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Identification of inhibitors from a
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Perillae Folium against
hyperuricemia via metabolomics
profiling, network pharmacology
and all-atom molecular
dynamics simulations
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Yanyan Liu1, Angela Wei Hong Yang2, Jianlu Bi4,
Andrew Hung5*, Hong Li1,5* and Xiaoshan Zhao1*

1School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, 2School of
Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia,
3Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China,
4Endocrinology Department, Guangdong Second Traditional Chinese Medicine Hospital,
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Introduction: Hyperuricemia (HUA) is a metabolic disorder caused by purine

metabolism dysfunction in which the increasing purine levels can be partially

attributed to seafood consumption. Perillae Folium (PF), a widely used plant in

functional food, has been historically used to mitigate seafood-induced diseases.

However, its efficacy against HUA and the underlyingmechanism remain unclear.

Methods: A network pharmacology analysis was performed to identify candidate

targets and potential mechanisms involved in PF treating HUA. The candidate

targets were determined based on TCMSP, SwissTargetPrediction, Open Targets

Platform, GeneCards, Comparative Toxicogenomics Database, and DrugBank.

The potential mechanisms were predicted via Gene Ontology (GO) and Kyoto

Gene and Genome Encyclopedia (KEGG) analyses. Molecular docking in

AutoDock Vina and PyRx were performed to predict the binding affinity and

pose between herbal compounds and HUA-related targets. A chemical structure

analysis of PF compounds was performed using OSIRIS DataWarrior and

ClassyFire. We then conducted virtual pharmacokinetic and toxicity screening

to filter potential inhibitors. We further performed verifications of these inhibitors’

roles in HUA through molecular dynamics (MD) simulations, text-mining, and

untargeted metabolomics analysis.

Results: We obtained 8200 predicted binding results between 328 herbal

compounds and 25 potential targets, and xanthine dehydrogenase (XDH)

exhibited the highest average binding affinity. We screened out five promising

ligands (scutellarein, benzyl alpha-D-mannopyranoside, elemol, diisobutyl
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phthalate, and (3R)-hydroxy-beta-ionone) and performed MD simulations up to

50 ns for XDH complexed to them. The scutellarein-XDH complex exhibited the

most satisfactory stability. Furthermore, the text-mining study provided

laboratory evidence of scutellarein’s function. The metabolomics approach

identified 543 compounds and confirmed the presence of scutellarein.

Extending MD simulations to 200 ns further indicated the sustained impact of

scutellarein on XDH structure.

Conclusion: Our study provides a computational and biomedical basis for PF

treating HUA and fully elucidates scutellarein's great potential as an XDH inhibitor

at the molecular level, holding promise for future drug design and development.
KEYWORDS

functional food, hyperuricemia, metabolomics, molecular docking, molecular dynamics
simulation, in silico analysis, chemical structure analysis
1 Introduction

Hyperuricemia (HUA) is defined as elevated urate in the

circulation due to overproduction or underexcretion of uric acid

(1, 2). In clinical practice, HUA is typically reported when serum

urate exceeds 420 mmol/L (7 mg/dL) in males or 360 mmol/L (6 mg/

dL) in females (3). In recent years, some epidemiological research

indicated that an upward trend of prevalence of HUA in China was

observed (4, 5). The incidence and prevalence rate of HUA in

Chinese adults is 11.1 per 100 person-years and 15.1%, respectively

(6, 7). In general, the widely observed consequences of HUA are

gout and nephrolithiasis (8). Typically, HUA is deemed as the most

decisive risk factor for the development of gout while the serum

urate contributes to gout as well as nephrolithiasis in a

concentration-dependent manner (9, 10). In addition to the

above-mentioned consequences, asymptomatic HUA is also

accompanied by a series of complications. Accumulative clinical

studies suggested that elevated levels of uric acid are associated with

increased risk of renal diseases, whether the participants are

children, adolescents, or adults (11, 12). Furthermore, HUA is

also recognized as a risk factor for kidney failure and all-cause

mortality in patients with chronic kidney disease (13, 14). Mounting

clinical evidence also showed that high serum uric acid levels were

associated with hypertension (15, 16), stroke (17), type 2 diabetes

(18), and metabolic syndrome (19).

To prevent the potential related comorbidities of HUA, urate-

lowering agents are needed, which aim at reducing the production

or increasing the excretion of uric acid. To inhibit the process of

uric acid production, the first-line clinical drugs, including

allopurinol and febuxostat, were designed mainly based on the

xanthine oxidoreductase enzyme, a limiting enzyme in purine

metabolism that is essential for converting hypoxanthine and

xanthine into uric acid. This enzyme typically exists in two forms,

xanthine dehydrogenase (XDH) and xanthine oxidase (XO) (20). In
02
addition to lowering serum urate (21), the above XDH inhibitors

were proven clinically to slow the progression of chronic kidney

disease and reduce cardiovascular risks (22, 23). However, the

clinical application of XDH inhibitors has been limited due to the

reported adverse events. For instance, severe hypersensitivity

reactions were reported when using allopurinol. Therefore,

genotype testing of HLA-B*5801 is necessary for clinical

applications and the medical burden is increasing. Additionally,

febuxostat also has potential cardiovascular toxicity and

hepatotoxicity (24). Therefore, it is urgent to identify new

effective and non-toxic urate-lowering agents to meet the demand

of an increasing proportion of the population with HUA.

In recent years, plant-based functional food has attracted

considerable attention for its beneficial effects on health

promotion, well-being, and diseases. Numerous laboratory

evidence indicated that plant-based functional foods play a non-

negligible role in the prevention and management of HUA (25).

Perillae Folium (PF), namely the leaf of Perilla frutescens (L.)

Britton or Perilla Leaf, also known as Zi su ye in Chinese Pin Yin,

which can be seen as a representative plant-based functional food,

has a long history of serving as a widely used, edible medicinal herb.

PF is mainly cultivated in Hubei, Henan, and Sichuan provinces in

China, and is harvested in summer. In traditional Chinese medicine

theory, PF is characterized as having warm properties and spicy

flavor, entering the Spleen and Lung meridians, and possesses the

efficacy of relieving the exterior syndrome, dispelling cold,

activating Qi, regulating the stomach, as well as detoxifying fish

and crab poison (26). Pharmacological research reveals that PF may

have bioactive properties including anti-allergy, anti-inflammatory,

anti-oxidation, anti-cancer, anti-bacterial, and anti-depression

effects (27). Several laboratory studies indicated that some

bioactive constituents of PF showed impressive inhibitory effects

on XDH (28–30). However, the compounds identified from PF are

still limited and a more comprehensive and more in-depth study is
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greatly needed. Here, with the help of supercomputer-aided

technology, we explored the mechanism of PF treatment for

HUA, fully screened potential active ingredients, and verified

them using an integrated multi-method approach, including

untargeted metabolomics profiling, bioinformatics analysis, high-

throughput virtual screening, cheminformatics analysis, and

molecular dynamics (MD) simulations.
2 Materials and methods

The computational calculations in our work were conducted

using the Sunway TaihuLight supercomputer (12-cores Chinese-

designed SW26010 manycore 64-bit RISC processors) at the

National Supercomputing Center in Wuxi (Wuxi, China), and the

SiBioLead online MD simulation platform (https://sibiolead.com/)

(GPU-based high-performance cluster system, running on Ubuntu
Frontiers in Endocrinology 03
OS, NVIDIA GeForce RTX3050 GPUs). Figure 1 presents the

holistic view of our research process.
2.1 Identification of Perillae
Folium compounds

Compounds of PF were retrieved from the Traditional Chinese

Medicine Systems Pharmacology Database and Analysis Platform

(TCMSP), a systems pharmacology platform for Chinese herbal

medicines (https://tcmsp-e.com/). The widely used database

consists of 499 Chinese herbs, 29384 ingredients, 3311 targets,

and 837 associated diseases. In addition, 12 key pharmacokinetic

properties were included for each compound (31). Zi su ye, the

pinyin name of PF, was used as a search term to gather information

for each ingredient, including the molecular name, PubChem CID,

MOL2 files, and the pharmacokinetic parameters.
FIGURE 1

The workflow of the computational prediction.
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Since all the identified compounds were regarded as potential

ligands in our next stage of analysis, we collected the structure files

in SDF format and the SMILES sequence of each ligand with the

assistance of the PubChem database. MOL2 files downloaded from

the TCMSP served as a substitute when the SDF files of a certain

ligand were not available. The structures obtained above were then

transformed into PDB format via Discovery Studio Visualizer 2019.
2.2 Analysis of metabolomics profiling

The Zi su ye dispensing granule (batch number: A2121691;

Guangdong Yifang Pharmaceutical Co., Ltd.) was prescribed and

supplied by Dr Xiaojuan Deng from the Liwan District People’s

Hospital of Guangzhou. Untargeted metabolomics was carried out

by the Shanghai Bioprofile Biotechnology Co., Ltd (Shanghai,

China), which included sample preparation, extract analysis, and

identification of metabolites. For the sample preparation, 50 mg of

Zi su ye granule was mixed with 300 mL of pre-cooled methanol-

aqueous solution (4:1, v/v) and then the sample was homogenized

and broken. Subsequently, 700 mL of pre-cooled methanol-water

solution (4:1, v/v) was added and the sample was treated with

ultrasound in an ice bath for 20 minutes (ultrasound, Bioruptor,

Diagenode). After incubating at -20°C for one hour, the sample was

centrifuged at 16000 g at 4°C for 20 minutes and then the collected

supernatant was vacuum-dried (Concentrator plus, Eppendorf).

Finally, for further metabolic analysis, the supernatant was re-

dissolved in 200 mL of methanol-aqueous solution (1:1, v/v) and

was centrifuged again at 20000 g at 4°C for 15 minutes. In terms of

extract analysis, a UHPLC (Shimadzu Nexera X2 LC-30AD,

Shimadzu, Japan) coupled with Q-Exactive Plus (Thermo

Scientific, San Jose, USA) was used. The conditions of UPLC were

presented as follows: an ACQUITY UPLC® HSS T3 column

(2.1×100 mm, 1.8 µm) (Waters, Milford, MA, USA) was selected.

The mobile phase included solvent A (0.1% formic acid in water)

and solvent B (100% acetonitrile). The gradient elution was set as

follows: 0% B (0-2 minutes), linear gradient from 0% to 48% B (2-6

minutes), 48% to 100% B (6-10 minutes), maintained at 100% B

(10-12 minutes), 100% to 0% B (12-12.1 minutes), kept at 0% B

(12.1-15 minutes). The flow rate, temperature of column oven, and

volume of injection were 0.3 mL/min, 40°C, and 6 mL, respectively.
Mass spectrometry data acquisition was conducted in both positive

and negative ion modes under parameters as follows, spray voltage:

3.8 kv (positive) and 3.2 kv (negative); capillary temperature: 320°C;

sheath gas (nitrogen) flow: 30 arb (arbitrary units); Aux Gas flow: 5

arb; probe heater temperature: 350°C; S-Lens RF Level: 50; the range

of precursor ion scan: 70-1050 m/z; full MS scan: 70000 at m/z 200

(resolution), 3×106 [automatic gain control (AGC)], 100 ms

[injection time (IT)]; MS/MS scan: 17500 at m/z 200 (resolution),

1×105 (AGC), 50 ms (IT); isolation window for MS2: 2 m/z;

normalized collision energy (Stepped): 20, 30, and 40.

Furthermore, at the stage of metabolite identification, MS-DIAL

was used for peak alignment, retention time correction, and peak

area extraction for preprocessing the acquired raw MS data. Finally,

metabolite identification was based on accuracy mass (mass

tolerance < 10 ppm) and MS/MS data (mass tolerance < 0.02 Da),
Frontiers in Endocrinology 04
and the obtained metabolites were then matched with the

metabolite standard library built by Bioprofile.
2.3 Acquisition of Perillae Folium’s
potential targets for hyperuricemia

Typically, both ligand-related and disease-related targets are

required for the identification of potential targets of a specific herb

for a certain disease when conducting network pharmacology

research. Concerning ligand-related targets, the TCMSP database

was employed to obtain “related targets” by searching the herbal

name, and all results were subsequently included. Additionally, the

SwissTargetPrediction database (http://swisstargetprediction.ch/), a

web tool commonly used for predicting the most probable protein

targets of a specific small molecule, was applied by putting the

SMILES sequences of compounds into the search box (32). Only

those with a probability score greater than or equal to 0.1 are

considered, consistent with the criterion set out in a previous paper

(33). On the other hand, the identification of HUA-related targets

was implemented using the following three disease databases: Open

Targets Platform (https://platform.opentargets.org/) (34), GeneCards

(ht tps : / /www.genecards .org/) (35) , and Comparat ive

Toxicogenomics Database (CTD) (http://ctdbase.org/) (36). Next,

each target name was converted into an official name

corresponding to Homo sapiens via the UniProt database (http://

www.uniprot.org) (37).

Subsequently, the two kinds of targets mentioned above were

intersected and a Venn diagram was plotted to recapitulate the

profile of these targets using jvenn (http://bioinfo.genotoul.fr/jvenn)

(38). In addition, to comprehensively investigate the interactions

between PF’s ingredients and HUA, some drug targets were also

included in our analysis, whose identification processes are

presented as follows. “Hyperuricemia”, as an indication, was

entered into the search box in the DrugBank database (https://

go.drugbank.com/) (39), and five clinical agents were found,

including Allopurinol, Lesinurad, Probenecid, Rasburicase, and

Sulfinpyrazone. Then their corresponding targets that act as

inhibitors were identified, including XDH, SLC22A12, SLC22A11,

SLC22A8, SLC22A6, ABCC1, and ABCC2. In addition, given that

inhibiting purine nucleoside phosphorylase (PNP) to reduce the

production of uric acid is one of the main therapies for urate-

lowering drug design (24), PNP was also introduced into our

analysis. Finally, the intersected targets and the drug targets

together constituted the PF’s candidate targets for HUA.
2.4 Establishment of protein-protein
interaction network

To systematically clarify the physical interactions and

functional associations among candidate targets, the STRING

database was implemented to construct a network of protein-

protein interaction (PPI) (40). Initially, the candidate targets put

into the search box were restricted to “Homo sapiens”.

Subsequently, in the basic settings, the “full STRING network”
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was set as the network type while all active interaction sources were

taken into consideration. In addition, the edges refer to

“confidence” and the minimum required interaction score was set

as “medium confidence (0.400)”. Finally, all candidate targets were

divided into three clusters shown in different colors based on the

“kmeans clustering” option.
2.5 Enrichment analysis of Gene Ontology
and Kyoto Encyclopedia of Genes
and Genomes

To further elucidate the complex mechanism of PF’s

compounds against HUA, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis and Gene

Ontology (GO) annotation, which consists of three parts

[biological processes (BP), cellular components (CC), molecular

functions (MF)], were performed based on the candidate targets

(41, 42). The Database for Annotation, Visualization and Integrated

Discovery (DAVID) (https://david.ncifcrf.gov/) was employed in

our analysis (43). On the DAVID website, the candidate target

names were imported as “gene list” while “official gene symbol” and

“homo sapiens” were selected as identifiers and species, respectively.

Finally, all annotated terms obtained following the KEGG and GO

enrichment analysis were ranked by p-value and then the top 15

KEGG pathways, as well as the top ten of BP, CC, and MF terms

were selected for further visualization via an online drawing tool

(http://www.bioinformatics.com.cn/).
2.6 Molecular docking between Perillae
Folium compounds and the
candidate targets

Molecular docking, a widely used computational approach that

is applied for the prediction of the docking pose and

complementarity of a small molecule to the binding sites of

macromolecular targets in hit identification as well as lead

optimization, was performed (44, 45). As an essential part of

docking results, the predicted binding affinity is generally used to

evaluate ligand-protein interactions. Typically, lower binding

energy values indicate more significant binding modes. In our

study, PF compounds’ PDB files were prepared as described

above and the candidate proteins’ PDB files were retrieved from

the AlphaFold Protein Structure Database (https://alphafold.com/),

an artificial intelligence-driven system applied for predicting a

protein’s three-dimensional structure (46, 47). The PDB files of

both ligands and targets were then converted to PDBQT format via

PyRx (v0.8) (48), a software designed for computational drug

discovery. Next, molecular docking was performed by an

extensively used docking software, AutoDock Vina (v1.1.2) (49).

In terms of docking parameter settings, the “maximize” option was

selected to ensure the whole protein surface was accessible for

ligand docking and hence produced an unbiased prediction of

possible interaction sites. Throughout the docking process, “48”
Frontiers in Endocrinology 05
was set as the exhaustiveness value. Furthermore, the receptors were

treated as fixed structures while full torsional flexibility was allowed

for the semi-rigid ligand molecules.
2.7 Screening potential compounds for
treating hyperuricemia

Given that XDH possessed the highest average binding affinity

based on the docking results (Table 1), it was chosen for our further

analysis. The active sites of XDH were mainly based on the residues

identified by a previous study (50) and were modified using the

AlphaFold Protein Structure Database, which was applied to predict

the structures of the missing segments of the protein. Then Discovery

Studio Visualizer 2019, a software widely applied for molecule

visualization, was used to display the ligand-residue interactions

between the compounds and the predicted binding sites of XDH.

The SMILES sequences of the compoundsmentioned above were input

to ADMETlab 2.0 (https://admetmesh.scbdd.com/) (51) and PAINS-

Remover 20 (https://www.cbligand.org/PAINS/) (52) to predict their

ADMET properties and check the potential false positives among

them, respectively.
2.8 Chemical structure analysis of Perillae
Folium compounds

To explore the associations between the structures of PF’s

compounds and their interactions with XDH, OSIRIS

DataWarrior (v5.5.0), a software used for analysis and

visualization of chemical data, was implemented for building a

cluster network based on the structural similarity and binding

energy (53). Subsequently, ClassyFire, an application for chemical

classification (http://classyfire.wishartlab.com/), was employed to

determine the classifications of compounds in the clusters that

contain more than seven components (54), adhering to the method

that we used in our previously published work (55). Furthermore,

we compared the structure profiles of five compounds (identified in

the active sites of XDH) and all compounds with two well-studied

inhibitors of XDH: febuxostat and allopurinol.
2.9 Construction of a compound-target
network for hyperuricemia

To visualize the interactions between active ligands and

receptors, the top ten compounds with the highest binding energy

to each candidate target, which indicate potential physiological

importance, were included to build a compound-target network.

Cytoscape (v3.9.1), a software aimed at visualizing complex

networks, was implemented for the establishment of the network.

In the network, the degree value indicates how many targets a

compound was predicted to strongly bind with. The color and size

of rectangle nodes were determined by the corresponding degree

value of each included compound.
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2.10 Molecular dynamics simulations for
potential inhibitors against hyperuricemia

MD simulations were used as a more rigorous screening tool for

identifying and evaluating candidate compounds from PF for HUA.

Here, the MD simulation module hosted by SiBioLead (https://

sibiolead.com/) (56) was employed. This interactive module can

assist users in pre-processing the protein-ligand complexes, energy

minimizing the solvated systems, conducting temperature and

pressure equilibration runs, performing the final production runs,

and generating results to aid analysis. The PDB files of the apo-

protein and ligand-protein complexes were uploaded onto the

SiBioLead server. The ligand-protein complexes include
Frontiers in Endocrinology 06
compounds designated ZS025, ZS056, ZS090, ZS093, and ZS252,

as identified from molecular docking based on docking scores,

binding poses, and the presence of hydrogen bond interactions. MD

simulations of the apo- and ligand-bound complexes were

performed with GROMACS (57) using the OPLS all-atom force

field (58). The ligand topology is generated with AMBERTOOLS

(59) and ACPYPE (60) based on an automated process within

SiBioLead. The simulation systems were prepared by immersing the

apo- and ligand-protein complexes in a triclinic box and solvated

with the simple point charge water model. An equal number of Na+

and Cl- counterions at a concentration of 150 mM was added to

neutralize the charges within the solvated system. Energy

minimization was performed using the steepest descent integrator
TABLE 1 Details of the 25 candidate targets of Perillae Folium treating hyperuricemia.

Target ID UniProt ID Target name Target type
Total binding

score (kcal/mol)
Average binding
affinity (kcal/mol)

ZH01 P47989 XDH Intersected/Drug target -2216.7 -6.76

ZH02 P08254 MMP3 Intersected target -2151.6 -6.56

ZH03 P21397 MAOA Intersected target -2128.7 -6.49

ZH04 P05091 ALDH2 Intersected target -1975.6 -6.02

ZH05 P45983 MAPK8 Intersected target -2037.3 -6.21

ZH06 Q14790 CASP8 Intersected target -1903.8 -5.8

ZH07 P37231 PPARG Intersected target -1907.6 -5.82

ZH08 Q04206 RELA Intersected target -1752 -5.34

ZH09 P10145 CXCL8 Intersected target -1634.7 -4.98

ZH10 P01375 TNF Intersected target -1709.5 -5.21

ZH11 P40763 STAT3 Intersected target -1832.7 -5.59

ZH12 P35354 PTGS2 Intersected target -2061.8 -6.29

ZH13 P00797 REN Intersected target -1679.3 -5.12

ZH14 P03372 ESR1 Intersected target -2029 -6.19

ZH15 P02768 ALB Intersected target -2119.5 -6.46

ZH16 P28223 HTR2A Intersected target -2062.3 -6.29

ZH17 P15692 VEGFA Intersected target -1511.4 -4.61

ZH18 P05231 IL6 Intersected target -1670.7 -5.09

ZH19 P00491 PNP Drug target -1974 -6.02

ZH20 Q96S37 SLC22A12 Drug target -2020.5 -6.16

ZH21 Q9NSA0 SLC22A11 Drug target -1998.5 -6.09

ZH22 Q4U2R8 SLC22A6 Drug target -2064.4 -6.29

ZH23 Q8TCC7 SLC22A8 Drug target -2110.8 -6.44

ZH24 P33527 ABCC1 Drug target -2140.9 -6.53

ZH25 Q92887 ABCC2 Drug target -2031.6 -6.19
ABCC1, ATP-binding cassette sub-family C member 1; ABCC2, ATP-binding cassette sub-family C member 2; ALB, albumin; ALDH2, aldehyde dehydrogenase, mitochondrial; CASP8, caspase-
8; CXCL8, chemokine (C-X-C motif) ligand 8; ESR1, estrogen; HTR2A, 5-hydroxytryptamine receptor 2A; IL6, interleukin-6; MAOA, monoamine oxidase type A; MAPK8, mitogen-activated
protein kinase 8; MMP3, matrix metalloproteinase-3; PNP, purine nucleoside phosphorylase; PPARG, peroxisome proliferator-activated receptor gamma; PTGS2, prostaglandin G/H synthase 2;
RELA, transcription factor p65; REN, renin; SLC22A11, solute carrier family 22 member 11; SLC22A12, solute carrier family 22 member 12; SLC22A6, solute carrier family 22 member 6;
SLC22A8, solute carrier family 22 member 8; STAT3, signal transducer and activator of transcription 3; TNF, tumor necrosis factor; VEGFA, vascular endothelial growth factor A; XDH,
xanthine dehydrogenase.
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with a maximum of 5,000 steps. During the equilibration runs, the

temperature was maintained at 300 K while the pressure was kept

constant at 1 bar for a duration of 100 ps. After equilibration, the

system was subjected to a production run using the leapfrog

integrator for 50 ns. The trajectory generated from the

production runs was analyzed within the Sibiolead module.

Analyses applied in this study include the root mean square

deviation of backbone Cɑ atoms (RMSD), root mean square

fluctuation (RMSF), the radius of gyration (Rg), solvent accessible

surface area (SASA), the number of hydrogen bonds (Hbnum), and

the number of atom pairs within 0.35 nm (nPairs) between the

protein and ligand throughout the 50 ns simulation. To visualize the

physical behavior of small molecules in the pocket of the target,

Visual Molecular Dynamics software, a tool developed for

modeling, visualization, and analysis of biological systems, was

implemented (61).
3 Results

3.1 Herbal compounds and potential
targets of Perillae Folium for
treating hyperuricemia

We collected details of a total of 328 compounds of PF from the

TCMSP database (Supplementary Table S1). As for the candidate

targets, we identified 683 targets from SwissTargetPrediction, 330

from TCMSP, 749 from GeneCards, 333 from Open Targets

Platform, and 15581 from the CTD database (Figure 2A). Next,

targets common across all of the above databases were identified,

and 18 targets were obtained, including xanthine dehydrogenase

(XDH), matrix metalloproteinase-3 (MMP3), monoamine oxidase

type A (MAOA), aldehyde dehydrogenase, mitochondrial

(ALDH2), mitogen-activated protein kinase 8 (MAPK8), caspase-

8 (CASP8), peroxisome proliferator-activated receptor gamma

(PPARG), transcription factor p65 (RELA), chemokine (C-X-C

motif) ligand 8 (CXCL8), tumor necrosis factor (TNF), signal

transducer and activator of transcription 3 (STAT3),

prostaglandin G/H synthase 2 (PTGS2), renin (REN), estrogen

(ESR1), albumin (ALB), 5-hydroxytryptamine receptor 2A

(HTR2A), vascular endothelial growth factor A (VEGFA), and

interleukin-6 (IL6) (Figure 2A). In addition, to comprehensively

investigate the interactions between PF’s ingredients and HUA, we

paid special attention to the drug targets for HUA, including purine

nucleoside phosphorylase (PNP), solute carrier family 22 member

12 (SLC22A12), solute carrier family 22 member 11 (SLC22A11),

solute carrier family 22 member 6 (SLC22A6), solute carrier family

22 member 8 (SLC22A8), ATP-binding cassette sub-family C

member 1 (ABCC1), and ATP-binding cassette sub-family C

member 2 (ABCC2). Interestingly, each of the selected drug

targets was predicted to have a good binding affinity (less than -6

kcal/mol) (62) with PF compounds in the molecular docking results

later (Table 1), which suggests that a large number of PF

compounds possess good binding property with the drug targets.

Subsequently, we selected 18 targets that are common across the

databases, and seven potential drug targets, which were
Frontiers in Endocrinology 07
incorporated into our further study (Table 1). Next, a PPI

network was built based on the 25 candidate targets in the

STRING database (Figure 2B). As illustrated in the network, the

targets are clustered into three groups colored red, green, and blue.

The network has 102 edges between 25 nodes and each node is

associated with at least one other node. Additionally, the average

node degree is 8.16 while the average local clustering coefficient is

0.664. Furthermore, the PPI enrichment p-value is less than 1.0e-16.
3.2 Perillae Folium’s involvement in
multiple signaling pathways

To elucidate the possible mechanism of compound-target

interactions, GO and KEGG enrichment analyses were performed. In

the KEGG pathway enrichment analysis, the IL-17 signaling pathway

showed the lowest p-value, which was composed of IL6, MAPK8,

CXCL8, CASP8, MMP3, PTGS2, TNF, and RELA. Additionally, out of

the 15 pathways, pathways in cancer had the largest gene ratio

(Figure 2C). In the GO analysis, the 25 potential targets were

annotated by BP, CC, and MF analysis, and corresponding terms

were ranked from smallest to largest value based on p-value (Figure 2D,

Supplementary Figure S1). Based on CC analysis (Figure 2D), the

extracellular region part, apical part of the cell, extracellular region,

plasma membrane region, membrane raft, membrane microdomain,

apical plasma membrane, membrane region, plasma membrane part,

basolateral, and plasma membrane, were identified as the top ten

categories. Among them, the components with the largest enriched

protein number were the extracellular region part and extracellular

region, while the former was also the most significant one. As shown in

Supplementary Figure S1, the MF analysis revealed that the dominant

functions of the potential targets included organic acid transmembrane

transporter activity, identical protein binding, organic anion

transmembrane transporter activity, cytokine receptor binding, anion

transmembrane transporter activity, carboxylic acid transmembrane

transporter activity, prostaglandin transmembrane transporter activity,

eicosanoid transmembrane transporter activity, inorganic anion

exchanger activity, and anion binding. Under the BP category

(Supplementary Figure S1), the top ten pathways were shown as

follows: response to oxygen-containing compound, response to

nitrogen compound, response to chemical, response to

organonitrogen compound, response to organic substance, response

to drug, response to endogenous stimulus, lipid localization, cellular

response to oxygen-containing compound, and fatty acid transport.

Furthermore, the GO term, organic acid transmembrane transporter

activity, has the most significant result, and the largest number of

proteins were annotated in the “identical protein binding”.
3.3 Evaluation of Perillae Folium
compounds docking with
hyperuricemia proteins

To explore whether PF compounds are biologically connected

with potential targets of HUA based on their corresponding

molecular structures, 328 constituents were docked with 25
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proteins, producing 8200 docking results, which range from -11.7 to

-2.1 kcal/mol. Typically, lower binding energy indicates higher

binding affinity, which implies that a ligand tends to combine

with a receptor more tightly. From the perspective of PF

compounds, there are 139 ligands (approximately 43.3%) whose

binding energy is lower than -6 kcal/mol, which is presently defined
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as having a strong interaction (Supplementary Table S2). Among

them, the top ten compounds with the highest average binding

scores included ZS059, ZS058, ZS014, ZS070, ZS074, ZS083, ZS118,

ZS066, ZS068, and ZS055. A total of 27 ligands were found to

possess lower binding energy than febuxostat (-8.7 kcal/mol).

Moreover, 16 constituents were found to dock well with each of
A

B

D

C

FIGURE 2

Identification and enrichment analysis of candidate targets for Perillae Folium treating hyperuricemia. (A) Venn diagram of Perillae Folium-related
targets and hyperuricemia-related targets. TCMSP, the traditional Chinese medicine systems pharmacology database; STP, the SwissTarget
Prediction database. CTD, the CTD database; OT, the Open Targets database; GC, the GeneCards database. (B) Protein-protein interaction network
of the candidate targets of PF treating HUA. Nodes stand for proteins; edges stand for the protein-protein associations, and the thickness of the
edges indicates the strength of the evidence supporting protein-protein interactions; (C) The KEGG enrichment analysis of the candidate targets of
PF treating HUA. The bubble chart on the top right displayed the top 15 KEGG pathways. The chord diagram on the center-right consists of gene
names (left semicircle) and pathway names (right semicircle). Pathways 1-10 stand for IL-17 signaling pathway, lipid and atherosclerosis, AGE-RAGE
signaling pathway in diabetic complications, TNF signaling pathway, Kaposi sarcoma-associated herpesvirus infection, antifolate resistance, human
cytomegalovirus infection, alcoholic liver disease, non-alcoholic fatty liver disease, and hepatitis B, respectively. KEGG, Kyoto Encyclopedia of Genes
and Genomes. (D) The GO enrichment analysis of the candidate targets of PF treating HUA. The Sankey diagram of CC analysis is composed of gene
names, CC terms, and a bubble plot. GO, Gene Ontology; CC, cellular component.
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25 proteins (binding energy < -6 kcal/mol), which have prospects as

potential “pan-acting compounds” against HUA, such as ZS014,

ZS070, ZS083, ZS118, and ZS066 (Supplementary Table S2). In

addition, there exist 39 compound-target pairs with exceptionally

high binding affinity (< 10 kcal/mol) (Supplementary Table S2).

Docking results and features between each target and all ligands

are summarized in Figure 3 and Table 1. As shown in Table 1, the

average binding scores ranged from -6.76 to -4.61 kcal/mol. The top

10 targets with the best binding scores were ZH01 (XDH), ZH02

(MMP3), ZH24 (ABCC1), ZH03 (MAOA), ZH15 (ALB), ZH23

(SLC22A8), ZH22 (SLC22A6), ZH16 (HTR2A), ZH12 (PTGS2),

and ZH05 (MAPK8). Among them, XDH had the lowest average

binding energy (-6.76 kcal/mol), which indicated that XDH bound

well with the 328 compounds of PF. In addition, histograms were also

drawn to display the distribution characteristics of the 25 targets’

docking results. In the histograms, the 25 targets were ranked by their

average binding affinity and subsequently were divided into four

groups (Figure 3). Specifically, Group (I) corresponded to the top one

to four targets while the remaining 21 targets were evenly separated

into three groups, Group (II), Group (III), and Group (IV). As

demonstrated in Figure 3, there is at least one ligand predicted to bind

with high affinity (binding scores ≤ -9 kcal/mol) with targets from

Group (I) to (III), and more than 20 ligands had a similar effect on

ZH01 (the only one). Furthermore, most compounds (more than

50%) docked with targets from Group (I) and Group (II) with an

intermittent binding affinity (-9 to -6 kcal/mol). On the contrary,

most compounds had a weak binding affinity (> -6 kcal/mol) with

targets of Group (III) and Group (IV), especially for ZH09 and ZH17

whose numbers of bound ligands were both approximately

300 (91.4%).
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3.4 Compound-target network revealed
potential multi-target multi-active
compound mechanisms

To comprehensively demonstrate the interactions between

compounds and targets, we established an active compound-

target network. The top 10 active compounds for each target

were selected based on their binding energy. After removing the

duplicate compounds, a total of 32 active compounds were

preserved to build the network (Figure 4). In the network, the

nodes arranged in the outer layer represent the targets while the

inner layer represents the compounds. The darker color of the

inner nodes denotes the higher degree value, which typically

indicates a node in the network with more connections with

other nodes. Of the 32 active compounds, 24 of them showed

good binding ability to more than one target. Interestingly, 10

compounds bound well with more than half of the 25 targets

(Supplementary Table S3). Notably, the degree values of both

ZS059 and ZS058 are 21. The above findings may highlight the

possible synergistic effects of PF against HUA characterized by a

multi-target and multi-component mechanism.
3.5 Cluster analysis based on the structures
of the 328 compounds and their affinity
to XDH

As the structures of small molecules determine their properties

and biological function (55), we subsequently conducted a

structure-based analysis for the 328 PF compounds. Given the
FIGURE 3

Docking results between 328 Perillae Folium compounds and the 25 candidate targets for treating hyperuricemia. Histograms for 328 compounds
against the 25 targets; the x-axis stands for the binding energy intervals while the y-axis represents the number of compounds. Group (I) Top 1-4
targets; Group (II) Top 5-11 targets; Group (III) Top 12-18 targets; Group (IV) Top 19-25 targets. The proteins belonging to which group are
determined by the average binding affinity of the targets. The corresponding protein names of 25 target IDs refer to Table 1.
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essential role XDH plays in the urate-lowering agents’ development

and the observation that XDH possesses the greatest average

binding energy in our analysis described above (Table 1), we

compared the 328 PF compounds with the XDH inhibitors,

allopurinol and febuxostat. As illustrated in Supplementary Figure

S2 and Figure 5A, most PF compounds show weak similarity with

both inhibitors. Among them, compounds with the top five

similarity scores with febuxostat were identified, including ZS025,

ZS024, ZS031, ZS134, and ZS084 (Supplementary Table S4).

Next, we visualized the correlation between the structures of the

328 PF compounds and their potential biological effect on XDH. In

Figure 5B, 328 compounds are presented as nodes in various colors

according to their corresponding binding energy. Compounds with

similar structures were automatically gathered and many ensuing

clusters were generated. For each cluster, a node with a color closer

to red represents higher binding affinity while a node with a larger

size indicates a greater similarity with the surrounding compounds.

As presented in Figure 5B, Supplementary Figure S3, and

Supplementary Table S5, seven clusters containing at least seven

nodes were identified, which were classified as prenol lipids,

saturated hydrocarbons, fatty acyls, cinnamic acids and

derivatives, and phenols. Among them, the largest cluster is

composed of 37 compounds, whose classes and subclasses were

mainly identified as prenol lipids and sesquiterpenoids, respectively.

It is worth noting that nodes in the largest cluster tend to appear in

purple-red, which suggests that they commonly possess good

binding affinity (Figure 5B).
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3.6 Five ligands that strongly interact with
XDH are drug-like and non-
toxic molecules

To further explore which components are more likely to be

potential inhibitors for HUA, some parameters including pan assay

interference compounds (PAINS), hydrogen bonds (H-bonds),

binding affinity, and ADMET properties were taken into

consideration. Since XDH, a widely recognized drug target for

HUA, bound to PF compounds with the highest binding affinity

(-6.76 kcal/mol) among the 25 targets, it was considered for further

analysis. Next, febuxostat, the known inhibitor of XDH, was

selected as a positive control. Four active site residues (50) that

febuxostat binds to were modified using AlphaFold, including

Asn769, Glu803, Arg881, and Thr1011. Subsequently, 37

compounds that were identified as being close to the four

residues mentioned above based on docking results were found

and selected for further analysis, which implied that these

compounds may bear similar activity against XDH as febuxostat

(Supplementary Table S6). At the beginning of the compound

screening, with the help of PAINS-Remover, we performed

PAINS tests for all compounds, which is commonly applied to

removing false positives in high-throughput screens. Importantly,

all compounds successfully passed the test. Subsequently, we

focused on the formation of H-bonds between ligands and

targets, which is typically considered to play a critical role in

enzyme–inhibitor binding (63). Of the 37 ligands, only ZS136
FIGURE 4

Compound-target network based on the top 10 active Perillae Folium compounds for each target and all 25 targets. Nodes in the outer layer
represent the 25 targets while the inner are the active compounds. The darker color and larger size of the inner nodes denote the higher degree
value in the network. The gray edges connect each protein and its corresponding top 10 compounds.
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formed an H-bond with Thr1011, one of the four key residues.

However, among the 37 ligands, we identified 22 compounds that

formed conventional H-bonds and six of them formed probable H-

bonds (unfavorable donor-donor bonds) with other residues near

the four key active site residues. Additionally, since understanding

the ADMET properties of candidate compounds is essential at the

beginning of drug discovery (64), we predicted the properties of 37

compounds via the ADMET lab 2.0 database. Given that the well-

known law, Lipinski Rule of Five, was widely applied for evaluating

the drug-like properties of small molecules (65) while human

hepatotoxicity plays a considerable role in drug development (66,

67), these two key parameters were taken into account and
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considered as bearing high importance. All compounds passed

Lipinski’s rule, while three compounds, ZS018, ZS044, and ZS116,

were predicted to have poor performance in terms of hepatoxicity.

Based on the previous consideration, the inclusion criteria were

established as follows: (1) 0 alerts in the PAINS test; (2) forming at

least one H-bond with residues near ASN769, GLU803, ARG881,

and THR101; (3) binding energy < -6 kcal/mol; (4) 0 violation in the

Lipinski Rule of Five; (5) H-HT value ≤ 0.7. After the screening, five

qualified compounds were identified, including ZS025, ZS056,

ZS090, ZS093, and ZS252 (Table 2).

Subsequently, we visualized the binding modes between the five

identified compounds and XDH. As per Figure 6, ZS090 formed one
A

B

FIGURE 5

The cluster network of Perillae Folium compounds based on structural similarity. (A) The visualization of similarity scores of 328 compounds from
Perillae Folium compared with febuxostat. Green nodes represent febuxostat, while other nodes stand for compounds of Perillae Folium. (B) The
cluster network of 328 Perillae Folium compounds based on binding affinity and structural similarity. Colors of nodes stand for the binding affinity of
PF compounds to XDH while the size of nodes is determined by a formula according to binding energy and similarity. A larger node implicates a
lower binding affinity and a higher similarity score with the vicinal compounds.
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conventional H-bond with the active site of XDH, while ZS025,

ZS056, and ZS093 all formed two in the same region. Among them,

ZS090 was found to bind with Ser1081 at a distance of 2.32 Å while

ZS025 bound with Ala1080 and Lys1046 with a distance of 2.21 Å,

2.28 Å, and 2.30 Å, respectively. Similarly, ZS056 bound to Gln768

and Gln1195 at a distance of 2.22 Å and 2.32 Å, separately, while

ZS093 interacted with active site residues, Ser1081 and Gln1041 at a

distance of 1.64 Å, 2.40 Å, and 2.89 Å, respectively. In addition to

forming H-bonds at the two active site residues (Gln1195 and

Arg913), ZS252 also interacted with Ser1081 via unfavorable donor-

donor bonds with a distance of 2.25 Å, 2.85 Å, and 1.14

Å, separately.
3.7 Molecular dynamics simulations of the
five potential inhibitors

The conformational stability and flexibility of the six simulated

systems were analyzed using structural and dynamical quantities,

including RMSD, RMSF, Rg, SASA, and the number of hydrogen

bonds as described in Figure 7. As observed in Figure 7A, the

protein-ligand complexes achieved equilibration at approximately

10 ns following system relaxation, evidenced by the formation of a

plateau in the curve after this time. Table 3 provides a statistical

summary of averaged trajectory outcomes from 10-50 ns after the

systems have equilibrated. RMSD calculations for the ligand-free

and ligand-bound proteins are visualized in Figure 7A. It is

observed that all systems were relatively stable throughout the 50

ns with no major displacements above 0.25 nm. Small fluctuations

after approximately 10 ns suggest that all systems have attained

equilibration. The average RMSD of backbone Ca atoms for the

apo-protein was 0.203 nm, followed closely were the ZS252-bound

protein at 0.204 nm. Although the trends and magnitude of RMSD

in the ZS252-bound protein closely resemble that of the apo-

protein, the ligand itself (ZS252) had a relatively higher RMSD.

The RMSD of ZS252 averaged at 0.086 nm, a value comparable to

other ligands ZS056, ZS090, and ZS093. Interestingly, the average

RMSD of ZS025 appeared the lowest among all five ligands,

averaging at 0.04 nm. This suggests a greater stability of ZS025,
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which largely retains its initial structure, compared to the rest of the

ligands at the XDH active site (Figure 7B).

For the Rg and SASA, the changes in protein conformation over

time measured by the Rg are shown in Figure 7C while the changes

in SASA are available in Figure 7D. The absence of major protein

conformational changes among all except for one of the systems was

reflected by the relatively narrow standard deviation of less than

0.01 nm, suggesting high conformational stability and compactness

of the protein. The ZS093-bound protein had the highest average Rg

value of 3.236 nm, with more remarkable unfolding appearing after

20 ns of simulation. Consistent with the findings from Rg

calculations, the increase in SASA values for the ZS093-bound

protein was also noticeable. This increase began at an earlier

timeframe, at approximately 10 ns, and fell just before the 30 ns

mark and may indicate an expansion or destabilization of the closed

protein conformation upon binding to ZS093. Intriguingly, there

was a small difference in average SASA values between two ligands

(ZS056, ZS090) and the apo-protein of up to 0.09 nm2. This

reduction in SASA upon binding with ZS056 and ZS090 may

suggest that the ligand-bound structure induced a more compact

closed-conformation XDH structure, supporting the results from

the Rg calculation shown above.

RMSF and changes in RMSF calculations were focused on

binding-site residues between Thr750 to Val1333, as shown in

Figures 7E, F. The overall inspection of site-specific residues of

the ligand-bound and ligand-free structures suggests that they

exhibit similar flexibility. Most of the peaks were located around

loop regions and highly overlapped with each other. Additionally,

the troughs also follow a similar trend, particularly for the ligand-

bound structures. Minor differences around the two regions were

observed in the average RMSF values between the apo- and ligand-

bound structures, surrounded by the peaks of Gly801 and Asn1074

residues, as highlighted in red dotted boxes in Figure 7E. The

significant suppression of residue fluctuation in these regions

observed in all ligand-bound structures suggests that this area

could be important for ligand binding and the subsequent

stability of the XDH protein structure. Consistently, the changes

in average RMSF values among ligand-bound structures followed a

trend, except for some regions bound to ZS025 (Pro1225, Arg1246,
TABLE 2 Details of the five potential inhibitors meet the demand of the inclusion criteria.

Compound
codes

Compound
names

Identified by
mass
spectrometer

Conventional H-
bond formed at
active sites

Unfavorable
donor-
donor bonds

Binding
affinity
(kcal/
mol)

H-
HT

PAINS
Lipinski
rules
of five

ZS025 Scutellarein Yes 2(Ala1080, Lys1046) 0 -7.85 0.086 0 alert Pass

ZS056 Benzyl alpha-
D-
mannopyranoside

No 2(Gln768, Gln1195) 0 -6.86 0.044 0 alert Pass

ZS090 Elemol No 1(Ser1081) 0 -6.30 0.082 0 alert Pass

ZS093 Diisobutyl
phthalate

No 2(Ser1081, Gln1041) 1(Ser1081) -6.40 0.008 0 alert Pass

ZS252 (3R)-Hydroxy-
beta-ionone

No 2(Arg913, Gln1195) 1(Ser1081) -6.42 0.311 0 alert Pass
fr
H-bond, hydrogen bond; H-HT, human hepatotoxicity; PAINS, pan assay interference compounds.
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His1286), ZS056 (Phe968, Phe1010, Gln1041), ZS252 (Asn1074,

Val1291), ZS090 (Arg840, Asn1138) and ZS093 (Tyr1063, Asn1074,

Glu1144). Mutagenic studies may provide valuable insights into the

biological significance of these residues and confirm their roles in

the binding of the currently proposed candidate ligands.

Figures 7G, H depict the number of hydrogen bonds and pairs

within 0.35 nm, respectively. It is observed that ZS025 maintained a

high number of hydrogen bonds throughout the 50 ns simulation,

followed by ZS252 and ZS056. As for the ZS025 ligand, this

molecule gained polar contacts with XDH residues as the system

approached equilibration and maintained a high number of

contacts until approximately 20 ns before losing a few contacts

towards the second half of the simulation. This observation could be

attributed to the change in ligand conformation, consistent with the

ligand RMSD illustrated in Figure 7B. Although polar contacts were

undetected between the ZS093 and the XDH structure, other

predominant hydrophobic interactions may be responsible for the

binding stability of ZS093, albeit resulting in a significantly

weaker connection.
3.8 Scutellarein is proven to be a potential
inhibitor against XDH based on literature-
mining and untargeted metabolomics

To find laboratory evidence about the biological effects that the

five compounds exert on uric acid in vitro and in vivo, we carried

out a text-mining analysis based on PubMed, Scopus, and CINAHL.

The records we searched for were from the earliest available records
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to 28th June 2023. As per the search strategy shown in

Supplementary Table S7, the keywords we added to the query box

included scutellarein, benzyl alpha-D-mannopyranoside, diisobutyl

phthalate, Elemol, Diisobutyl phthalate, (3R)-hydroxy-beta-ionone,

hyperuricemia, uric acid, xanthine oxidase, and xanthine

dehydrogenase. We considered all available English language in

vivo and in vitro experimental studies of the five potential

compounds. We included the records of the five inhibitors that

were used in the invention. The exclusion criteria were met in these

conditions: (1) the papers were published in review type; (2) the

papers were not involved in the selected compounds targeting XO

and XDH or treating HUA and uric acid; (3) the paper was

published in language other than English. As shown in Figure 8A,

through an extensive search, we identified two records in PubMed,

ten records in Scopus, and four in CINAHL. After removing the

duplicate results, ten of them remained for further analysis.

Subsequently, three papers published in the review, one in a

language other than English, and three without any of the five

compounds as interventions, were excluded (Supplementary Table

S8). After exclusions based on the above-mentioned criteria, three

eligible studies were included (Supplementary Table S9).

Interestingly, scutellarein was reported in all four published

articles. The results of the papers were mainly based on in vitro

studies and the conducted studies were primarily xanthine oxidase

inhibitory activity assays. As per Supplementary Table S9,

compared with allopurinol, which was chosen as a positive

control drug, scutellarein showed good or modest inhibitory

effects which varied from study to study. In addition, previous

research has also determined scutellarein’s content in PF
FIGURE 6

The binding modes of five potential inhibitors identified from Perillae Folium with XDH. The purple substance represents XDH while the green one
stands for a potential inhibitor. Each inhibitor interacts with the amino acid of XDH via H-bonds (green) or unfavorable donor-donor bonds (red).
The number in Å above the bond indicates the distance of the bond. The upper layer of the diagram indicates all of the five potential inhibitors bind
to the active sites of the XDH, including (A) ZS025 (scutellarein); (B) ZS056 (Benzyl alpha-D-mannopyranoside); (C) ZS090 (Elemol); (D) ZS093
(Diisobutyl phthalate); (E) ZS252 [(3R)-hydroxy-beta-ionone] in the lower layer.
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(2.25 ± 0.49 mg/g) (68). However, except for scutellarein, the

remaining four compounds were not reported in our identified

study. In addition, we also compared the structures of the five

inhibitors with febuxostat and the results showed that ZS025

possesses the top similarity score, which is 0.50877 and appears

in light yellow (Supplementary Table S4, Supplementary Figure S4).

This finding is also consistent with the result described

above (Figure 5A).

Based on the above findings, we focused on ZS025 in our further

study. Subsequently, to confirm the presence of ZS025 in the

mixture of PF granules, we performed an untargeted

metabolomics analysis with UPLC-ESI-Q-Orbitrap-MS
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technology. As a result, there were 543 molecules identified in the

mass spectrometry results. Of the 543 molecules, 22 were coincident

with those retrieved from the TCMSP database, such as rosmarinic

acid, scutellarein, esculetin, luteolin 7-O-beta-D-glucoside, and

luteolin. Among them, scutellarein, one of the five potential

inhibitors that passed our screening protocol, was acquired in

positive ion mode, whose mass-to-charge ratio (m/z) is 287.06

and retention time (RT) is 6.95 min, has a peak area of 5686912512,

which was ranked second in the 22 overlapping molecules.

However, except for scutellarein, the remaining four compounds

were not detected in the mixture (Supplementary Table S10,

Figures 8B and Supplementary Figure S5).
A B
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G H

C

FIGURE 7

Structural analyses of the apo-, ZS025-, ZS056-, ZS090-, ZS093-, and ZS252-bound XDH based on molecular dynamics simulation. The five
inhibitors’ values of some parameters are illustrated as follows, including protein RMSD (A), ligand RMSD (B), Rg (C), SASA (D), RMSF (E), change in
RMSF (F), the number of hydrogen bonds (G), and the number of pairs within 0.35 mm (H).
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A

B

FIGURE 8

The validation of scutellarein through text-mining and untargeted metabolomics. (A) The flowchart of text-mining. (B) The mass spectrum of the
Perillae Folium granule mixture in positive ion mode. The x-axis stands for retention time (min), which ranges from 0 to 15 minutes. The y-axis
represents the signal intensity. Each peak indicates a unique compound detected in the Perillae Folium. The black arrow indicates the inhibitor we
focus on, whose schematic diagram is on the top right.
TABLE 3 Structural analyses of stabilized trajectories following equilibration at 10 ns.

Analysis XDH-apo XDH -ZS025 XDH -ZS056 XDH -ZS090 XDH -ZS093 XDH -ZS252

Protein RMSD (nm) 0.203 ± 0.014 0.231 ± 0.009 0.207 ± 0.015 0.208 ± 0.013 0.247 ± 0.01 0.204 ± 0.016

Ligand RMSD (nm) N/A 0.04 ± 0.008 0.087 ± 0.02 0.088 ± 0.025 0.092 ± 0.025 0.086 ± 0.012

Radius of gyration (nm) 3.216 ± 0.006 3.212 ± 0.005 3.207 ± 0.007 3.21 ± 0.005 3.236 ± 0.006 3.219 ± 0.006

Solvent accessible surface
area (nm2)

497.8 ± 3.969 495.465 ± 4.137 490.625 ± 4.593 490.129 ± 4.775 503.408 ± 4.947 492.797 ± 4.726

RMSF (nm) 0.113 ± 0.056 0.11 ± 0.067 0.112 ± 0.064 0.108 ± 0.052 0.111 ± 0.065 0.114 ± 0.061

Number of hydrogen bonds N/A 5687 ± 1.044 3155 ± 0.708 2104 ± 0.659 0 ± 0 4864 ± 0.788

Number of pairs within
0.35 nm

N/A 31011 ± 1.957 15082 ± 2.467 4854 ± 1.161 3791 ± 0.943 12550 ± 1.243
F
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N/A, not applicable; RMSD, root mean square deviation of backbone Ca atoms; RMSF, root mean square fluctuation; XDH, xanthine dehydrogenase; ZS025, scutellarein; ZS056, benzyl alpha-D-
mannopyranoside; ZS090, elemol; ZS093, diisobutyl phthalate; ZS252, (3R)-hydroxy-beta-ionone.
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3.9 Molecular dynamics simulation of
scutellarein-XDH complex for 200 ns

As the results of text-mining demonstrated, scutellarein was proved

to exert an inhibitory effect in vitro. The complex was also shown to be

stable over a 50 ns molecular dynamics simulation timeframe. To

provide further indications of its stability and to determine whether

ligand binding induces substantial conformational change, a

significantly longer molecular dynamics simulation, with a duration

of 200 ns, was conducted to examine the sustained stability of

scutellarein binding to the XDH active site. Figures 9A–F depict the
Frontiers in Endocrinology 16
results from time-series analysis comparing the apo XDH protein and

the scutellarein-bound XDH protein. Consistent with the time-series

trends from section 3.7, scutellarein maintained a similar magnitude of

RMSD, Rg, and SASA after equilibration at approximately 20 ns, with a

mean of 0.213 nm, 3.21 nm, and 489.2 Å2, respectively. These results do

not differ greatly from that of the apo-XDH protein: 0.218 nm for

RMSD, 3.22 nm for Rg, and 489.5 Å2 for SASA. Interestingly, as

observed in the RMSD, Rg, and SASA values in Figures 9A–C,

scutellarein binding achieved greater compactness and stability of

protein folding compared to the absence of ligand in this

longer simulation.
A B

D E F

G

H

C

FIGURE 9

Time-series analysis from the MDS trajectories of the apo-protein (blue) and scutellarein-bound protein (orange). (A) Protein backbone RMSD (nm),
(B) Radius of gyration (nm), (C) Solvent accessible surface area (nm2), (D) Ligand scutellarein RMSD (nm), (E) Number of hydrogen bonds, (F) Number
of pairs within 0.35 nm, (G) Per-residue RMSF (nm) highlighting the residues with the highest fluctuation and an accompanying inset of the protein
structure, (H) Snapshots of the simulated trajectory of the protein (blue cartoon) bound to scutellarein (orange VDW) in 1 ns, 50 ns, 100 ns, 150 ns
and 200 ns.
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Additionally, the possibility of further compactness following a

longer simulation was reflected in the increasing frequency of

hydrogen bonds. Initially, a mean of 1-2 bonds stabilized the

binding of scutellarein. After approximately 75 ns, there was an

increase to 3-4 bonds, as depicted through the highly dense thick

bands in Figure 9E. Although the number of pairs within 0.35 nm in

Figure 9F showed a slight decline in numbers shortly after system

relaxation at 20 ns, the fluctuation in magnitude and degree

remained consistent, following a sine wave trend.

It is observed in Figure 9D that there was no significant motion

in the structure of scutellarein with a mean RMSD of 0.041 nm. This

low value implies effective and stable binding at the XDH active site.

Snapshots of scutellarein (orange VDW) bound to XDH (blue

cartoons) from the initial through to the final stages of the

simulation showed that the ligand was tightly bound to the XDH

active pocket, as illustrated in Figure 9H. A closer examination of

the ligand structure demonstrated that it shifted from its initial

starting position and settled into a stable conformation soon after

equilibration, in which it remained throughout the remainder of the

200 ns simulation (Supplementary Figure S6 and Supplementary

Video S1).

Per-residue RMSF plots in Figure 9G also support the time-

series analyses and suggest greater stability and less fluctuation of

the XDH active site residues upon binding to scutellarein.

Generally, the RMSF of scutellarein-bound XDH residues

(orange) was lower than the apo-protein (dark blue). In

particular, the residues between Gln1041 and Asn1074, as

highlighted in blue in an in-set, appeared to become more rigid

with ligand binding, showing a lower RMSF. Two exceptions were

residues Pro1110 and Arg1246; however, they both were situated a

distance away from the scutellarein binding site.
4 Discussion

HUA is a metabolic disorder syndrome caused by

overproduction or underexcretion of serum urate. Many dietary

factors were proven to contribute to the excessive production of

serum urate and increased HUA prevalence, such as seafood intake

(7, 69, 70). PF, the leaves of the leaf of Perilla frutescens (L.) Britt, is a

very common plant-based functional food, which has a long history

as herbal therapy used for mitigating the toxicity of fish and crab

since the Eastern Han Dynasty (25–220 AD) (71). Hence, we

speculate that some of the compounds from PF may play a role

in lowering uric acid and preventing HUA underlying such

associations. However, whether PF can lower uric acid and the

mechanism behind it were rarely reported in previous studies. Here,

the identification of the phytochemical composition based on

virtual screening, untargeted metabolomics, bioinformatics

analysis, and molecular docking was conducted to uncover the

possible mechanism of PF treating HUA. Subsequently, structure

cluster analysis, visualization of binding modes, ADMET

evaluation, and MD simulation analysis were also performed to

identify and validate the potential inhibitors against HUA. Our

findings provided the basis for the lead identification and

development of new anti-HUA agents.
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In the bioinformatics analysis, 25 potential targets of PF against

HUA were selected and then used for the establishment of the PPI

network (Figure 2B). The results of the PPI analysis revealed the

close interactions and strong biological connectivity among the

targets. To uncover the underlying biological mechanism of PF

treating HUA, GO and KEGG enrichment analysis and molecular

docking were conducted. In the CC terms (Figure 2D), the

extracellular region part had the lowest p-value and contained a

total of 15 targets, including ABCC1, SLC22A6, CXCL8, MMP3,

TNF, VEGFA, SLC22A12, IL6, PNP, ALDH2, ALB, REN, SLC22A8,

XDH, and SLC22A11, with the average binding energy ranging

from -6.76 to -4.6 kcal/mol. Among them, XDH possessed the most

favorable binding scores, which can be interpreted as PF

compounds acting strongly on XDH. In the MF categories of GO

analysis (Supplementary Figure S1), the term “organic acid

transmembrane transporter activity”, which is defined as the

activities that enable the transmembrane movement of organic

anions, has the most significant p-value, where SLC22A12,

ABCC1, SLC22A6, ABCC2, SLC22A8, and SLC22A11 were

enriched. The average binding affinity of each of these six

proteins to PF compounds were -6.16, -6.53, -6.29, -6.19, -6.44,

and -6.09 kcal/mol, separately, which can be seen as relatively

strong interaction. In the BP terms (Supplementary Figure S1), 17

of the 25 proteins (more than 60%) were enriched in “response to

oxygen-containing compound”, the most prominent term, with the

average binding energy ranging from -4.6 to -6.56 kcal/mol. This

can be interpreted as PF being associated with this biological

process, which may have relevance to its ability for treating HUA.

In the molecular docking results, from consideration of the

compounds (Supplementary Table S2), 139 from PF (more than

40%), were predicted to dock well with the 25 potential targets.

Interestingly, 16 pan-acting compounds worked on all the 25 proteins

and further experimental validation concerning these highly

promiscuous compounds is needed. In summary, the above results

demonstrated the potential anti-hyperuricemia effect of PF.

Consideration of the protein targets (Figure 3) and the binding

energy histograms for each target class indicated that a high

number of ligands bound well with targets in Group (I) while

ZH01, namely XDH, was predicted to possess the best average

binding results and docked with the most ligands with excellent

binding scores (lower than -9 kcal/mol). In addition, a total of 236

compounds (nearly 72%) had good binding energy (< -6 kcal/mol)

with XDH while 27 of them were lower than -8.7 kcal/mol, the

binding energy of febuxostat. XDH, one of the two forms of xanthine

oxidoreductase (XO), enabling the formation of uric acid, is an

essential target in the development of urate-lowering agents (24).

Febuxostat, as a potent inhibitor against XDH (50), which has been

widely used in clinical practice, has a good curative effect on patients

with HUA or gout (21, 72). The molecular docking results indicated

that many compounds of PF bound well with XDH while some of

them were bound even more tightly than febuxostat. It is reasonable

for us to speculate that some of the PF compounds may have the

potential to be applied for urate-lowering therapy in the future.

As the molecular structure generally determines the binding

affinity and biological function, we performed a cluster analysis

according to the molecular structural similarity and molecular
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docking results with the assistance of DataWarrior. On the one hand,

many compounds in PF were different from allopurinol and

febuxostat (Figure 5A and Supplementary Figure S2) which may be

driven by the difference between natural ingredients and synthetic

drugs. The result that ZS025 possessed the greatest similarity with the

standard inhibitors among the 328 compounds may help to partially

explain its eminent performance in our study, such as the molecular

docking results and the MD simulations with 50 or 200 ns length. On

the other hand, the cluster analysis showed that some compounds in

PF were clustered by structural similarity and these compounds were

mainly identified as prenol lipids, saturated hydrocarbons, fatty acyls,

cinnamic acids and derivatives, and phenols (Figure 5B).

Interestingly, the largest cluster, consisting of the highest number

of compounds which were commonly characterized by good binding

affinity with XDH, was mainly classified as prenol lipids and

sesquiterpenoids. Given that some compounds with specific

structures showed impressive XO inhibitory effect (73), prenol

lipids and sesquiterpenoids, found in our study, may contribute to

the considerable biological interactions between PF compounds and

XDH. Such compounds may have the potential to be used for the

development of XDH inhibitors.

To further screen for the most promising candidate ligands

from PF, we first identified 37 compounds that bound with the

active site residues of XDH, as the docking results indicated

(Supplementary Table S6). Then for these compounds, we

performed a PAINS test to remove the false positive compounds

and conducted an ADMET evaluation to seek satisfactory ligands

based on our pre-defined screening criteria. Finally, five ligands

satisfying docking, ADMET, and PAINS criteria were found

(Table 2). Specifically, all molecules received 0 alerts in the

PAINS test and the average binding scores ranged from -7.85 to

-6.30 kcal/mol while ZS025 (scutellarein) had the lowest binding

energy. In terms of H-bonds, except for ZS090, four compounds

formed more than one H-bond. Additionally, ZS093 had the least

probability of hepatotoxicity (0.008) (Supplementary Table S6).

For the five ligands, we employed MD simulations as a feasibility

test to screen for candidate PF compounds as potential XDH

inhibitors in HUA (Figure 7). Findings from MD simulations

between the ligand-free and ligand-bound complexes revealed

comparable trends in conformational stability, protein

compactness, and fluctuation behaviors. Findings from the time-

dependent RMSD analysis suggest that all five PF ligand-protein

systems achieved equilibration, although the ligands introduced

greater displacements to the overall structure compared to the

ligand-free protein. Compared to existing studies on XDH, the

values and magnitude of the protein RMSD caused by the PF

compounds (between 0.204 to 0.247 nm) were consistent and

occasionally outperformed various natural compounds in terms of

lower RMSD: quercetin (0.25 nm) and luteolin (0.27 nm) (74), and a

potent XDH inhibitor: allopurinol (0.43 nm) (75). This difference

may be a result of differing simulation times, as longer simulations

may capture greater variations in the protein structure. Despite the

relatively stable RMSD values, the compactness and rigidity of the

structures measured by the average Rg and SASA differed from

another study (75) by approximately 0.32 nm and 169 nm2,

respectively. Minor differences in protein structures were observed,
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as the enzyme presents in two interconvertible forms: XDH and XO.

It is not surprising that the compactness of XO bound to allopurinol

was higher than that of XDH, as shown by higher Rg and SASA

values in our study. RMSF values were also comparable to existing

studies on MD simulations of similar enzymes. The apo-protein

showed greater RMSF fluctuation compared to ligand-bound

structures around peaks of Gly801 and Asn1074 in our study,

consistently echoing the findings from the ligand-bound and

ligand-free studies on XO (75). Greater RMSF fluctuations were

also observed in the active-site residues of XDH when binding to

other naturally occurring compounds (76), with a difference of ~0.1

nm compared to our study. From the hydrogen bond analysis, it is

evident that ZS025, followed by ZS252 and ZS056 formed the highest

number of polar contacts with XDH residues. Although the polar

interactions were fluctuant across the 50 ns time scale, the largely

consistent pattern suggests stable and strong interactions at the

binding pocket, compared to other ligands such as ZS093.

Structural differences leading to higher hydrophilicity of ZS025,

ZS252, and ZS056 (xlogP: 1.4, 1.6, and -0.7, respectively) may have

contributed to the presence of increased polar contacts. Further

mutagenesis studies, focusing on the residues in contact with

ligands identified by our docking and simulations, are required to

ascertain the roles of these polar contacts on XDH inhibition. Overall,

the high binding stability, compactness, and the number of polar

contacts between ZS025, ZS252, and ZS056 and XDH residues

suggest promising feasibility that these compounds could be

candidates for development into future XDH inhibitors.

Next, we conducted literature mining to seek laboratory evidence

involved in the five compounds treating HUA (Supplementary Table

S9). As a result, only scutellarein, a flavonoid, was found to show a

potent inhibitory effect on xanthine oxidase activity in vitro (77). In

addition, we performed a quality control study for PF by using

untargeted metabolomics with UPLC-ESI-Q-Orbitrap-MS

(Supplementary Table S10) and the results showed that scutellarein

was one of the 543 identified compounds while the rest of the five

potential inhibitors were not found in the PF granule mixture

(Figure 8B, Supplementary Table S10). Consequently, scutellarein

became our primary focus, and we conducted a 200 ns MD analysis

to further validate its stability when bound to XDH.

Interestingly, MD results with a longer time of 200 ns further

demonstrated that scutellarein was able to bind to XDH stably and

influence the compactness of the XDH protein. Time-series analysis

showed that scutellarein induced a tightening of the complex,

contributed by an increased number of polar contacts.

Scutellarein was also found to induce rigidity around residues

Gln1041 to Asn1074, a major helix and its connected loop motif

proximal to the active binding site where a potent inhibitor

alloxanthine was found to bind (78). While scutellarein

demonstrated the ability to stabilize the residues at the active site

ligand binding domain, its interaction with other cofactors such as

the FAD prosthetic groups, the iron-sulfur clusters, and the

molybdenum atom are worth further investigation in future studies.

Scutellarein, a common ingredient identified in many herbal

medicines, such as Scutellaria baicalensis (79) and Perilla frutescens

(29, 80), was reported to exert anti-microbial, anti-viral, anti-tumor,

hepatoprotective, anti-neurodegenerative, and anti-oxidant effect
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(81). As the previous studies showed, scutellarein from different

sources, including Indian medicinal plants, Perilla frutescens, Salvia

plebeia, and Salvia officinalis L., had a potent inhibitory effect on

XDH in vitro (29, 73, 77, 82) and played a significant role in reducing

the serum uric acid in vivo (77). Similarly, our study showed that

scutellarein bound well with XDH with high binding energy (-7.85

kcal/mol) and two H-bonds as well as forming a stable complex

whether during 50 ns or 200 ns MD simulations (Figures 7, 9), which

further provides evidence at a molecular level for the underlying

mechanism of the abovementioned laboratory studies. Interestingly,

in the structure-based analysis, scutellarein showed the greatest

similarity with febuxostat among the five inhibitors in the active

sites of XDH, and even amongst all 328 PF compounds

(Supplementary Figure S4, Figure 5A). In addition, it generated 0

alerts in the PAINS test, a good lead-like tendency as Lipinski’s rule of

five indicated, and no hepatotoxicity. Satisfaction of all of these

criteria fully demonstrated that scutellarein has the potential to be

a promising therapeutic agent and is worth further investigation

(Table 2). Additionally, given the broad and mature application of PF

in the food industry, on this basis, we plan to develop an anti-

hyperuricemic product based on PF, such as oil and condiments,

which can be commonly used for many cooking procedures,

especially in Asia. Most importantly, we assume that scutellarein

can be used as a quality control standard in these potential urate-

lowering products. Nevertheless, there are also some limitations in

our study. Firstly, the compounds we obtained mainly relied on

TCMSP, which was obtained based on literature mining conducted

by the developers of the platform (31). Therefore, some newly

discovered molecules in recent years may yet have been

incorporated into this database, which may result in inconsistent

results compared with the data of untargeted metabolomics we

performed. Subsequently, despite the molecular docking we

conducted showing good binding energy between some PF

compounds, the bonding strength between ligands and the

macromolecule still needs to be validated using more experiments,

such as the surface plasmon resonance technique. Finally, our study

was conducted mainly through in silico technologies and text-mining,

which cannot fully illuminate the in vivo biological complexities of PF

and its key components. Therefore, our findings need to be further

validated in animal models to comprehensively evaluate the actual

effect that scutellarein has on serum urate in vivo.
5 Conclusions

In our study, we first conducted network pharmacology

analysis, via various online databases and untargeted

metabolomics technology, to explore the potential mechanism of

PF treating HUA. Based on enrichment analysis, it is suggested that

PF compounds treating HUA may prominently associate with

organic acid transmembrane transporter activity (MF), response

to oxygen-containing compound (BP), and the extracellular region

part (CC). Subsequently, supercomputer-aided molecular docking

calculations were implemented to analyze the binding strength

between the 326 compounds and the 25 targets. Among them,

many compounds were reported to have high binding energy with
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the potential targets and XDH possessed the top average binding

scores with all the 328 compounds. Subsequently, a PAINS test,

ADMET properties prediction, and H-bonds analysis were

performed to find the most desirable inhibitors against XDH

according to our inclusion criteria, and five ligands were

eventually identified. Next, MD simulations were conducted to

evaluate the stability of the compound-target complexes and they

revealed that ZS025, ZS252, and ZS056 had good performance

using five basic MD measures of structural stability and dynamics.

Finally, we verified the presence of the five compounds in the PF

mixture using untargeted metabolomics technology, and

scutellarein (ZS025) was found. In addition, we carried out a text-

mining study to look for experimental evidence that the compounds

may exert biological effects on HUA, and three studies were found

to report the pharmacological effect of scutellarein on uric acid.

Moreover, MD analysis with a longer time (200 ns) was used to

further provide a basis for the stability of the scutellarein-XDH

complex. In conclusion, our findings provide fundamental evidence

for the potential role of PF, a commonly used plant-based

functional food, in the management of HUA, including the

development of anti-hyperuricemic agents and products. More in

vitro and in vivo experimental verification will be performed to

further investigate the biological effects and potential mechanisms

of promising inhibitors we identified in the current study.
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