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Successful pregnancy requires the tolerance of the maternal immune system for

the semi-allogeneic embryo, as well as a synchrony between the receptive

endometrium and the competent embryo. The annexin family belongs to

calcium-regulated phospholipid-binding protein, which functions as a

membrane skeleton to stabilize the lipid bilayer and participate in various

biological processes in humans. There is an abundance of the annexin family

at the maternal–fetal interface, and it exerts a crucial role in embryo implantation

and the subsequent development of the placenta. Altered expression of the

annexin family and dysfunction of annexin proteins or polymorphisms of the

ANXA gene are involved in a range of pregnancy complications. In this review, we

summarize the current knowledge of the annexin A protein family at the

maternal–fetal interface and its association with female reproductive disorders,

suggesting the use of ANXA as the potential therapeutic target in the clinical

diagnosis and treatment of pregnancy complications.
KEYWORDS

annexin family, calcium and phospholipid binding proteins, maternal-fetal interface,
trophoblast, female reproductive disorder
1 Introduction

The maternal–fetal interface is a crucial site for the establishment and maintenance of

normal pregnancy, where the trophoblast cells, decidual cells, and the immune

microenvironment exist and interact with each other. Dysregulation of the functions of

the trophoblast and disturbance of the maternal–fetal immune tolerance can lead to

reproductive disorders, including infertility, spontaneous miscarriage, preeclampsia, and

intrauterine growth restriction.

Annexins, a well-known multigene family, are secreted proteins in the cytoplasm

attaching to the phospholipid membrane and highly conservative Ca2+-dependent

membrane-binding proteins that participate in a variety of physiological and

pathological processes in humans (1–3). The role of the annexin family participating in
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several human pathologies such as tumorigenesis, obesity, and

atherosclerosis has been extensively reviewed in a bunch of

excellent papers (4–7). The expression of the annexin family was

identified at the maternal–fetal interface, involving both the

trophoblasts and decidual cells, but its role in successful

pregnancy is not fully clear yet. Herein, we reviewed the current

knowledge of the expression and possible functions of the annexin

family at the maternal–fetal interface and its relationship with

female reproductive diseases.
2 The annexin family

Annexin is an evolutionally conserved Ca2+-regulated

phospholipid-binding protein superfamily, which is named for its

ability to “annex,” implying that it integrates membranes, and is

widely distributed in eukaryote cells (8). To date, more than 1,000

members of the annexin superfamily have been identified and

classified into five groups (groups A–E) according to different

species, with ANXA12 being a pseudogene. The annexin A group

comprises 12 different members (AnxA1–AnxA11, AnxA13) in

human organs. Annexins participate in extracellular activities

including proinflammatory and profibrotic responses, as well as

subcellular functions consisting of membrane repair, cytoskeletal

changes, intracellular organelle transportation, and signal

transduction. Over the past decades, a great number of studies on

annexins have been performed for their involvement in a variety of

physiological and pathological processes in humans, among which

AnxA1 and AnxA5 are in the process of development as potential

therapeutic targets for atherosclerosis, fibrosis, rheumatoid arthritis,

and cardiovascular disease currently (9–12).
2.1 Molecular structure of the
annexin family

The 12 human annexin genes are dispensed throughout the

genome on chromosomes 1, 2, 4, 5, 8, 9, 10, and 15, with the

genomic size ranging from 15 kb (ANXA9) to 96 kb (ANXA10). The

expression levels of the annexin gene are very wide and present

different abundance levels in specific tissues (13).

Structurally, the protein of the annexin A family consists of two

domains: the conserved C-terminal and the variable N-terminal (14).

All annexins share the conserved C-terminal domain, which is a

highly helical and tightly folded protein center consisting of four (or

eight in AnxA6) annexin repeat units; thus, a characteristic “type 2”

calcium-binding site is formed through hydrophobic interactions and

ensures structural stabilization (15). In contrast, unlike the core

domain, the N-terminal (also known as the tail domain) is a

variable domain containing sites for post-translational modification

and is unique in each member, enabling these members to bind to

various ligands and other proteins; thus, the members present a

diversity of locations and functions (16) (Figure 1A).

In most circumstances, annexins bind reversibly to cell

membranes via the featured calcium-binding site. Another

common scenario, as mentioned above, the unique N-terminal
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domain, mediates the interaction between annexins with other

specific intracellular protein partners, such as the S100 family

cytoplasmic proteins. The S100 protein is a dimeric EF-hand

calcium-binding protein and forms a protein–protein interaction

with the N-terminal domain of AnxA2 through a highly specific

binding site, thus collaborating to regulate multiple cellular

functions, leading to the AnxA2/S100A10 complex possessing

biological activities (17–19).
2.2 Functions of annexins

Annexins are involved in several cellular membrane-related

processes, including cellular structural organization, growth

regulation, and vesicle transportation. To date, the relationship

between annexins and various cellular processes including vesicle

trafficking, membrane repair, cell proliferation and apoptosis, cell

migration, anti-inflammation, promotion of angiogenesis, and

anticoagulation has been reported in in-vitro gain-of-function or

loss-of-function experiments, and these processes are independent of

calcium signaling. On a pathologic front, accumulating evidence

indicates that annexins exert essential roles in the pathogenesis or

progression of numerous human diseases, including various types of

cancer, autoimmune disorders, diabetes, and cardiovascular diseases.

The expression patterns of annexins differ significantly in

various organs with high expression patterns found in the smooth

muscle, thymus, and lung and relatively low expression patterns in

the testis, adrenal glands, and brain. Interestingly, the expression of

annexins could show a dynamic change along with the cell cycle,

which may be associated with the microtubule, vesicle

transportation, and Ca2+-regulated exocytosis in tissues

undergoing myriads of cellular processes or mechanical changes

throughout the body (20). As the annexin family is abundantly

expressed at the maternal–fetal interface, and both the

endometrium and blastocyst undergo rapid growth and

differentiation during pregnancy, it is believed to play a series of

roles both in the fetus-derived placenta and maternally derived

decidual cells.
3 The annexin A protein family at the
maternal–fetal interface

3.1 The establishment of the maternal–
fetal interface

The fetus-derived trophoblast cells and maternal decidua

constitute the maternal–fetal interface. On the fetal side, when the

embryo implants completely into the endometrium, the trophoblast

is the epithelial overlying layer of the fetal villi floating in the

maternal blood, where the trophoblast proliferates and

differentiates into cytotrophoblast cells (CTBs). CTBs further

differentiate into the syncytiotrophoblasts (STBs) and the

extravillous trophoblasts (EVTs). The syncytial trophoblast serves

as the outer layer of the placental villi, which directly contacts with

decidual glandular secretions and participates in the exchange of
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nutrients, gases, and waste products between maternal and fetal

blood. Furthermore, the STBs dominate the synthesis and secretion

of hormones. On the maternal side, the decidual tissue is stimulated

by the decidualization inducer and transformed from the

endometrium, consisting of luminal epithelial cells, glandular

epithelial cells, endothelial cells, differentiated stromal cells, and a

diversity of immune cells. Decidual stromal cells (DSCs) are

dominant components of the decidua and secrete a wide range of

factors for the regulation of the microenvironment at the maternal–

fetal interface during early pregnancy (21). In addition, immune

cells accumulate and endometrial arteries become more distorted

and elongated during decidualization (22). In humans, the

endometrium undergoes pre-decidualization as it transforms into

the secretory phase during every menstrual cycle, thus allowing the

embryo to attach and penetrate (23).
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3.2 The annexin A protein family at the
maternal–fetal interface

3.2.1 Annexin A1
Annexin A1 (AnxA1) (also known as lipocortin-1 or p35) is a

glucocorticoid-induced protein extensively researched as a potent

anti-inflammatory molecule in the periphery (24). The expression

of AnxA1 in the placenta is mainly in the cytotrophoblast cell

surface and syncytial knots as well as in decidual cells (25, 26). A

recent study has reported that AnxA1 inhibits inflammation to

maintain the optimal microenvironment for implantation (27, 28).

Furthermore, AnxA1 was found to be associated with the dynamic

interaction between the uterine epithelium and vascular

endothelium, a crucial process for successful and adequate

decidualization (29).
A

B

FIGURE 1

Schematic diagram of the annexin molecular structure and comprehensive schematic illustration of the location of the annexin family at the
maternal–fetal interface. (A) The ANXA protein structure comprises two main regions: a highly conserved C-terminal core with four repetitive
sequences (or eight in ANXA6), each harboring a calcium-binding motif, and a variable N-terminal with differing amino acid arrangements and
lengths across each ANXA variant. (B) The blastocyst implants to the maternal endometrium following the sequential stages of apposition, adhesion,
and invasion. Members of the annexin family show different expression patterns in diverse cell types as the blastocyst interacts with the
endometrium. TE, trophectoderm; ICM, inner cell mass; LE, luminal epithelium; GE, glandular and luminal endometrial epithelium; STBs, syncytial
trophoblasts; uNK, decidual natural killer cell.
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3.2.2 Annexin A2
Annexin A2 (AnxA2) is ubiquitously expressed and presents an

abundance typically in endothelial cells and monocytes, and the

upregulation of AnxA2 expression is observed in tumor cells and

regarded as a marker of multiple tumors (30). AnxA2 was also

upregulated in human receptive endometrium, especially in the

luminal epithelium (LE) (31), which was an essential intracellular

protein for embryo attachment (32). Matorras et al. have also

reported decreased levels of AnxA2 in human endometrial fluid

aspirated during the pregnancy cycle compared with the

unconceived cycle (33). Another study further proved the

function of AnxA2 in the process of decidualization (34).

Furthermore, both estrogen and progesterone at physiological

levels increase the overall expression of ANXA2 in human

endometrial cells (35). Meanwhile, using proximity ligation

technology, researchers have observed the precise in-situ location

of AnxA2/S100A10 complexes in the human placenta, which

showed high levels of expression of the complexes in the amniotic

membrane and vascular endothelium cells; however, the expression

level was lower in the brush border region of syncytial and

trophoblast cells (36).

3.2.3 Annexin A4
Annexin A4 (AnxA4) is predominantly expressed in epithelial

cells and reported to increase in epithelial cell tumor (37). AnxA4 is

among the most intensively studied proteins in the human

endometrial proteome, which is located in the glandular and

luminal epithelium and has an impact on endometrial functions

via the regulatory effect of ion and water movement across the

membrane (38).

3.2.4 Annexin A5
In humans, annexin A5 (AnxA5) is a protein that is most

abundantly expressed in the placenta, and its local anticoagulant

function has been well described (39). AnxA5 is highly expressed on

the apical surfaces of STBs and exerts a crucial role in maintaining

blood flow for placental circulation. It has recently been reported

that AnxA5 is important in successive steps of membrane overlap

and cohesion in both human cytotrophoblasts and STBs (40).

AnxA5 presents a cyclical change in the uterine cycle and is

found to be upregulated in the luteal phase endometrium in

healthy fertile women (41, 42). Meanwhile, the antiphospholipid

antibody could mediate the crystallization destruction of AnxA5 on

the phospholipid bilayers and cell membranes including endothelial

cells and trophoblast cells, accounting for the pathology in

antiphospholipid syndrome (43, 44).

3.2.5 Annexin A6
The dual-core annexin A6 (AnxA6) is predominantly found at

the plasma membrane and endosomal compartment (45, 46). As a

well-known plasma membrane repair protein, AnxA6 acts as a

multifunctional scaffolding protein and interacts with phospholipid

membranes and different signaling proteins (15, 47). One earlier

study has reported that AnxA6 is expressed in the apical and basal

STB membranes and could regulate the Maxi-chloride channel in

the human placenta (48).
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3.2.6 Annexin A7
Annexin A7 (AnxA7) is the first member of the annexin family

proteins to be discovered in humans. ANXA7 is expressed in the

endometrial glands, stroma, and luminal epithelium according to

theHuman Protein Atlas (49). The expression of ANXA7 was found

upregulated during the process of decidualization, which indicated

its conserved role in regulating endometrial receptivity and embryo

implantation (50).
3.2.7 Annexin A8
Annexin A8 (AnxA8), also known as vascular anticoagulant-

beta 1 (VAC-beta), is expressed at a smidgen level in the placenta,

liver, cornea, and lungs (51, 52). The protein is a minor component

in the placenta, accounting for less than 1% of all extracted annexins

(53). The role of AnxA8 in regulating the proliferation of

endometrial cells was observed in porcine (54). However, whether

AnxA8 plays a similar role in human endometr ium

remains unclear.
4 The annexin family and female
reproductive disorders

Disruptions of the components at the maternal–fetal interface

could lead to placenta dysfunction, including impairing trophoblast

invasion function, hindering angiogenesis in the uterus, affecting the

process of decidualization, and compromising maternal–fetal

immune tolerance (55, 56). Such disturbances are implicated in a

spectrum of pregnancy-related complications. Within the human

body exists a regulatory network characterized by both precision and

complexity, and many mechanistic experiments are conducted

utilizing some specific cell lines in vitro. Many antibodies and

molecules existing in the peripheral blood play a unique role at the

maternal–fetal interface. For instance, research has shown that

antiphospholipid antibodies (aPLs) interacting with b2-glycoprotein
I (b2GPI) modulate the expression of Bcl-2 and Bax proteins in

primary human trophoblasts (57). Furthermore, the influence of anti-

transglutaminase type 2 (anti-TG2) autoantibodies on endometrial

angiogenesis has been explored using human endometrial endothelial

cells (HEECs), shedding light on potential pathogenic mechanisms

underlying placental damage in celiac disease (58). Additionally,

recent findings indicate the presence of HLA-DR in STBs and STB-

derived extracellular vesicles (STEVs) in a significant number of

preeclampsia cases, as opposed to control placentas, suggesting a

novel avenue of investigation in placental pathology in preeclampsia

(59). Alterations in the expression levels of the annexin A proteins are

also proven to interrupt those key processes in the establishment

of pregnancy.
4.1 Infertility and recurrent
implantation failure

In human-assisted reproductive technology (ART) programs,

more than 60% of women treated with in-vitro fertilization (IVF)
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procedures fail to achieve clinical pregnancy after their first transfer

and almost 20% of them suffer from unexplained recurrent

implantation failures (RIFs) (60). RIF can be defined as failure to

clinical pregnancy in a woman under 40 after the transfer of at least

four good-quality embryos in at least three fresh or frozen cycles (61).

The protein S100-A10 (S100A10), a binding partner of AnxA2, was

identified as a critical factor in endometrial receptivity attainment

and was downregulated in the mid-secretory phase of the

endometrium of infertile women (62). Recent studies have reported

that maternal and paternal M2/ANXA5 haplotype carriages are both

risk factors for RIF, which shed light on the pathogenesis of RIF and

provided possible forecasts for couples who are at a pertinent risk

ahead of the ART programs (63).
4.2 Recurrent pregnancy loss

Recurrent pregnancy loss (RPL) is defined as at least two or

three spontaneous miscarriages before the 24th gestational week

and impacts approximately 1%–3% of reproductive-age women

(64). Anatomical abnormalities, endocrine disorders, genetic

factors, and immunological factors are considered responsible for

RPL; however, almost half of the patients suffered for unexplained

reasons (65–67). The role of AnxA5 in RPL has been extensively

investigated since Rand JH et al. found that the level of AnxA5 and

its anticoagulant activity are significantly reduced in the plasma of

RPL patients (68). Moreover, the variants of ANXA5 in the placenta

are found important in the pathology of RPL. The haplotype M1 is

defined as the combination of two alleles, namely, c.−448 ANC and

c.−422 TNC, and reveals single nucleotide polymorphisms (SNPs)

of 1A/C and 27T/C. The M2 haplotype, on the other hand, is

identified as having four small alleles corresponding to these four

SNPs, rs112782763 (c.−467 GNA), rs28717001 (c.−448 ANC),

rs28651243 (c.−422 TNC), and rs113588187 (c.−373 GNA),

which contains a combination of SNPs of 19G/A, 1A/C, 27T/C,

and 76G/A and can be passed on to the offspring (69, 70). Several

independent studies have shown that the M2 haplotype in ANXA5

has been linked to greater overall RPL risk mostly for early

miscarriage, ranging between the 10th and 15th gestational weeks

(71–73). A meta-analysis of 14 independent retrospective case–

control studies also summarized that M2/ANXA5 haplotypes in

couple populations have a significantly higher risk for RPL in

comparison to the normal haplotype (74). Antiphospholipid

syndrome (APS) is characterized as an autoimmune disorder that

predominantly manifests in thrombotic events. It is observed that

approximately 6% of patients with APS experience complications

related to pregnancy (75). Extensive research indicates that

antibodies in patients diagnosed with APS impede the

crystallization and anticoagulant function of AnxA5. This

interference leads to a diminished response to the anticoagulant

properties of AnxA5 (43). Furthermore, it has been established

through in-vitro studies that the application of anti-annexin V

monoclonal antibodies (mAbs) precipitates apoptosis in

trophoblast cells and results in a marked decrease in human

chorionic gonadotropin (hCG) secretion (76).
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4.3 Preeclampsia

Preeclampsia (PE) refers to new-onset hypertension,

proteinuria with maternal multi-organic dysfunction, or fetal

growth restriction after the 20th gestational week (77). PE is the

leading cause of maternal and perinatal mortality, occurring in

approximately 5% of pregnancies (78, 79). However, the

pathological mechanism of PE remains obscure. It is believed that

PE is related to shallow invasion of the trophoblast and poor

placental perfusion at the maternal–fetal interface, as well as

maternal vascular endothelial injury and vascular endothelial

dysfunction accompanied by maternal systematic inflammation

(56, 80). A recent study has reported that modulation of AnxA1

in the trophoblast is associated with systemic inflammatory

response-related preeclampsia (81). Using the 2D-PAGE

technique, Gharesi-Fard Behrouz et al. (82) found that AnxA1, as

a placental protein, is increased in PE patients, indicating

exacerbated systemic inflammation in PE (83). One earlier study

has reported that the AnxA2 protein both in the placenta and

peripheral maternal blood was downregulated significantly in

patients with PE compared with normal pregnancies, which was

linked to microvascular thrombin formation in PE (84). Defects in

decidualization are also considered as the maternal factor of

preeclampsia (85, 86). Researchers further found that defective

express ion of endometr ia l ANXA2 might impair the

decidualization of endometrial stromal cells in vitro and in vivo,

and inhibition of Anxa2 in mice failed to support embryo invasion

in vivo functionally (32, 87). Xu et al. demonstrated that ANXA4

expression is downregulated in human placentas in PE, and ANXA4

overexpression in human trophoblast cells may promote

trophoblast invasion via the PI3K/AKT/eNOS pathway (88).

Another systematic review, the first to combine proteomic studies

of the placental biopsies of PE and polycystic ovary syndrome,

found five biomarkers for PE which are common in women with

PCOS, among which AnxA4 was downregulated in both groups of

patients (89). In addition, the M2 haplotype of ANXA5 was also

observed to be more prevalent in the placenta of women with PE

compared with the controls, which may significantly increase the

risk for PE by impairing the thrombomodulatory function of

AnxA5 at the maternal–fetal interface (90, 91).
4.4 Intrauterine growth restriction

Small for gestational age (SGA) is defined as the birth weight of a

newborn less than the 10th percentile for the corresponding gestational

age (92). SGA fetuses are diagnosed with intrauterine growth

retardation (IUGR) if they fail to achieve their genetically determined

growth potential at any gestational age. Intrauterine growth restriction

(IUGR) affects 10%–15% of all pregnancies worldwide (93). IUGRmay

result from maternal, placental, or fetal factors (94).

Earlier studies have reported that AnxA5 is present in the amniotic

fluid and increased during 15 to 24 weeks of gestation. AF-Anxa5 levels

are elevated in patients who develop IUGR, which indicates AF-AnxA5

a potential marker for identifying IUGR (95, 96). Another study further
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reported that decreased ANXA5 mRNA levels were detected in the

placenta from SGA pregnancies in comparison to normal outcomes

(97). Moreover, a recent study has demonstrated a significantly higher

prevalence of the M2 haplotype in women who have delivered an SGA

fetus (98), which coordinated with the extensively reported dysfunction

of the ANXA5 haplotype in RPL and pre-eclampsia.
5 Conclusion

The expression of annexins in the maternal–fetal interface suggests

their roles in embryo implantation and pregnancy. For the maternal

side, the expression levels of AnxA1, AnxA2, AnxA4, and AnxA7 are

found in decidual stromal cells and epithelial cells, and AnxA1, AnxA2,

AnxA5, and AnxA6 are expressed in the trophoblast, especially in the

apical and basal STB membranes (Figure 1B). In addition, there is an

altered expression of annexins in women with reproductive disorders,

such as recurrent implantation failure, endometriosis, adenomyosis,

and recurrent pregnancy loss (Table 1). However, whether the annexin

family can be used as clinical markers remains uncertain, and further

studies are required.
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TABLE 1 Summary of the role of the annexin family in female reproductive disorders.

Annexin member Location Biological functions and role Related disease Ref.

AnxA1 Glandular epithelium cells Participate in cell differentiation and proliferation
via FPR1 and FPR2 receptors

Endometriosis (99)

AnxA1 Syncyotiotrophoblast and
villous vascular
endothelial cells

Attenuate the exacerbated inflammatory response Preeclampsia (81, 82, 100)

AnxA2 Endometrial epithelium
and trophoblast

Human embryo attachment NA (35, 36)

AnxA2 Endometrial epithelium cells
in the ectopic endometrium

1) Promote the growth, distant metastasis, and
angiogenesis in AM endometrial tissue
2) Aggravate dysmenorrhea

Adenomyosis (101, 102)

AnxA2 Syncytiotrophoblasts Impair the placental fibrinolytic activity Preeclampsia (84)

AnxA2 Endometrial stromal cells Reduce human endometrial stromal cell motility
and embryo invasion

Preeclampsia (87)

AnxA4 Endometrial tissue Participate in the anti-apoptosis process Polycystic
ovarian syndrome

(103)

AnxA4 Trophoblasts Promote cell migration and invasion of
trophoblast cells via the PI3K/AKT/eNOS
signaling pathway

Preeclampsia (88)

AnxA5 Endometrial glands and
stroma cells

Promote apoptosis Polycystic
ovarian syndrome

(103)

AnxA5 Ectopic endometrium Inhibit apoptosis and promote migration
and invasion

Ovarian endometriosis (104)

AnxA5 Perivillous and
extravillous trophoblasts

Promote the fluidity of maternal blood
circulating through the intervillous space

Preeclampsia (105, 106)

AnxA5 Apical surfaces
of syncytiotrophoblasts

Shield phospholipid bilayers from exposure to
coagulation reactions

Intrauterine
growth restriction

(95–97)

AnxA5 Placenta villi Play a critical role in cell membrane repair to
maintain the integrity of the placenta

Recurrent pregnancy loss (70, 107, 108)
NA, not applicable.
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