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Association between maternal
lipid profiles and vitamin D
status in second trimester
and risk of LGA or SGA:
a retrospective study
Xianhua Zheng †, Kefeng Lai †, Chengyi Liu, Yuan Chen,
Xiaodan Zhang, Weixiang Wu, Mingyong Luo
and Chunming Gu*

Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
Background: Accumulating evidence has linked dyslipidemia during pregnancy

to the risk of delivering infants born either large for gestational age (LGA) or small

for gestational age (SGA). However, the effects of the vitamin D status on these

relationships require further investigation. This study investigated whether the

relationship between lipid profiles and the risk of LGA or SGA was influenced by

vitamin D levels during the second trimester.

Methods:Maternal lipid profile levels, including total cholesterol (TC), triglyceride

(TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), and vitamin D levels, were measured in a cohort of 6,499

pregnant women during the second trimester. Multivariate regression models

and subgroup analyses were employed to evaluate the potential associations

between maternal lipid profiles, vitamin D levels, and the risk of LGA or SGA.

Results: The prevalence of SGA infants was 9.8% (n=635), whereas that of LGA

infants was 6.9% (n=447). Maternal TG levels were found to be positively

associated with the risk of LGA (odds ratio [OR] = 1.41, 95% confidence interval

[CI]:1.17–1.70), whereas a negative association was observed between maternal

TG, TC, LDL-C levels, and risk of SGA. Additionally, mothers with higher HDL-C

levels were less likely to give birth to an LGA infant (OR=0.58, 95% CI:0.39–0.85).

Importantly, associations between TG, TC, LDL-c, and SGA as well as between

TG and LGA were primarily observed among pregnant women with insufficient

vitamin D levels. As for HDL-C, the risk of LGA was lower in mothers with

sufficient vitamin D (OR = 0.42, 95% CI:0.18–0.98) compared to those with

insufficient vitamin D (OR = 0.65, 95% CI:0.42–0.99).

Conclusion: Vitamin D status during the second trimester exerts a modifying

effect on the association between lipid profiles and the risk of LGA and

SGA infants.
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1 Introduction

Adverse birth outcomes, including preterm birth (PTB), low

birth weight (LBW), macrosomia, large for gestational age (LGA),

and small for gestational age (SGA), have been identified as

predictors of morbidity and mortality, as well as long-term health

risks, such as metabolic syndrome, type II diabetes, and asthma (1–

3). Numerous maternal factors, including gestational weight gain,

pre-pregnancy body mass index (pre-BMI), and nutritional status

during pregnancy, have been shown to be associated with adverse

birth outcomes (4–6). Therefore, investigating the regulatory

mechanisms underlying these outcomes during pregnancy is

crucial for identifying potential preventive strategies.

During pregnancy, women undergo unique physiological

changes and require increased nutrition and energy to support

maternal metabolism and fetal growth. Maternal lipid profiles,

including total cholesterol (TC), triglyceride (TG), low-density

lipoprotein cholesterol (LDL-C), and high-density lipoprotein

cholesterol (HDL-C), play crucial roles in providing energy for

placental development (7). However, studies on the relationship

between maternal dyslipidemia and adverse birth outcomes have

yielded inconsistent results. For instance, a prospective study

found a positive association between maternal TG levels and the

risk of LGA infants, independent of maternal pre-BMI (8).

Conversely, a cross-sectional analysis conducted in Brazil did

not find a significant association between lipid intake and LGA

newborns (9).

Vitamin D deficiency is a global public health problem

affecting various age groups, particularly in pregnant women.

Emerging evidence on the physiological activities of vitamin D

has highlighted its role in reducing hepatic TG synthesis,

cholesterol conversion, and the promotion of fatty acid (FA)

oxidation (10, 11). The expression of coenzyme A reductase

(HMG CoA reductase), sterol regulatory element binding

proteins (SREBPs), and peroxisome proliferators activated

receptor (PPAR) regulated by vitamin D might account for the

improvements of lipid profile in vivo and in vitro (12). The

optimal level of vitamin D for pregnancy health was unclear,

but a higher risk of adverse pregnancy outcomes is more likely to

be related to vitamin D deficiency. The serum vitamin D levels

have been found to correlate with profile levels, which are

attributed to the increased metabolic demands of pregnancy

(13). Furthermore, high vitamin D levels in the second trimester

may improve the lipid profile and mitigate the elevation of C-

reactive protein induced by hyperlipidemia (14). A meta-analysis

suggested an inverse association between maternal vitamin D

levels and the risk of LBW, PTB, and SGA (15). The adequate

vitamin D status during pregnancy has been considered a

protective factor against SGA and is associated with improved

infant growth (16).

Abnormal lipid profiles in pregnant women are considered as

risk factors for LGA or SGA infants, but the effects of vitamin D

status on these relationships remain unclear. Therefore, this study

was performed to investigate the association between vitamin D

status, lipid profile during the second mid-pregnancy, and the risk

of LGA or SGA infants in Chinese women.
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2 Materials and methods

2.1 Study population

This retrospective study included pregnant Chinese women who

received prenatal care and intended to give birth at the Guangdong

Women and Children’s Hospital (Guangzhou, China) between January

2020 and December 2021. This study was approved by the Ethics

Committee of the Guangdong Women and Children’s Hospital

(reference number 202301269). All participants were provided

detailed information about the study and provided written informed

consent. Women who met any of the following criteria were excluded

from the study: (1) multiple pregnancies or stillbirths (n = 2765), (2)

preexisting diabetes (n = 327), (3) preexisting hypertension (n = 94), (4)

in vitro fertilization (n = 2513), or (5) incomplete data on basic

information or testing (n = 1651) (Figure 1). Ultimately, 6499

mother-fetus pairs were included in this study.
2.2 Measurement for lipid profiles and
vitamin D in mid-pregnancy

Non-fasting plasma samples were obtained during mid-

pregnancy by a trained nurse (median 17.43 weeks of gestation,

90% range [14.14 to 24.86]). The concentrations of serum total

cholesterol (TC), triglycerides (TG), low-density lipoprotein

cholesterol (LDL-C), and high-density lipoprotein cholesterol

(HDL-C) were analyzed using an automatic analyzer (Beckman

Coulter, Brea, CA, USA) and a commercial kit (Leadman, Beijing,

China). The vitamin D concentration was determined using an

electrochemiluminescence immunoassay (Abbott Laboratories, IL,

USA). Internal quality and quality control measurements were

performed for each batch of analyses, with inter- and intra-assay

coefficients of variation (CVs) below 10%.
2.3 Birth outcome and covariates

Anthropometric data on infants and basic information on

mothers were obtained from the medical records of the study

hospital. Immediately after birth, obstetric nurses recorded the

birth weight, length, and head circumference of newborns. Data

on maternal age, gravidity, parity, education level, smoking and

drinking status, pregnancy complications (gestational diabetes

mellitus [GDM] and hypertensive disorders in pregnancy [HDP]),

gestational age at lipid profile testing, and the season of vitamin D

measurement were extracted from medical records as potential

covariates. Seasons of vitamin D measurement were defined as

winter (December, January, February), spring (March, April, May),

summer (June, July, August) and fall (September, October,

November). We adjusted for potential covariates in the regression

models based on previous reports. The maternal vitamin D status

was defined according to the Endocrine Society’s Clinical

Guidelines, with 25(OH)D levels below 75 nmol/L classified as

non-sufficiency and levels equal to or above 75 nmol/L classified as

sufficiency (17).
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Newborns were classified as appropriate for gestational age

(AGA), small for gestational age (SGA), or large for gestational

age (LGA) based on Neonatal Birth Weight for Gestational Age and

Percentile in 23 Cities of China. LGA was defined as birth weight

above the 90th percentile, SGA as birth weight below the 10th

percentile, and AGA as birth weight between the 10th and 90th

percentiles (18).
2.4 Statistical analyses

Descriptive statistics were used to summarize the baseline data

of the study participants. Continuous variables are reported as

mean (standard deviation, SD) or median (interquartile range,

IQR), while categorical variables are expressed as percentages.

Non-parametric tests were used to compare continuous variables,

and chi-square tests were used to compare categorical variables.

The Shapiro Wilk normality test was performed to verify the

distribution of vitamin D and lipid profiles, which were right-

skewed. To achieve a normal distribution, the raw values were log2-

transformed. Spearman’s correlation coefficients (rs) were

calculated to analyze the correlations between the log2-

transformed concentrations of vitamin D and lipids.

Multivariate linear and logistic regression analyses were

conducted to evaluate the association between serum lipid profiles

and vitamin D concentration or status during mid-pregnancy. For

LGA and SGA infants, multiple logistic regression analyses were

performed to estimate the odds ratios (ORs) and 95% confidence

intervals (CIs) based on TC, TG, HDL-C, LDL-C, and vitamin D

concentrations. Pregnant women of normal weight served as the

reference group. Regression models included potential covariates
Frontiers in Endocrinology 03
based on relevant reports. Subgroup analyses were conducted

according to the maternal vitamin D status. Furthermore, the

combined effects of vitamin D status and lipid concentration (TC,

TG, HDL-C, and LDL-C) in the second trimester on LGA and SGA

infants were investigated by adding the product interaction term of

vitamin D status × lipid concentration to the models. A p-value for

interaction less than 0.15 was used as a cutoff to explore the

potential effect modification through stratification (19, 20).

All statistical analyses were performed using SPSS (version 26.0;

SPSS, Chicago, IL, USA) and R version 3.3.3 (R Foundation for

Statistical Computing). Statistical significance was defined as p

< 0.05.
3 Results

A total of 6499 mother-infant pairs were included in this study,

and their detailed demographic characteristics are presented in

Table 1. Of the participants, the average age was 30.15 ± 4.30

years, 2947 (45.3%) were nulliparous, and 2345 (36.1%) underwent

cesarean section. Only one woman had a history of smoking, and

none of them smoked during pregnancy. Moreover, 4376 (67.3%)

had a college degree or higher. The mean gestational age at lipids

testing were 18.56 ± 3.82. Additionally, 5.3% (n = 342) of mothers

experienced hypertensive disorders of pregnancy, and 17.9% (n =

1163) were diagnosed with gestational diabetes mellitus. The

seasonal distribution of vitamin D testing in the second trimester

was nearly equal between Fall and Winter, whereas spring had the

highest percentage (34.8%). Additionally, there was seasonal

variation in serum 25(OH)D concentration in this study.
FIGURE 1

Flow chart for screening eligible participants.
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Maternal 25(OH)D was highest in summer (62.12 ± 22.81 nmol/L,

n = 1604) followed by autumn (60.15 ± 21.23 nmol/L, n = 1243),

winter (54.17 ± 21.78 nmol/L, n = 1390) and spring (54.04 ± 21.54

nmol/L, n = 2262), respectively (Supplementary Figure S1). Among

the infants, 52.8% (n = 3429) were male. The mean birth weight,
Frontiers in Endocrinology 04
length, and gestational age at birth for the infants were 3.19 ± 0.43

kg, 49.46 ± 1.93 cm, and 39.23 ± 1.42 weeks, respectively.

The median (25th–75th) values of the four lipid parameters in

the second trimester were as follows: 1.83 (1.32–2.15) mmol/L for

TG, 5.61 (4.85–6.24) mmol/L for TC, 1.89 (1.65–2.10) mmol/L for

HDL-C, and 3.09 (2.56–3.56) mmol/L for LDL-C (Table 2). The

overall range of vitamin D concentrations was 10.5–159.2 nmol/L,

with a mean ± SD of 57.23 ± 22.14 nmol/L. 20.7% of the patients

(n=1350) were classified into the sufficient vitamin D group.

Women with sufficient vitamin D in mid pregnancy have higher

cholesterol levels than those with non-sufficient vitamin D

(Supplementary Table S1). Similar findings were also observed in

Spearman correlation analysis, it is suggested that vitamin D

concentrations was correlated with cholesterol levels except for

TG (Supplementary Table S2).

The prevalence of LGA and SGA infants was 6.9% (n = 447) and

9.8% (n = 635), respectively. Figure 2 presents the lipid profiles and

vitamin D concentrations in the AGA, SGA, and LGA groups.

Women with infants born LGA exhibited higher levels of TG and

LDL-C compared to women with infants born AGA. Conversely,

the TG, TC, and LDL-C levels were significantly lower compared

than in the control group (p < 0.05) in the SGA group. In addition,

women with a LGA newborn had lower levels of HDL-C. Table 3

presents the association between maternal lipid parameters in the

second trimester and the risk of LGA or SGA. TG levels were

positively associated with the risk of LGA (OR=1.41, 95% CI 1.17–

1.70, p < 0.001), while maternal TG, TC, and LDL-C were negatively

associated with the risk of SGA. Additionally, higher HDL-C levels

in mothers were associated with a lower likelihood of delivering an

LGA infant (OR = 0.58, 95% CI 0.39–0.85). No significant

association was found between the vitamin D status and the risk

of LGA or SGA infants (all p > 0.05).

The effect of vitamin D on the association between lipid profiles

and risk of LGA or SGA was explored by dividing the study

population into two different vitamin D categories. Although no

interaction effect was observed among these birth outcomes (p for

interaction > 0.15), the effect of the lipid profile differed because of

the vitamin D status (Table 4). For TG, mothers in the vitamin D

non-sufficiency group with higher TG level was related to an

increased risk (OR=1.40, 95% CI:1.13–1.74) for LGA. Regarding
TABLE 1 Clinical data of the study population.

Characteristics Mean ± SD or n (%)

Maternal age (years) 30.15 ± 4.30

parity

Multiparous 3552 (54.7%)

Nulliparous 2947 (45.3%)

Education level

College 4376 (67.3%)

High School 1019 (15.7%)

< High School 1104 (17%)

Cesarean section 2345 (36.1%)

Pre-pregnancy BMI (kg/m2) 21.04 ± 4.83

BMI status

Underweight 4348 (66.9%)

Normalweight 1262 (19.4%)

Overweight 717 (11%)

Obesity 172 (2.6%)

GWG 13.74 ± 4.56

GDM 1163 (17.9%)

HDP 342 (5.3%)

PTB 310 (4.8%)

Season at Vitamin D testing

Spring 2262 (34.8%)

Summer 1604 (24.7%)

Autumn 1243 (19.1%)

Winter 1390 (21.4%)

Gestational age at lipid testing 18.56 ± 3.82

Neonatal characteristics

Boys 3429 (52.8%)

SGA 635 (9.8%)

LGA 447 (6.9%)

Birth weight (kg) 3.19 ± 0.43

Length (cm) 33.52 ± 1.35

Head (cm) 49.46 ± 1.93

Gestational age (weeks) 39.23 ± 1.42
SD, standard deviation; BMI, body mass index; GWG, Gestational weight gain; HDP,
hypertensive disorders of pregnancy; GDM, gestational diabetes mellitus; SGA, small for
gestational age; LGA, large for gestational age.
TABLE 2 Distributions of maternal vitamin D and lipid profiles in the
second trimester.

Analytes Mean GM
Percentiles

25 50 75

TG 1.83 1.69 1.32 1.67 2.15

TC 5.61 5.51 4.85 5.50 6.24

HDL-C 1.89 1.86 1.65 1.87 2.10

LDL-C 3.09 2.99 2.56 3.04 3.56

vitamin D 57.23 52.83 40.3 55.4 71.9
fr
ontiers
TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; GM, Geometric Mean.
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cholesterol, no associations were found between the HDL-C and

SGA levels in this subgroup analysis. Nonetheless, HDL-C levels

were negatively associated with the risk of LGA infants regardless of

the vitamin D status (OR=0.65 in pregnant women with insufficient

vitamin D; OR=0.42 in the sufficient vitamin D group).
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Furthermore, when the population was stratified by vitamin D

categories, higher levels of TC and LDL-C were associated with a

decreased risk of SGA (TC: OR=0.65, 95% CI: 0.46–0.94; LDL-C:

OR=0.74, 95% CI: 0.57–0.95) among pregnant women in the non-

sufficient vitamin D group.
TABLE 3 The association of maternal lipid profile concentrations and vitamin D categories with LGA or SGA in early pregnancy in the
second trimester.

AGA (n=5417)
SGA (n=635)
OR (95% CI)

p
LGA (n=447)
OR (95% CI)

p

Lipidsa

TG reference 0.74 (0.62–0.88) 0.001 1.41 (1.17–1.70) 0.000

TC reference 0.65 (0.46–0.90) 0.01 0.95 (0.65–1.39) 0.786

HDL-C reference 1.10 (0.79–1.54) 0.563 0.58 (0.39–0.85) 0.005

LDL-C reference 0.75(0.59–0.94) 0.013 0.98 (0.75–1.30) 0.905

Vitamin D Binary b

Sufficient group reference reference

Non-Sufficient group 1.20 (0.96–1.49) 0.107 1.02 (0.80–1.31) 0.847

Vitamin D b

(10.9–159.2nmol/L)
reference 0.92 (0.80–1.07) 0.274 0.98 (0.83–1.17) 0.850
Maternal Vitamin D and lipid profiles were log2-transformed in the model
aThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, pre-BMI, and gestational age at lipid testing.
bThe models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP, GDM, pre-BMI, and season of vitamin D testing.
A B

DC

FIGURE 2

Maternal lipid profile in mid-pregnancy and fetal growth. (A) TG; (B) TC; (C) LDL-C; (D) HDL-C. Error bars are presented as mean (SD) for continuous
variables with a normal distribution, or as median (90% range) for continuous variables with a skewed distribution. **P < 0.01; ***P < 0.001.
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4 Discussion

In this retrospective study, the prevalence rates of SGA and

LGA in pregnant Chinese women were 9.8% and 6.9%, respectively.

Only 20.5% of the participants (n=1350) demonstrated sufficient

vitamin D levels during their second trimester. The TG levels

during mid-pregnancy were positively associated with an

increased risk of LGA infants, whereas HDL-C levels were

negatively correlated with LGA risk. Maternal TG, TC, and LDL-

C levels were associated with a decreased risk of being SGA;

however, no significant association was observed for HDL-C.

Although no significant interaction effects were identified, notable

differences were observed in the subgroup analysis. Our findings

suggest that TG, TC, and LDL-C levels are positively correlated with

decreased odds of being SGA among pregnant women with

insufficient vitamin D levels. Notably, mothers with sufficient

vitamin D levels had a significantly lower risk of LGA infants

than those with insufficient vitamin D levels.

Risk of LGA or SGA are associated with maternal conditions,

such as maternal dietary intake, obesity, metabolic changes, genetic

polymorphisms, environmental factors, and gestational weight gain.

For example, we have reported that pregnant women with lower

gestational weight gain and MTHFR A1298C AA genotype were
Frontiers in Endocrinology 06
more likely to experience SGA (21). A prospective multi-racial/

ethnic cohort study suggested that pregnant women with poorer

maternal diet in early pregnancy were more likely to have an LGA

infant, even after adjustment for maternal obesity (22). As an

important indicator for lipid metabolism, maternal lipid profiles

are related to overnutrition and increased throughout pregnancy.

This suggests that lipid profiles have play an important role in fetal

growth. It was reported that higher TG levels in early pregnancy are

associated with increased embryonic size, fetal head circumference,

and overall growth rates (8). The pathway of TG from maternal

circulation into the placenta to support fetal growth is complex

because it cannot cross the placenta. Fatty acid hydrolyzed from TG

can enter fetal circulation through placental trophoblasts and

provided energy for the growth of fetus (23). However,

hyperlipidemia can lead to adverse pregnancy complications and

perinatal outcomes, potentially affecting offspring development (24,

25). In this study, we suggested a positive association between the

maternal TG levels in the second trimester and the risk of LGA

(OR=1.41, 95% CI=1.17–1.70), as well as a negative association

between maternal TG levels and the risk of SGA (OR=0.74, 95%

CI=0.62–0.88). The differential TG levels observed in our study may

explain these results, as TG levels were higher in mothers of LGA

infants and lower in mothers of SGA infants. Compared with

normal-weight controls, we found that TG concentrations were

higher in women born to LGA infants and lower in mothers with

SGA infants. Maternal cholesterol is important for membrane

function and development of the fetus. Recent studies have

suggested that maternal TC and LDL-C levels are valuable

markers of abnormal fetal development. Serizawa et al.

demonstrated that lower maternal LDL-C levels in the second

trimester were associated with an increased risk of delivering an

SGA infant at term (26). Chen et al. reported a negative association

between second trimester TC and LDL-C levels and SGA (27).

Consistent with these results, our analysis showed a negative

association between TC or LDL-C concentrations and the risk of

SGA infants (OR=0.65 TC, OR=0.75 LDL-C). HDL-C plays an

important role in cholesterol homeostasis by maintaining a

favorable sterol balance in extraembryonic fetal tissues to support

fetal growth and development (28). For instance, an increase of 10

mg/dL in HDL-C from preconception to 28 weeks was associated

with decreased odds of LGA (OR = 0.63, 95% CI: 0.46–0.86), with a

stronger association observed in women with a pre-pregnancy BMI

over 25 (29). In our study, pregnant women who delivered LGA

newborns had lower HDL-C levels than those who delivered AGA

newborns, which is consistent with the findings of a study involving

549 pregnant Chinese women (30). Furthermore, our results

indicated that higher HDL-C levels in mothers were associated

with a reduced risk of LGA infants (OR=0.58), even after adjusting

for pre-BMI and GDM. However, a prospective study proposed a

negative association between HDL-C levels in early pregnancy and

LGA, and these effects may become non-significant after adjusting

for pre-pregnancy BMI and early pregnancy maternal glucose levels

(8). The inconsistent results observed across studies may be

attributed to differences in population settings, confounding

variables, and timing of measurements. In addition, the ethnic

differences and genetic factors might also modify the associations
TABLE 4 Associations between maternal lipid levels in second trimester
and risk of LGA or SGA in multinomial logistic regression models,
stratified by vitamin D level.

Vitamin D status p
for
interaction

Non-
Sufficient group

Sufficient
group

TG

AGA reference reference

SGA 0.77 (0.63–0.93)** 0.66 (0.43–1.02) 0.821

LGA 1.40 (1.13–1.74)** 1.31 (0.85–2.03) 0.416

TC

AGA reference reference

SGA 0.65 (0.46–0.94)* 0.65 (0.29–1.43) 0.859

LGA 0.96 (0.62–1.48) 0.96 (0.40–2.30) 0.487

HDL-C

AGA reference reference

SGA 1.16 (0.81–1.68) 0.82 (0.37–1.80) 0.228

LGA 0.65 (0.42–0.99)* 0.42 (0.18–0.98)* 0.300

LDL-C

AGA reference reference

SGA 0.74 (0.57–0.95)* 0.82 (0.47–1.44) 0.749

LGA 0.92 (0.68–1.25) 1.36 (0.71–2.61) 0.726
Maternal Vitamin D and lipid profiles were log2-transformed in the model
The models were adjusted for education, maternal age, parity, delivery mode, infant sex, HDP,
GDM, pre-BMI, Season at vitamin D testing, and gestational age at lipid testing.
P for interaction was assessed by likelihood ratio test.
*P < 0.05; **P < 0.01.
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between maternal cholesterol and birth weight (31, 32). Future

multiple-ethnic studies must investigate the effect of genetic

differences on the relationship between maternal lipid metabolism

and fetal development.

Vitamin D, a fat-soluble vitamin biosynthesized via an ultraviolet

radiation-mediated process or absorbed from dietary sources, plays a

crucial role in the calcium phosphate metabolism and bone

construction. In this analysis, we found that the maternal 25(OH)D

concentration in second trimester were highest in summer (62.12 ±

22.81 nmol/L) and lowest in spring (54.04 ± 21.78 nmol/L). During

pregnancy, low vitamin D concentrations are commonly observed in

pregnant women due to the increased physiological demand for

vitamin D. In this study, the mean vitamin D concentration was 57.23

nmol/L, which is similar with a retrospective cohort study conducted

in Guangzhou. They reported that pregnant women exhibited an

average vitamin D level of 59.3 nmol/L (33). The prevalence of

insufficient vitamin D (< 75 nmol/L) was 79.2% (n = 5149), which

was nearly four times higher than that in the sufficient vitamin D

group. These findings are consistent with a prospective observational

study conducted in Guangzhou, which reported a 67.5% prevalence

of insufficient vitamin D among pregnant women (34). Similar results

were observed in pregnant women from Brazil (69%), Kenya (74.4%),

and rural Bangladesh (64.5%) (35–37). Although increased studies

have shown that vitamin D deficiency in serum during pregnancy is

closely related to a series of adverse pregnancy outcomes (38, 39), our

study suggests that the vitamin D status at mid-pregnancy, even in

the vitamin D-deficient group, was not associated with LGA or SGA.

Several studies have shown that the vitamin D status may be

related to improvements in lipid profiles. For example, a prospective

birth cohort study of 6714 pregnant women in Hefei (another city in

China) suggested that increased serum vitamin D levels were

significantly associated with decreased maternal TC, TG, HDL-C,

and LDL-C levels in the second trimester (14). Sharif-Askari et al.

found that vitamin D deficiency was associated with HDL-C

dyslipidemia in insulin-resistant individuals (40). Pregnant women

with sufficient vitamin D have higher cholesterol levels (TC, HDL-C,

and LDL-C) than those with non-sufficient vitamin D in our study

population. This may be because vitamin D and cholesterol

metabolism share a similar biosynthetic pathway. Additionally,

vitamin D exerts a potent anti-lipolytic action, increases the

intracellular calcium levels, regulates the renin-angiotensin system,

and suppresses lipolysis in human adipocytes (41). Vitamin D can

directly and indirectly influence lipid levels through its effects on

serum parathyroid hormone (PTH) and calcium balance, thereby

regulating lipid metabolism (42). However, there is no consensus on

the association between vitamin D and lipid metabolism. In zebrafish

model, vitamin D was reported to reduce the deposition of lipid via

regulation of mitochondrial biogenesis (11). Considering the effect of

vitamin D on fat storage and lipid metabolism, we hypothesized that

vitamin D may have a modifying effect on the association between

lipid levels and LGA and SGA. In the subgroup analysis, the effects of

TG, TC, and LDL-C on LGA or SGA risks were only observed in the

vitamin D insufficient group. Furthermore, a higher HDL-C level was
Frontiers in Endocrinology 07
associated with a lower likelihood of giving birth to an LGA infant

among pregnant women with sufficient vitamin D levels in the

second trimester (OR = 0.42) than among those with insufficient

vitamin D levels (OR = 0.65). The vitamin D status in a sufficient

status appears to have a beneficial effect in reducing the serum TC,

LDL-C, and TG levels (43). Although the effect of dietary intake did

not evaluate on the level of vitamin D and lipid profile in the present

study, our results suggest that the vitamin D status at mid-pregnancy

may modify the association between the lipid profile and risk of LGA

or SGA.

In this study, we conducted a comprehensive investigation

involving 6499 mother-infant pairs to assess the association

between vitamin D levels, lipid profiles in the second trimester,

and the occurrence of SGA or LGA. Additionally, we explored the

potential effect of vitamin D status on the association between

maternal lipid metabolism and risk of SGA or LGA. Our findings

suggest that pregnant women with abnormal lipid profiles should be

monitored for their vitamin D status to mitigate the risk of SGA or

LGA. However, it is important to acknowledge the limitations of

this study. First, we collected serum samples during the second

trimester, although it is recommended to collect maternal lipid

concentrations throughout pregnancy and before conception.

Second, our analysis did not account for various potential

confounding factors, such as eating patterns, vitamin D

supplementary, physical activity, and other environmental

exposures, which may have influenced the reliability of our

results. Further investigations with larger sample sizes, diverse

populations, and prospective study designs are necessary to

validate the association between maternal vitamin D levels and

subsequent delivery outcomes.
5 Conclusion

In summary, our retrospective study, based on a Chinese

population encompassing 6499 mother-infant pairs, examined the

relationship between vitamin D levels, lipid profiles, and the risk of

SGA or LGA. We observed a significant association between

vitamin D and cholesterol levels during mid-pregnancy.

Moreover, our findings provide evidence that the vitamin D

status may modify the association between HDL-C levels and the

risk of LGA. These results could serve as guidelines for managing

lipid profiles and nutritional interventions during pregnancy to

improve birth outcomes in Chinese populations. However, further

investigations with larger sample sizes, diverse populations, and

prospective or multicenter designs are warranted to confirm and

expand upon our findings.
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