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Introduction: Predictive models have been used to aid early diagnosis of PCOS,

though existing models are based on small sample sizes and limited to fertility

clinic populations. We built a predictive model usingmachine learning algorithms

based on an outpatient population at risk for PCOS to predict risk and facilitate

earlier diagnosis, particularly among those who meet diagnostic criteria but have

not received a diagnosis.

Methods: This is a retrospective cohort study from a SafetyNet hospital’s

electronic health records (EHR) from 2003-2016. The study population

included 30,601 women aged 18-45 years without concurrent endocrinopathy

who had any visit to Boston Medical Center for primary care, obstetrics and

gynecology, endocrinology, family medicine, or general internal medicine. Four

prediction outcomes were assessed for PCOS. The first outcomewas PCOS ICD-

9 diagnosis with additional model outcomes of algorithm-defined PCOS. The

latter was based on Rotterdam criteria and merging laboratory values,

radiographic imaging, and ICD data from the EHR to define irregular

menstruation, hyperandrogenism, and polycystic ovarian morphology

on ultrasound.

Results: We developed predictive models using four machine learning methods:

logistic regression, supported vector machine, gradient boosted trees, and

random forests. Hormone values (follicle-stimulating hormone, luteinizing

hormone, estradiol, and sex hormone binding globulin) were combined to

create a multilayer perceptron score using a neural network classifier.

Prediction of PCOS prior to clinical diagnosis in an out-of-sample test set of

patients achieved an average AUC of 85%, 81%, 80%, and 82%, respectively in

Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across
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models included hormone levels and obesity; negative predictors included

gravidity and positive bHCG.

Conclusion:Machine learning algorithms were used to predict PCOS based on a

large at-risk population. This approach may guide early detection of PCOS within

EHR-interfaced populations to facilitate counseling and interventions that may

reduce long-term health consequences. Our model illustrates the potential

benefits of an artificial intelligence-enabled provider assistance tool that can

be integrated into the EHR to reduce delays in diagnosis. However, model

validation in other hospital-based populations is necessary.
KEYWORDS

polycystic ovary syndrome (PCOS), disease prediction, predictive model, machine
learning, artificial intelligence
Introduction

Polycystic ovary syndrome (PCOS) is the most common type of

ovulation disorder and endocrinopathy among reproductive age

women. PCOS is a diagnosis of exclusion after other

endocrinopathies known to affect ovulation have been evaluated

including thyroid, adrenal, and pituitary related disease. Based on

the Rotterdam criteria, PCOS is diagnosed when two of the three

following criteria are exhibited: clinical or biochemical

hyperandrogenism, oligo-anovulation, and polycystic ovary

morphology (PCOM) on transvaginal or transabdominal

ultrasound. PCOS has a population prevalence of 5-15%,

depending on the diagnostic criteria used (1).

PCOS is associated with multiple health issues and increased

morbidity and mortality, including a high chronic disease burden

that is also very costly for individuals with PCOS and insurers (2).

PCOS is the leading cause of anovulatory infertility in reproductive-

aged women. In fact, over 90% of anovulatory women who present

to infertility clinics have PCOS (3). PCOS patients have an

increased risk of endometrial hyperplasia and endometrial cancer

(4) due to anovulatory cycles leading to long periods of exposure to

the effects of unopposed estrogen. PCOS has been associated with

the development of metabolic syndrome (5), diabetes (6),

cerebrovascular disease and hypertension (7), compared to

women without PCOS. Despite these serious health consequences,

PCOS frequently goes undiagnosed due to the wide range of

symptom severity on presentation, leading to delayed treatment

and potentially more severe clinical sequelae due to lack of

preventive care, health management, and counseling (4). Even

when PCOS is diagnosed, it is often very delayed. One study

found that over one-third of women with PCOS waited over two

years and were seen by three or more providers before finally

receiving the diagnosis (8).
02
Predictive models can play a significant role in aiding earlier

diagnosis of PCOS, though several include only those women

presenting for fertility care. One model used serum anti-

Müllerian hormone (AMH) and androstenedione levels,

menstrual cycle length, and BMI to predict the development of

PCOS in Chinese women (9). Another model used only AMH and

BMI to predict a diagnosis of PCOS or other ovulatory dysfunction

disorders (10). Other studies have created predictive models for

certain outcomes among women with PCOS such as pregnancy

outcomes (11, 12) and insulin resistance (13). In this study, we use

clinical and socioeconomic variables among 30,601 women aged 18

to 45 years within the electronic health records (EHR) to develop

predictive model utilizing machine learning algorithms with the

goal of earlier detection and treatment of PCOS.
Materials and methods

Data acquisition

The dataset was created by querying de-identified patient data

from female patients aged 18 to 45 years who had or were

considered at risk for PCOS diagnosis by having had any one of

the three diagnostic procedures for PCOS in their EHR. Included

within the initial sample were those patients who had any visit to

Boston Medical Center (BMC) for primary care, obstetrics and

gynecology, endocrinology, family medicine, or general internal

medicine and received: 1) a pelvic/transvaginal ultrasound for any

reason, 2) androgen lab assessment, or had clinical symptoms of

androgen excess, 3) an ICD-9 label for irregular periods, or 4) a

PCOS diagnosis, between October 2003 to December 2016 within

the BMC Clinical Data Warehouse (CDW). The start-date was

selected to reflect the first day that ICD-9 codes were used and
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recorded at BMC. The end date reflected cessation of use of the

ICD-9 codes and transition to ICD-10 codes within BMC. To avoid

misidentifying an ovulation disorder caused by another

endocrinopathy, exclusion criteria included diagnosis of

concurrent endocrinopathy, such as thyroid disorders,

hyperaldosteronism, Cushing’s syndrome, other adrenal gland

disorders, or malignancy based on ICD-9 codes as listed in

Supplementary Table 1.
Reference label definitions

Individual predictors
Time-varying predictor variables with a date stamp before that

of the outcome of interest were included in our models. We

considered the following predictor variables:

Socioeconomic and lifestyle demographic variables: age, race

(White/Caucasian, Black/African American, Hispanic/Latina,

Asian, Native Hawaiian/Pacific Islander, Middle Eastern, Other/

Unknown), smoking status (yes/no), marital status (single, married,

separated, divorced, widowed, other), homelessness (yes/no), and

highest level of education (8th grade or less, some high school, high

school graduate, some college/technical/vocational training,

graduated college/technical school/vocational training, declined to

answer, other).

Anthropometrics: Body mass index (BMI, kg/m2) was either

calculated from height and weight or abstracted as the listed BMI

variable associated with each visit. BMI was then categorized into

three categories: normal (BMI < 25 kg/m2); overweight (BMI

between 25-30 kg/m2); and obese (BMI > 30 kg/m2). To further

capture the obesity population in the absence of height/weight/BMI

data, the obese category also included any patient with an ICD-9

code for unspecified obesity (278.00), morbid obesity (278.01),

localized adiposity (278.1), and/or a history of gastric bypass.

BMI < 18.5, typically considered underweight, represented a small

fraction of the total study population (1.5%) and thus did not have

sufficient participants to create a separate category. Furthermore, a

model to predict PCOS created by Xu et al. based on age, menstrual

cycle length, BMI, AMH, testosterone, androstenedione, and follicle

count did not find a significant difference in predictive effect when

comparing BMI 18.5-24 to <18.5 (9).

Cardiovascular health: To include blood pressure as a predictor

variable, we defined a categorical hypertension variable by using

systolic (SBP) and diastolic (DBP) blood pressure readings and

ICD-9 diagnostic codes for unspecified essential hypertension

(401.9), benign essential hypertension (401.1), and essential

primary hypertension (401.0). Blood pressure was categorized

into three groups: normal, defined by no ICD-9 codes for

hypertension recorded and SBP < 120 mmHg, and DBP < 80

mmHg; elevated, defined by no ICD-9 codes for hypertension

recorded and SBP was 120-129 mmHg or DBP < 80 mmHg;

hypertension, defined by any ICD-9 code for hypertension

recorded or SBP ≥ 140 mmHg or DBP ≥ 90 mmHg.

Reproductive endocrine predictive variables: beta human

chorionic gonadotropin (bHCG) level (negative bHCG < 5 mIU/
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mL, positive bHCG ≥ 5 mIU/mL), HIV status (negative/positive),

age at menarche, pelvic inflammatory disease diagnosis (614.9),

history of hysterosalpingogram, and gravidity (history of present or

prior pregnancy within obstetric history). Endocrine and metabolic

lab values included: TSH, glycosylated hemoglobin (A1c) as a

marker for diabetes, low-density lipoprotein (LDL), high density

lipoprotein (HDL), and diagnosis of hypercholesterolemia (272.0).

Of note, our model did not include androgen precursors such as

DHEA or androstenedione as, according to Monash guidelines,

these values provide limited additional information in the diagnosis

of PCOS (14, 15).

Combined predictors
Expecting a nonlinear relationship between many reproductive

hormones and a PCOS diagnosis, we used a multilayer perceptron

(MLP) neural network to map follicle-stimulating hormone (FSH),

luteinizing hormone (LH), sex hormone binding globulin (SHBG),

and estradiol (E2) values to a composite metric we call MLP score.

The MLP score was repetitively trained and the hyperparameters

were tuned to generate a predictive probability associated with

PCOS diagnosis for each predictive model, as described with further

detail below.

Outcomes
Defining PCOS: PCOS diagnosis was assigned for any patient who

had an ICD-9 code for PCOS (256.4) or met the Rotterdam criteria

(16), according to which a positive diagnosis is made in the presence

of two out of the following three features: (i) irregular menses (IM) as

defined by rare menses, oligo-ovulation, or anovulation; (ii)

hyperandrogenism (HA) as defined by clinical or biochemical

androgen excess; and (iii) polycystic ovarian morphology (PCOM)

noted on transabdominal or transvaginal ultrasound. Based on these

three criteria, we defined three auxiliary variables IM, HA, and

PCOM to use in the definition of our labels. PCOM was captured

through diagnostic radiology text reports from ovarian ultrasound

imaging for the subset that had ultrasound imaging (17).

Defining Irregular Menstruation (IM): IM was defined with the

following ICD-9 codes: absence of menstruation (626.0), scanty or

infrequent menstruation (626.1), irregular menstrual cycle (626.4),

unspecified disorders of menstruation and abnormal bleeding from

female genital tract (626.9), and infertility, female associated with

anovulation (628.0) (3).

Defining Hyperandrogenism (HA):HA was assigned to a patient

if any of the androgen lab testing for bioavailable testosterone, free

testosterone, or total testosterone was greater than clinical

thresholds of 11 ng/dL, 5 pg/mL, 45 ng/dL, respectively. In

addition, HA was assigned if ICD-9 codes for hirsutism (704.1)

or acne (706.1 or 706.0) were recorded for a patient.

Defining ultrasound characteristics for polycystic ovarian

morphology (PCOM): Among those with an ultrasound in this

dataset, PCOM was identified on ultrasound reports using natural

language processing (NLP) with complete methods detailed by

Cheng and Mahalingaiah (17), to report PCOM as identified

(PCOM present), unidentified (PCOM absent), or indeterminate

(PCOM unidentifiable based on source report data).
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We considered four models to predict the following: Model I:

patients with ICD-9 diagnosis of PCOS (256.4) within the EHR;

Model II: patients with IM and HA without a ICD-9 PCOS code;

Model III: patients with at least two out of the three conditions IM/

HA/PCOM and without a ICD-9 PCOS code; Model IV: all patients

meeting inclusion criteria for Model I or Model III. ICD-9 codes

were abstracted from the billing code and diagnosis code associated

with each encounter within the EHR. Model I included all patients

who were diagnosed with PCOS. Model II and its superset Model

III, which additionally includes PCOM findings on ultrasound, was

composed of patients who did not have a PCOS diagnosis code but

met diagnostic criteria of PCOS based on Rotterdam criteria,

representing the patient population with undiagnosed PCOS.

Model IV essentially captures all women who were diagnosed or

met criteria for PCOS within our population. Supplementary

Table 2 details model definitions and includes the count and

percent of patients in each category. The date of diagnosis was

assigned by the date of PCOS ICD-9 code (256.4) for Model I, the

date of the latest diagnostic criteria met for Model II and III, and the

earlier date associated with Model I and Model III, for Model IV.
Predictive models

Classification methods
We explored a variety of supervised classification methods, both

linear and nonlinear. Linear methods included logistic regression

(LR) and support vector machines (SVM) (18) and were fitted with

an additional regularization term: an L1-norm of the coefficient

vector to inject robustness (19) and induce sparsity. Regularization

added a penalty to the objective function, thereby minimizing the

sum of a metric capturing fitness to the data and a penalty term that

is equal to some multiple of a norm of the model parameters.

Sparsity was motivated by the earlier works (20–23), where it was

shown that sparse classifiers can perform almost as well as very

sophisticated classification methods. Nonlinear methods, including

gradient boosted trees (GBT) and random forests (RF) (24) which

produce large ensembles of decision trees, may yield better

classification performance, but are not interpretable or

explainable to enable a safety check by a clinician. Specifically, the

RF is a large collection of decision trees and it classifies by averaging

the decisions of these trees. For the GBT method, we used

LightGBM, which is a fast, high-performance gradient

boosted machine (GBM) framework (25). We tuned GBM’s

hyperparameters through cross-validation.
Performance metrics
To assess model performance, we obtained the Receiver

Operating Characteristic (ROC) curve. The ROC is created by

plotting the true positive rate, which is indicative of sensitivity or

recall, against the false positive rate (equal to one minus specificity)

at various thresholds. The c-statistic or the area under the ROC

curve (AUC), is used to evaluate the prediction performance. A

perfect predictor is defined by generating an AUC score of 1, and a

predictor which makes random guesses has an AUC score of 0.5.
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We also used the weighted-F1 score to evaluate the models. The

weighted-F1 score is the average of the F1 scores of each class

weighted by the number of participants in each class. The class-

specific F1 scores are computed as the harmonic mean of precision

and recall of a classifier which predicts the label of the given class.

The weighted-F1 score is between 0 to 1, and a higher value

represents a better model. The AUC is more easily interpretable,

and the weighted F1-score is more robust to class imbalance (26).

Statistical feature selection
Categorical variables were converted into dummy/indicator

variables. To avoid collinearity, we dropped the missing or

unclassified data (NaN) category. For continuous variables,

missing values were imputed by the median value for that

variable. A summary of the missing variables for each model is

provided in Supplementary Table 3. Variables with very low

variability (SD<0.0001) were assessed for removal from the

models, however none were noted in any model. We applied

statistical feature selection (SFS) to reduce the less informative

features and simplify the models. For each of the four models’

outcomes, the chi-squared test was applied for binary variables and

the Kolmogorov-Smirnov statistic for continuous variables; the

variables for which we could not reject the null hypothesis of the

same distribution for each class (p-value >0.01) were removed.

Representative aggregated patient-level statistics for each model are

shown in Supplementary Table 4. We also removed one from each

pair of highly correlated variables (with absolute value of the

correlation coefficient > 0.8) to avoid redundant variables. Highly

correlated variables and the retained variable are provided in

Supplementary Table 5. For all models we standardized the

corresponding features by subtracting the mean and scaling to

unit variance.

Training-test splitting
We split the dataset into five random parts, where four parts

were used as the training set, and the remaining part was used for

testing. We used the training set to tune the model hyperparameters

via 5-fold cross-validation, and we evaluated the performance

metrics on the testing set. We repeated training and testing five

times, each time with a different random split into training/test sets.

The mean and standard deviation of the metrics on the test sets over

the five repetitions are reported.

Development of the MLP score
For every model, there was a considerable difference between

the AUC of linear models and non-linear models. To improve the

performance of our linear models, we utilized nonlinear models to

capture intricate relationships between features. We utilized

Gradient Boosted Trees (GBT) to find which features most

commonly appeared together among decision trees. We found

FSH, LH, SHBG, and estradiol levels to be a meaningful group of

features which are all reproductive hormones and continuous

variables that appeared together among trees for all our models.

We subsequently used these four features as input features into a

multilayer perceptron (MLP) neural network model with three
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hidden layers, each employing the rectified linear unit (ReLU)

activation function. The neural network was trained using the

training set to classify PCOS. We used the output probability of

the MLP model, which we called “MLP score,” as a new feature into

our original predictive models.

Recursive feature elimination
We also used a recursive feature elimination approach with L1-

penalized logistic regression (L1-regularized RFE) to extract the

most informative features and develop parsimonious models.

Specifically, after running the L1-penalized logistic regression (L1-

LR), we obtained weights associated with the variables (i.e., the

coefficients of the model, denoted by b), and we eliminated the

variable with the smallest absolute weight in each turn. We iterated

in this fashion, eliminating one variable at a time, to select a model

that maximizes a metric equal to the mean AUCminus the standard

deviation (SD) of the AUC in a validation dataset (using 5-fold

cross-validation on the training set to obtain an average of this

metric over five repetitions).

Final predictive models
We computed the performance of the following models: L1-

penalized logistic regression (LR-L1), support vector machine

(SVM-L1), random forest (RF), and gradient boosted machine.

We calculated each variable’s LR coefficient with a 95% confidence

interval (b [95%CI]), the correlation of the variable with the

outcome (Y-correlation), the p-value of each variable (p-value),

the mean of the variable (Y1-mean) in the PCOS labeled patients,

the mean of the variable (Y0-mean) in the patients without the

PCOS label, and the mean and standard deviation of the variable

over all patients (All-mean and All-SD). Ranking predictor

variables by the absolute value of their coefficients in the logistic

regression model amounts to ranking these variables by how much

they affect the predicted probability of the outcome. A positive

coefficient implies that the larger the value of the variable within the

range specified by the data, the higher the chance of having a PCOS

diagnosis as defined by the model outcome.
Results

Results of data acquisition and data
pre-processing

After inclusion and exclusion criteria were applied to all 65,431

women within the initial data pool, 30,601 patient records were

available for this analysis and defined populations are included in

Figure 1. There were 1,329 patients (4.5%) with a PCOS ICD-9

diagnosis code (Model I). 1,465 patients had records with PCOM

results as present, absent, or unidentifiable. There were 1,056

patients (3.6%) with no ICD 256.4 indication and presence of IM

and HA (Model II). There were 1,116 (3.8%) patients with no ICD

256.4 indication and presence of at least two out of three criteria of

IM, HA, or PCOM (Model III). Finally, there were 2,445 PCOS
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patients (8.0%) in the combined analysis of Model I and III (Model

IV). A tabulation of which subjects were included in each model

based on all possible combinations of the presence or absence of

each variable is shown in Supplementary Table 2. In the total

cohort, the patients were predominantly Black/African American

(40.3%) and White (26.5%), with an average age of 33.6 years (SD =

6.6). Complete demographic characteristics are described

in Table 1.

There were 43 categorical variables and 12 continuous variables

retained as predictors after the data pre-processing procedures.

There were four pairs of highly correlated variables and one variable

from each correlated pair included in the final model as noted in

Supplementary Table 5. Supplementary Table 4 describes all 51

variables used by the predictive models.
Model performance

Tables 2–5 display the parsimonious models that use the MLP

score (LR-L2-MLP score) and show the most significant variables in

the prediction of the outcome for Models I, II, III, and IV,

respectively. All p-values were less than 0.05, which was set as the

significance level. Feature importance graphs based on logistic

regression coefficients (± 95% confidence interval) are visualized

in Figure 2.

For Model I, the parsimonious predictive model achieved an

AUC (SD) of 82.3% (1.7). The MLP score (b = 0.71) and obesity

(b = 0.45) were positively correlated with PCOS diagnosis. Pregnancy

(gravidity b = -0.53; positive pregnancy test b = -0.50), normal BMI

(b = -0.24), smoking (b = -0.18), age (b = -0.16), and Hispanic race

(b = -0.10) were inversely correlated with PCOS diagnosis as shown

in Table 2.

For Model II, the parsimonious predictive model achieved an AUC

(SD) of 77.6% (1.3). The MLP score (b = 0.61), obesity (b = 0.21),

normal BMI (b = 0.15), normal blood pressure (b = 0.16), negative

pregnancy test (b = 0.12), and normal HDL (b = 0.08) were positively

correlated with undiagnosed PCOS. Age (b = -0.27), pregnancy

(gravidity b = -0.26; positive pregnancy test b = -0.19), and Hispanic

race (b = -0.18) were inversely correlated with undiagnosed PCOS as

show in Table 3.

For Model III, the parsimonious predictive model achieved an

AUC (SD) of 77.4% (1.6). TheMLP score (b = 0.60), obesity (b = 0.19),

normal blood pressure (b = 0.17), normal BMI (b = 0.14), Black race

(0.13), negative pregnancy test (b = 0.12), and normal HDL (b = 0.09)

were positively correlated with undiagnosed PCOS. Age (b = -0.25),

pregnancy (gravidity b = -0.24; positive pregnancy test b = -0.20), and

Hispanic race (b = -0.15) were inversely correlated with undiagnosed

PCOS as show in Table 4.

For Model IV, the parsimonious predictive model achieved an

AUC (SD) of 79.1% (1.1). The MLP score (b = 0.7), obesity

(b = 0.31), normal BMI (b = 0.15), hypertension (b = 0.07) and

some higher degree of education, such as college or vocational/

technical school (b = 0.06) were positively correlated with PCOS

diagnosis. Age (b = -0.21), pregnancy (gravidity b = -0.37; positive

pregnancy test b = -0.34; negative pregnancy test b = -0.05),
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Hispanic race (b = -0.12), and smoking (b = -0.08) were inversely

correlated with PCOS diagnosis as shown in Table 5.

GBT models had the highest performance. Predictions of PCOS

in a test set of patients not used during algorithm training achieved

85%, 81%, 80%, and 82% AUC for Models I, II, III, and IV,

respectively. We also report the performance with the logistic

regression model (LR-L1) after SFS and the performance when

using our developed MLP score alongside variables selected via

recursive feature elimination (LR-L2-MLP score). Supplementary

Table 6 displays features for each model, associated with LR-L1

algorithm after SFS. As we hypothesized, developing models using

the MLP score (LR-L2-MLP score) leads to improvement of the

performance of linear models (LR-L1) for Models I, II, III, and IV,

respectively from 79%, 72%, 73%, and 75% AUC to 82%, 78%, 77%,

and 79% AUC. Table 6 details the models with the best performance

(highest AUC) using all 51 features before and after statistical

feature selection (SFS). In Table 6, the means and standard

deviations of AUC and weighted-F1 scores on the test set over

the five repetitions are listed. One of these repetitions in shown in

Figure 3, which shows the ROC curves pertaining to the

parsimonious models utilizing the MLP score (LR-L2-MLP

score). Supplementary Table 7 displays the performance of all

models and all algorithms, before and after statistical feature

selection (SFS). The feature importance in GBT models after SFS

is visualized in Supplementary Figure 1. Of note, it quantifies the

extent to which a feature is used for making decisions within the

ensemble of decision trees but does not show directionality.
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Discussion
Evaluating an at-risk population for PCOS is essential for early

diagnosis and initiating multi-disciplinary care with the goal of

reducing health risks (endometrial hyperplasia/cancer), infertility

and pregnancy complications, and chronic disease burden

including cardiometabolic disorders associated with PCOS.

Retrospective analysis of the at-risk population within an urban

health center allows for assessment of factors predictive of

diagnosis. Of note, the study sample represents a population of

patients who had any visit to BMC for primary care, obstetrics and

gynecology, endocrinology, family medicine, or general internal

medicine and does not represent a random sample. While this is not

a population level assessment, our model is applicable to patients

with high suspicion for PCOS who interact with the

healthcare system.

The ranked list of variables, from the most predictive to the least

predictive of the PCOS outcome, informed the main drivers of the

predictive models. For example, non-gravidity, high levels of LH,

low levels of FSH, obesity, and higher BMI increase the likelihood of

PCOS. These variables are consistent with key variables from other

models and in the pathophysiology of PCOS. The overall predictive

accuracy was high for all models, suggesting that a predictive model

may assist in early detection of PCOS within those at risk in an

electronically interfaced medical record. Furthermore, we found

that non-linear models had superior predictive capacity compared
FIGURE 1

Flow of patients from the BMC CDW into the dataset used by the study.
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TABLE 1 Demographic characteristics of the study population and by model.

Variable Model I Model II Model III Model IV

Age, Mean years (SD) 33.6 (6.6) 33.7 (6.6) 33.7 (6.6) 33.6 (6.6)

Race, n (%)

Black/African American 11881 (40.3) 11824 (40.5) 11861 (40.5) 12395 (40.5)

White/Caucasian 7812 (26.5) 7733 (26.5) 7741 (26.4) 8086 (26.4)

Hispanic/Latina 2858 (9.7) 2837 (9.7) 2841 (9.7) 2929 (9.6)

Asian 1350 (4.6) 1354 (4.6) 1354 (4.6) 1406 (4.6)

Middle Eastern 175 (0.6) 176 (0.6) 176 (0.6) 184 (0.6)

American Indian/Native American 163 (0.6) 162 (0.6) 162 (0.6) 168 (0.5)

Native Hawaiian/Pacific Islander 17 (0.1) 18 (0.1) 18 (0.1) 18 (0.1)

Other 979 (3.3) 966 (3.3) 966 (3.3) 1023 (3.3)

Unknown 4250 (14.41) 4146 (14.19) 4153 (14.19) 4392 (14.4)

Marital Status

Single 22325 (75.7) 22155 (75.8) 22199 (75.8) 23224 (75.9)

Married 5833 (19.8) 5753 (19.7) 5767 (19.7) 6018 (19.7)

Separated 392 (1.3) 391 (1.3) 392 (1.3) 401 (1.3)

Divorced 388 (1.3) 379 (1.3) 380 (1.3) 397 (1.3)

Widowed 35 (0.1) 35 (0.1) 35 (0.1) 35 (0.1)

Other 502 (1.7) 489 (1.7) 489 (1.7) 516 (1.7)

Unknown 10 (0.03) 10 (0.03) 10 (0.03) 10 (0.03)

Body Mass Index (BMI), kg/m2

Normal (BMI < 25) 7534 (25.6) 7685 (26.3) 7697 (26.3) 7902 (25.8)

Overweight (BMI between 25-30) 5694 (19.3) 5689 (19.5) 5707 (19.5) 5941 (19.4)

Obese (BMI ≥ 30) 7645 (25.9) 7369 (25.2) 7387 (25.2) 7985 (26.1)

Unknown 8612 (29.2) 8469 (29.0) 8481 (29.0) 8,773 (28.7)
F
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Model I, PCOS ICD-9 diagnosis within the EHR; Model II, irregular menstruation and hyperandrogenism without ICD-9 PCOS code; Model III, at least two out of the three conditions (irregular
menstruation, hyperandrogenism, or polycystic ovary morphology on ultrasound) and without ICD-9 PCOS code; Model IV, meets inclusion criteria for Model I or Model III.
TABLE 2 Most significant variables for PCOS diagnosis prediction in Model I.

Rank Variables b b - %95 CI Y-correlation p-value Y1-mean Y0-mean All-mean All-std

0 MLP Score 0.71 0.028 0.33 6.80E-197 0.17 0.04 0.05 0.08

1 Intercept -0.68 – – – – – – –

2 Gravidity -0.53 0.018 -0.12 4.55E-78 1.28 2.08 2.04 1.39

3 Positive bHCG -0.5 0.019 -0.09 1.50E-48 0.05 0.23 0.22 0.42

4 Obesity 0.45 0.017 0.11 1.38E-81 0.51 0.27 0.28 0.45

5 Normal BMI -0.24 0.017 -0.05 3.57E-16 0.15 0.26 0.26 0.44

6 Smoker -0.18 0.017 -0.03 6.62E-05 0.09 0.14 0.14 0.34

7 Age -0.16 0.016 -0.08 1.70E-25 31.34 33.79 33.68 6.61

8 Hispanic/Latina Race -0.1 0.016 -0.02 1.82E-03 0.07 0.10 0.10 0.30
bHCG, beta-human chorionic gonadotropin.
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to linear models for all four model outcomes, potentially allowing

for inclusion of non-linear reproductive hormone relationships.

When assessing patients who received a diagnosis of PCOS

(Model I), the most predictive factors related to diagnosis were

hormone levels (as captured by the MLP score) and obesity, a

clinical factor in supporting a PCOS diagnosis. Specifically, there is

a non-linear relationship between reproductive hormones such as

FSH, LH, and estradiol. Often these hormonal lab tests are obtained

randomly in those with oligomenorrhea, and it is also common to

find an elevated FSH to LH ratio. A concern may also be the

misclassification of hypothalamic amenorrhea into the group

classified as PCOS where the FSH and LH levels would be low or

suppressed, or in the setting of premature ovarian insufficiency,

notable by an elevated FSH and low estradiol. The MLP score allows
Frontiers in Endocrinology 08
for the diversity of relationships of these hormone levels and was

trained using a neural network to appropriately classify PCOS.

Additionally, prior pregnancy (gravidity) and a positive pregnancy

test were negatively associated with a diagnosis of PCOS, consistent

with the underlying increased risk of infertility due to oligo-

ovulation. Normal BMI and smoking, a known ovarian toxicant,

were negatively associated with the presence of a PCOS diagnosis,

which may indicate patient characteristics that increase risk of a

delayed PCOS diagnosis. These identified variables demonstrate the

robustness of the model towards predicting phenotypic traits of

patients with PCOS, which is aligned with the performance

accuracy. While the significant factors such as hormone levels,

gravidity, bHCG, and obesity identified in the model are already

known to be associated with PCOS, the true impact of our model
TABLE 3 Most significant variables for PCOS diagnosis prediction in Model II.

Rank Variables b b - %95 CI Y-correlation p-value Y1-mean Y0-mean All-mean All-std

0 MLP Score 0.61 0.023 0.26 2.13E-142 0.12 0.04 0.04 0.06

1 Intercept -0.44 – – – – – – –

2 Age -0.27 0.015 -0.08 2.26E-31 31.01 33.79 33.69 6.61

3 Gravidity -0.26 0.016 -0.09 2.35E-63 1.42 2.08 2.06 1.39

4 Obesity 0.21 0.016 0.03 9.60E-06 0.34 0.27 0.27 0.44

5 Positive bHCG -0.19 0.017 -0.06 4.14E-21 0.10 0.23 0.23 0.42

6 Hispanic/Latina Race -0.18 0.016 -0.02 2.69E-03 0.06 0.10 0.10 0.30

7 Normal BP 0.16 0.015 0.03 1.37E-07 0.60 0.51 0.51 0.50

8 Normal BMI 0.15 0.016 0.03 8.57E-07 0.34 0.26 0.26 0.44

9 Negative bHCG 0.12 0.015 0.06 1.44E-22 0.37 0.23 0.23 0.42

10 HDL 0.08 0.015 0.01 1.03E-10 52.13 51.59 51.61 7.86
BP, blood pressure; BMI, body mass index (kg/m2); HDL, high-density lipoprotein; bHCG, beta-human chorionic gonadotropin.
TABLE 4 Most significant variables for PCOS diagnosis prediction in Model III.

Rank Variables b b - %95 CI
Y-

correlation p-value Y1-mean Y0-mean All-mean All-std

0 MLP Score 0.6 0.023 0.26 7.41E-142 0.10 0.04 0.04 0.05

1 Intercept – – – – – – – –

2 Age -0.25 0.015 -0.08 5.91E-30 31.16 33.79 33.69 6.61

3 Gravidity -0.24 0.016 -0.09 2.47E-63 1.46 2.08 2.06 1.39

4 Positive bHCG -0.20 0.017 -0.06 3.59E-20 0.11 0.23 0.23 0.42

5 Obesity 0.19 0.016 0.03 2.73E-06 0.34 0.27 0.27 0.44

6 Normal BP 0.17 0.015 0.04 3.94E-08 0.60 0.51 0.51 0.50

7 Hispanic/Latina Race -0.15 0.016 -0.02 2.00E-03 0.06 0.10 0.10 0.30

8 Normal BMI 0.14 0.016 0.03 6.76E-06 0.33 0.26 0.26 0.44

9
Black/African
American Race 0.13 0.015 0.02 2.03E-03 0.46 0.40 0.41 0.49

10 Negative bHCG 0.12 0.015 0.06 2.20E-25 0.37 0.23 0.23 0.42

11 HDL 0.09 0.015 0.01 4.06E-12 52.04 51.59 51.61 7.86
BP, blood pressure; BMI, body mass index; HDL, high-density lipoprotein; bHCG, beta-human chorionic gonadotropin.
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TABLE 5 Most significant variables for PCOS diagnosis prediction in Model IV.

Rank Variables b
b - %
95 CI

Y-
correlation

p-
value

Y1-
mean

Y0-
mean

All-
mean All-std

0 MLP Score 0.7 0.024 0.36 0.00E-01 0.20 0.07 0.08 0.10

1 Intercept -0.44 – – – – – – –

2 Gravidity -0.37 0.017 -0.14
2.17E-
135 1.36 2.08 2.02 1.39

3 Positive bHCG -0.34 0.017 -0.10 2.23E-65 0.08 0.23 0.22 0.41

4 Obesity 0.31 0.015 0.10 2.86E-66 0.43 0.27 0.28 0.45

5 Age -0.21 0.015 -0.10 1.91E-52 31.26 33.79 33.59 6.62

6 Hispanic/Latina Race -0.12 0.015 -0.03 2.34E-06 0.07 0.10 0.10 0.29

7 Smoker -0.08 0.015 -0.02 3.00E-04 0.11 0.14 0.14 0.34

8 Hypertension 0.07 0.015 0.04 3.63E-12 0.28 0.21 0.22 0.41

9
Education – Some College/Technical/

Vocational School 0.06 0.014 0.03 1.55E-04 0.18 0.15 0.15 0.36

10 Negative bHCG -0.05 0.015 0.05 2.29E-16 0.31 0.23 0.24 0.42
F
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bHCG, beta-human chorionic gonadotropin.
FIGURE 2

Feature importance graphs based on logistic regression coefficients (± 95% confidence interval), associated with parsimonious models utilizing the
MLP score (LR-L2-MLP score). The absolute value of the logistic regression coefficients shows how much the variable affects the predicted
probability of the outcome. A positive/negative coefficient implies that the larger the absolute value of the variable, the higher/lower the chance of
having a PCOS diagnosis as defined by the model outcome.
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lies within the implementation of such a tool within the EHR. For

example, a real-world application of this model in the clinical

setting would entail integration of our model into the electronic

health record system that would provide the probability of PCOS
Frontiers in Endocrinology 10
diagnosis or set a threshold for suspicion for each patient to aid a

provider’s evaluation. Though substantial system modifications

may be required, integration of our model into the EHR system

would lead to more timely diagnosis and optimize referrals for
TABLE 6 Model performance over the test set, in the format of mean percentage (SD percentage) over 5 repetitions.

Model I Model II Model III Model IV

AUC F1-weighted AUC F1-weighted AUC F1-weighted AUC F1-weighted

Best full models before SFS

GBM (51 features) GBM (51 features) GBM (51 features) GBM (51 features)

85.2 (1.8) 94.5 (0.2) 80.6 (0.5) 95.1 (0.2) 80.4 (0.7) 94.8 (0.1) 81.8 (1.4) 91.1 (0.4)

Best full models after SFS

GBM (14 features) GBM (16 features) GBM (17 features) GBM (17 features)

83.6 (1.7) 94.5 (0.2) 80.5 (0.7) 95.1 (0.2) 79.8 (1.1) 94.8 (0.1) 81.1 (1.3) 90.9 (0.3)

LR-L1 (14 features) LR-L1 (16 features) LR-L1 (17 features) LR-L1 (17 features)

79.2 (1.9) 93.9 (0.2) 71.7 (0.9) 94.7 (0.1) 72.9 (2.1) 94.4 (0.1) 74.8 (1.1) 89.7 (0.3)

Parsimonious models LR-L2-
MLP score (8 features)

Parsimonious models LR-L2-
MLP score (10 features)

Parsimonious models LR-L2-
MLP score (11 features)

Parsimonious models LR-L2-
MLP score (10 features)

82.3 (1.7) 94.5 (0.1) 77.6 (1.3) 95.1 (0.1) 77.4 (1.6) 94.9 (0.1) 79.1 (1.1) 90.8 (0.3)
AUC, area under the receiver operator characteristic curve; GBM, gradient boosted machine; LR-L1, L1-penalized logistic regression; LR-L2-MLP score, logistic regression with MLP score.
FIGURE 3

Example of receiver operator characteristic (ROC) curves associated with parsimonious logistic regression models utilizing the MLP score (LR-L2-MLP score).
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downstream follow-up for known clinical sequelae associated

with PCOS.

When assessing patients who met diagnostic criteria without

the ICD-9 label of PCOS (Models II and III), predictive factors both

supported the underlying PCOS diagnosis and alluded towards

factors that may contribute to missing the diagnosis despite meeting

Rotterdam criteria. Similar to Model I, gravidity and a positive

pregnancy test were negatively associated with Models II and III

diagnosis, while obesity was positively associated with Models II

and III diagnosis, consistent with Model I. Interestingly, distinct

positive predictors among Models II and III were normal BMI,

normal blood pressure, and normal HDL. These patients may

present as the “lean” phenotype of PCOS or those with mild

features, leading to underdiagnosis of PCOS. Diagnosing “lean”

PCOS can be more nuanced, potentially delaying diagnosis or

requiring more specialized consultation (27). Within our cohort,

1,116 individuals were identified by the model without the ICD-9

code that met Rotterdam PCOS diagnostic criteria (Model III),

suggesting the predictive value of our models to identify at risk

groups within a large health system and reduce delays in diagnosis.

Given that women often wait over two years and see numerous

health professionals before receiving a diagnosis of PCOS, the

integration of high-quality AI-based diagnostic tools with the

EHR could significantly contribute to more timely diagnosis (8).

Consistent with Models I, II, and III, positive pregnancy test

and gravidity were both negatively associated with PCOS diagnosis

in Model IV while obesity and presence of hypertension were both

positively associated with the Model IV combined PCOS outcome.

Some higher degree of education, such as college or vocational/

technical school, was also positively associated with the outcomes of

undiagnosed PCOS and combined PCOS (Models II, III, and IV),

which may suggest that education status and patient’s self-advocacy

for seeking care within a medical system may be implicated

specifically in under-diagnosed individuals. Of note, we dropped

insurance status after finding that the null was a strong predictor of

PCOS, though it is interesting to note that 83% of 331 patients in

this dataset with missing insurance have PCOS. Insurance status

alludes to socioeconomic barriers such as access to care, which can

result in a delay in timely diagnosis through either inability to seek

evaluation or follow through with testing. While the implications of

insurance status and social determinants of health are beyond the

scope of this paper, it is important to note that persistence in

seeking treatment within a fractionated health care system can be

challenging financially and psychologically, as patients may need

multiple evaluation or specialist’s consultation to reach the

right diagnosis.

A recent systematic review investigated the utility of artificial

intelligence and machine learning in the diagnosis or classification

of PCOS (28). Their search ultimately included 31 studies with

sample sizes ranging from 9 to 2,000 patients with PCOS. Methods

employed by these models included support vector machine, K-

nearest neighbor, regression models, random forest, and neural

networks. Only 19% of included studies performed all major steps

of training, testing, and validating their model. Furthermore, only

32% of included studies used standardized diagnostic criteria such

as the Rotterdam criteria or NIH criteria. The authors found that
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the ROC of included studies ranged from 73-100%. While it is

difficult to directly compare our models’ performance to those

included in the review due to possible differences in model

training and diagnostic criteria, our models’ AUCs fell within the

range reported in the systematic review of 73 to 100%. Only one

study sourced their data from electronic health records to build

their model (29). Despite the lack of standardized model training

and diagnostic criteria used in these studies, the review concluded

that artificial intelligence and machine learning provide promise in

detecting PCOS, allowing for an avenue for early diagnosis.

Outside of the machine learning models included in the

systematic review, other predictive models have been created for

earlier detection of PCOS as well as for predicting long-term health

outcomes among women with a diagnosis of PCOS. One such

model was created from 11,720 ovarian stimulation cycles at Peking

University Third Hospital. The model used serum antimullerian

hormone (AMH) and androstenedione levels, BMI, and menstrual

cycle length to predict a diagnosis of PCOS and achieved an AUC of

85%. The algorithm was then developed into an online platform

that is able to calculate one’s risk of PCOS given certain indicators

that are inputted into the model, allowing for better screening

abilities in the clinic (9). Another study created a similar model,

taking into account AMH and BMI to predict a diagnosis of PCOS

or other ovulatory dysfunction disorders among 2,322 women (10).

They found that in women with higher BMIs and lower AMH levels

could be used to predict PCOS compared to normal-weight or

underweight women. Deshmukh et al. created a simple four-

variable model which included free androgen index (FAI), 17-

hydroxyprogesterone, AMH, and waist circumference for

predicting risk of PCOS in a cross-sectional study involving 111

women with PCOS and 67 women without PCOS (30). Lastly, Joo

et al. used polygenic and phenotypic risk scores to develop a PCOS

risk prediction algorithm (31). They found high degrees of

association between PCOS and various metabolic and endocrine

disorders including obesity, type 2 diabetes, hypercholesterolemia,

disorders of lipid metabolism, hypertension, and sleep apnea (31).

In addition to the goal of improved screening for PCOS, models

have been created to predict long-term clinical outcomes in women

with PCOS, such as ovulation, conception, and live birth (11, 12).

Given the increased risk of insulin resistance in women with PCOS,

Gennarelli et al. created a mathematical model to predict insulin

sensitivity based on variables such as BMI, waist and hip

circumferences, truncal-abdominal skin folds, and serum

concentrations of androgens, SHBG, triglycerides, and cholesterol

(13). Models to predict non-alcoholic fatty liver disease risk among

young adults with PCOS have also been generated (32). Combining

earlier detection with more accurate risk stratification of clinical

sequalae through predictive modeling can significantly improve the

long-term health outcomes of women with PCOS. Application of

our models to predict other downstream health risks after the

diagnosis of PCOS is a future area of research.

Beyond the long-term health impacts of PCOS, the condition also

carries a significant economic cost for our healthcare system. A study

by Riestenberg et al. (2) recently estimated the total economic burden

of PCOS, as well as the cost specifically for pregnancy-related

complications and long-term health morbidities (2). The authors
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estimated the annual economic burden of PCOS to be $8 billion as of

2020 in the United States. Furthermore, the excess cost of pregnancy-

related comorbidities such as gestational hypertension, gestational

diabetes, and preeclampsia attributable to PCOS totals $375 million

USD annually. Outside of pregnancy, the cost of long-term

comorbidities associated with PCOS including stroke and type 2

diabetes mellitus was estimated at $3.9 billion USD. Meanwhile, the

cost for diagnostic evaluation of PCOS was less than 2% of the total

economic burden. This estimated financial burden suggests that

predictive models aiding earlier diagnosis could not only reduce

long-term health consequences of PCOS but also alleviate significant

healthcare costs associated with the condition.

Given the high prevalence, significant healthcare burden, and

heterogeneity in clinical presentation of PCOS, AI-based tools are

well suited for earlier diagnosis of PCOS. Our study had many

strengths. First, our machine learning models, which were highly

accurate and robust in PCOS diagnosis prediction, were created using

the largest sample size to date (28). Second, our model was tested and

trained on a diverse Safety-Net hospital-sourced population not

restricted to the context of fertility care. Third, it is the only model

that incorporated three data streams (ICD-9 codes, clinical laboratory

findings, and radiologic findings) and an MLP score. Fourth, the

parsimonious and interpretable models were very close in achieving

full model predictive accuracy, performing relatively closely to the

best-performing non-linear models. Essentially, our parsimonious

models “isolate” nonlinearities in hormone levels (captured by the

MLP score) and linearly combine that score with other variables.

Most models evaluate reproductive hormones (FSH, estradiol, LH,

and SHBG) as individual variables within linear models, which does

not account for the high inter- and intra-patient variability. By using

non-linear mapping of the hormone values, we were able to generate

a composite variable allowing for a linear function that correlates with

the likelihood of an accurate prediction. Last, our variables are easily

accessible in an electronic health dataset, rendering the models

helpful for clinical prediction. Our study did not evaluate AMH as

a predictive variable because it was not widely utilized during the time

window of this data extraction corresponding with ICD-9 codes.

Despite these strengths, our model is not without limitations.

First, it is only directly applicable to those who interact with the

medical system and those deemed “at-risk” for a PCOS diagnosis,

which would not facilitate population-based prediction. More

specifically, the models’ data are sourced from an urban, hospital-

based population which may limit the generalizability of these

findings to other patient populations such as those living in rural

areas. Additional studies need to be conducted in other patient

populations or unselected community-based populations to

externally validate the use of these models, especially expanding

to the entire population within a health system to evaluate the

accuracy of our models (33). Second, we must interpret our data

within the limitations of informative presence in EHR data.

Informative presence is defined as data that is present and

informed with respect to the health outcome, in this case PCOS,

as well as behavioral patterns of interaction with healthcare
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inst i tut ions which may be addit ional ly impacted by

marginalization (34). This is an important consideration as a

potential source of bias for interpreting predictive models using

EHR data (34, 35). Nevertheless, we were able to extract over 1000

patients who were undiagnosed with PCOS among the population,

suggesting the predictive value of the modelling in identifying

diagnosis gaps among specific populations within a large health

system. Third, it is possible that additional examination of the

medical record beyond ICD-9 diagnosis may allow for more

clarification of risk in the presumed PCOS group. Fourth, while

our model considers numerous important variables, other

potentially relevant predictors such as diet, genetic factors, and

lifestyle factors, were not incorporated and represents an area of

growth for future predictive models. Last, our exclusion of

concurrent endocrinopathies was chosen to avoid incorrectly

including ovulation disorders caused by other endocrinopathies,

but it is possible that this was an overly strict exclusion criterion.

In conclusion, this novel machine learning algorithm

incorporates three data streams from a large EHR dataset to

assess PCOS risk. This model can be integrated into the EHR to

aid clinicians in earlier diagnosis of PCOS and connect patients to

interventions and healthcare providers across their reproductive

lifespan with the goal of health optimization and risk reduction.
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