-third of all diabetic patients (50). Early

symptoms of PVD are non-specific,. Once there is resting pain,

intermittent claudication, ischemic gangrene, etc., trauma treatment

or even amputation is needed, which will cause significant

psychological and physiological harm to the patient (51).

Therefore, prompt diagnosis and treatment of PVD in DM

patients are crucial. Currently, PVD diagnosis primarily depends

on imaging techniques like B-ultrasound and MRI (52). However,

these methods can be costly and time-consuming, and with the

rising number of diabetes cases, imaging every diabetic patient

presents a considerable challenge. Therefore, developing a risk

prediction model to identify high-risk individuals for targeted

imaging is essential.

Several studies have attempted to build risk predictive models

for PVD. Schallmoser et al. (4) developed ML models to predict the

risk of developing PVD and five other complications in individuals

with diabetes and prediabetes simultaneously using electronic
Frontiers in Endocrinology 08
health records from Israel, However, due to the non-specificity of

the indicators used for all six complications and an unaddressed

imbalanced dataset, the models showed relatively poor predictive

performance despite a large data size. Liang et al. (52) developed a

nomograph to predict the risk of PAD, however, nomograph

method is inapplicable for large-scale datasets. Wilcox et al. (53)

and Majid Khan et al. (50) only employed statistical description and

univariate analysis methods to analyze factors influencing PVD. To

date, no study has specifically used machine learning to establish a

PVD risk prediction model. This study aims to develop such a

model for T2DM patients in the Hainan region, using six machine

learning models based on electronic medical records. The XGBoost

model exhibited the highest predictive performance with the

highest AUC of 0.945 and recall of 0.927 on the testing dataset,

the high AUC and high recall rate of the model shows that it has

good reliability. Given that the strength of the associations found

can vary across different ML models, we compared the feature

importance rankings of four different models and found that most

models considered Age, Hb, LP-a to be the most important

influencing factors, which makes the influencing factors we have

identified more convincing.

The developed model has several advantages. Firstly, RFE with

5-fold cross-validation was used to select the best features subset for

developing prediction model. Secondly, to mitigate the bias towards

the majority class in unbalanced datasets and prevent overfitting, we

utilized the SMOTE for oversampling. Thirdly, we developed six

classical ML prediction models and determined that the XGBoost

model was the best after comparing their performance. Fourthly, we

employed the SHAPmethod to explain the relationship between the

input features and the output of the XGBoost model, thereby

facilitating an intuitive understanding for clinicians and

enhancing the model’s clinical applicability. Additionally, we

conducted an analysis of the factors influencing individual PVD

progression using the SHAP method, which can assist clinical

doctors in personalized preventive treatments.

In this study, the prevalence of PVD in patients with T2DMwas

77%, significantly higher than previously reported figures. This

elevated prevalence could be attributed to multiple factors. Firstly,

the actual prevalence of PVD may be greatly underestimated due to

asymptomatic early stages leading to undiagnosed cases (48, 54).

Secondly, our study population consisted of hospitalized patients

with T2DM, who likely had more severe conditions and a higher
FIGURE 3

Receiver operating characteristic(ROC) curves for different models.
AUC, area under the curve; LR, Logistic regression; DT, Decision
Tree; RF, Random Forest; SVM, Support Vector Machine; XGBoost,
Extreme Gradient Boosting; Adaboost, Adaptive Boosting.
TABLE 3 Performance comparison of different machine learning models.

Model AUC G-mean Accuracy Precision Recall F1-score

LR 0.711 0.651 0.666 0.858 0.679 0.758

DT 0.855 0.750 0.794 0.896 0.828 0.861

RF 0.935 0.817 0.873 0.918 0.917 0.918

SVM 0.683 0.641 0.706 0.846 0.755 0.798

XGBoost 0.945 0.843 0.890 0.930 0.927 0.928

Adaboost 0.938 0.853 0.871 0.943 0.886 0.913
f

The best results are in bold. AUC, area under the curve; LR, Logistic regression; DT, Decision Tree; RF, Random Forest; SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting;
Adaboost, Adaptive Boosting.
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prevalence of complications. Thirdly, the data source, a leading

comprehensive hospital in Hainan province, typically admits

patients with relatively serious conditions. Fourthly, the mean age

of our study subjects is relatively high at 60.34 years, and age is an

important risk factor for PVD.

The XGBoost model and three other models all identified Hb as

the most important risk factor for developing PVD in patients with

T2DM. And the SHAP values plot indicate that the influence of Hb

on PVD is complex and non-linear. Decreased Hb levels can lead to
Frontiers in Endocrinology 09
inadequate oxygen supply, particularly in already damaged blood

vessels, which can exacerbate vascular damage and inflammatory

responses, thus increasing the risk of cardiovascular events and

lower limb arterial disease, Additionally, Hb is an important

indicator for diagnosing anemia, and anemia can also impact

diabetes control and the progression of complications (52).

Individuals with both diabetes and anemia suffered more

comorbidities, were more likely to be hospitalized and have a

higher risk of death (55). Therefore, monitoring and managing
A B

DC

FIGURE 4

Feature importance of each of the features for four prediction models. (A) Feature importance for DT. (B) Feature importance for RF. (C) Feature
importance for XGBoost. (D) Feature importance for AdaBoost. Hb, hemoglobin; TBA, total bile acids; LP-a, lipoprotein(a); UPR-24, 24-hour urine
protein; GGT, gamma-glutamyl transpeptidase; GSP, glycated serum protein; BMI, body mass index; LDH, Lactate Dehydrogenase; ALP, Alkaline
Phosphatase; APOA1, apolipoprotein A1; BUN, blood urea nitrogen.
A B

FIGURE 5

SHAP summary plot for the 12 clinical features contributing to the XGBoost model for the test dataset. (A) SHAP feature importance measured as the
mean absolute Shapley values. (B) The distribution of the impact of a risk factor value on the model output.The contribution of each feature of each
patient to the model corresponds to a dot. The dots are coloured according to the values of features. Red represents a higher feature value, and
blue represents a lower feature value. SHAP, Shapley Additive Explanation.
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Hb levels are crucial in preventing and treating PVD in diabetic

patients. Further research is still needed to explore the exact

mechanisms and interrelationships between hemoglobin and

PVD in diabetes.

Age is recognized as the second influencing factor in the

development of PVD. As age increases, the risk of this disease

increases accordingly. This relationship is well-documented in

medical literature (4, 17, 31, 56). This is due to the fact that over

time, they are more prone to developing atherosclerosis, declining

vascular function, and complications from other chronic diseases.

The high blood sugar levels in diabetic patients accelerate the

progression of atherosclerosis and make blood vessels more

susceptible to damage. Furthermore, aging leads to reduced

vascular elasticity and endothelial dysfunction, which are further

worsened by hyperglycemia. Additionally, As people with diabetes

age, they may also face other age-related diseases and health

problems, such as hypertension, hyperlipidemia and obesity,

which may be closely associated with PVD. Therefore, it is crucial

for older diabetic patients to prioritize blood sugar control and

vascular protection. Regular monitoring of blood sugar, blood

pressure, and lipid levels, along with lifestyle improvements such

as a balanced diet, moderate exercise, and tobacco and alcohol

cessation, and adherence to medication as prescribed by their

healthcare professional, can help reduce the risk of PVD in

diabetic patients. Regular check-ups and close collaboration with

healthcare professionals are also vital.

Lipoprotein-a (LP-a) is a genetically determined, cholesterol-

rich plasma lipoprotein. Lp-a has proinflammatory and

proatherogenic properties. Its serum level is associated with

atherosclerotic cardiovascular diseases, including PAD. Previous

studies have shown that Lp-a is a significant independent risk factor

for PVD and is also associated with more severe forms of PVD in

specific populations (57–59). Our study also indicated that LP-a is

an important risk factor of PVD in T2DM, which is consistent with

the aforementioned studies.

Our model indicated that TBA was an important factor for

PVD. Patients with higher TBA are more likely to develop PVD.

There are several possible mechanisms for this. First one is elevated
Frontiers in Endocrinology 10
serum TBA levels can damage vascular endothelial cells, thereby

participating in the mechanism of atherosclerosis through

endothelial injury (60). Another research suggests that TBA act as

inhibitors of 11 b-hydroxysteroid dehydrogenase. Elevated TBA

levels may inhibit the activity of 11 b-hydroxysteroid
dehydrogenase, resulting in increased levels of cortisol in the

body. Cortisol can bind to mineralocorticoid receptors and

produce aldosterone-like effects, leading to an increase in

circulating blood volume and affecting blood pressure. This

process is believed to contributes to the occurrence and

progression of atherosclerosis (61). More research is needed to

further clarify the mechanism by which TBA are involved in the

development of PVD.

Other risk factors for PVD also warrant consideration, though

they may not be ranked as high as the above four factors or might

not be included in our machine learning prediction model. Analyses

in America have shown that individuals with PVD typically have a

slightly lower average BMI. This could be attributed to smoking, a

significant risk factor for PVD, which can also lead to weight loss

(14). A retrospectively study indicated that BUN was an

independent risk factor for PVD in patients with T2DM. BUN is

an easily recognizable, widely accessible, and inexpensive marker

that can identify patients at high risk for PVD (52). Our study

obtained similar results concerning the aforementioned factors.

To the best of our knowledge, this study is the first to apply

various ML algorithms to establish prediction models for PVD in

T2DM and analyze its risk factors. Nonetheless, this study has

limitations. Firstly, only participants with diabetes were included,

and therefore solely diabetes-related indicators were explored. If a

control group of healthy individuals had been integrated, the

prediction outcomes could have varied. Secondly, the current

research was a single-center retrospective modeling study with

only an internal validation. The applicability of our results to

other regions remains to be verified. Thirdly, imputation and

feature selection were conducted prior to the training and

validation sets split, which may have impacted the final models.

Finally, future research needs to address the lack of collected and

analyzed data on patients’ subjective descriptions, such as their
A

B

FIGURE 6

SHAP force plot for explaining of individual’s prediction results. (A) SHAP force plot for a PVD patient; (B) SHAP force plot for a NPVD patient.
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duration of diabetes and smoking habits, which have been reported

as associated with PVD in T2DM (14).
5 Conclusions

The rapidly increasing prevalence of T2DM has attracted

international attention. As a long-standing complication, PVD

imposes a significant burden on individuals and society.

Identifying high-risk individuals early is crucial for preventing

this complication. In our study, we developed ML models to

identify individuals with T2DM at high risk of developing PVD

and analyzed the risk factor for PVD. The SHAP method enhanced

the interpretability of our ML models, aiding clinicians in

understanding the models’ rationale and improving the practical

applicability of the prediction models in clinical settings. Our team

is committed to refining these PVD prediction models in future

studies by addressing the current limitations.
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