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Smog is a form of extreme air pollution which comprises of gases such as ozone,

sulfur dioxide, nitrogen and carbon oxides, and solid particles including

particulate matter (PM2.5 and PM10). Different types of smog include acidic,

photochemical, and Polish. Smog and its constituents are hazardaous to

human, animals, and plants. Smog leads to plethora of morbidities such as

cancer, endocrine disruption, and respiratory and cardiovascular disorders.

Smog components alter the activity of various hormones including thyroid,

pituitary, gonads and adrenal hormones by altering regulatory genes, oxidation

status and the hypothalamus-pituitary axis. Furthermore, these toxicants are

responsible for the development of metabolic disorders, teratogenicity, insulin

resistance, infertility, and carcinogenicity of endocrine glands. Avoiding fossil

fuel, using renewable sources of energy, and limiting gaseous discharge from

industries can be helpful to avoid endocrine disruption and other toxicities of

smog. This review focuses on the toxic implications of smog and its constituents

on endocrine system, their toxicodynamics and preventive measures to avoid

hazardous health effects.
KEYWORDS
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1 Introduction

The term “smog” was first devised during the early 20th century to define the low-level

pollution covering the city of London. The word “smog” originated from two English words

“smoke and fog” (1). Acidic (London smog), photochemical (Los Angeles type), and Polish

smog are the three forms of smog. Acidic smog usually ascends from November to January

when the atmospheric pressure is low, and air temperature remains a few degrees
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centigrade beyond zero due to which the concentration of

pollutants increases near the ground. A combination of high

humidity, low temperature, and pollutants created by the

combustion of fossil fuels such as oil, gas, and coal, leads to the

formation of smog (2, 3). The core components of acidic smog are

oxides of sulfur, nitrogen, and carbon, carbon black, and suspended

particulate matter (PM) which are produced by small heating

devices when the combustion process is away from ideal

conditions (Figure 1) (1).

Photochemical smog is principally a brown haze formed during

summer due to intense sunlight and high temperature (>28-30°C)

in the subtropical region (4). Biogenic and anthropogenic sources

mainly contribute to photochemical smog. Biogenic sources include

the production of nitrogen oxides by lightning, bushfires, microbial

processes, and the vapors of volatile organic compounds produced

from naturally occurring compounds such as terpenes. Nitrogen

oxides formed by motor vehicles or power stations through

inadequate combustion or burning of fossil fuels and volatile

organic compounds are anthropogenic sources of photochemical

smog. The primary constituents of photochemical smog are the

oxides of nitrogen, carbon monoxide, carbon dioxide, volatile

hydrocarbons, and ozone (Figure 1).

Polish smog mostly ensues during frosty season and time of

eastern circulation at high pressure and weak winds (5, 6). Polish

smog contains suspended PMs such as PM 1 mm, PM 2.5 mm, PM

2.5-10 mm, and various polycyclic aromatic hydrocarbons (PAH)
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including benzo[a]pyrene as mentioned in Figure 2 and Table 1.

These PMs are the most harmful components of smog the chemical

composition of which varies significantly (Veras et al., 2010). PM2.5

is composed of sulfates, ammonia, organic compounds, elemental

carbon, and metals. PM2.5-10 comprises of crystalline materials such

as silicon, iron, calcium, aluminum, and their oxides, large salt

particles, and plant debris in the atmosphere (1). The concentration

of different components of smog has been summarized in Table 1.

The mechanism of formation of different types of smog and their

adverse impact on the endocrine and other systems of the human

body are described in Figure 2.

The developing countries of South Asia, Southeast Asia, North

Africa, Middle East, and South America are mostly affected by air

pollution which display low air quality due to widespread industrial

activities, motor vehicles, and fossil fuel burning (13). An increase

in air pollution has reduced the quality of life, caused air-borne

diseases, and reduced the life expectancy (14). In addition, gaeous

components and PM2.5 present in smog are associated with

endocrine disruption in affected individuals. Endocrine-disrupting

chemicals (EDCs) in smog are frequently linked to the reduction in

sperm quality, irregular menstrual cycles, and fertility issues. EDCs

also interfere with the functions of thyroid and adrenal glands (15)

(16). EDCs alter the synthesis and transport of endocrine hormones

by affecting the conjugating enzymes or competing for binding to

carrier proteins (17). Furthermore, EDCs alter the metabolism of

hormones and compete for binding sites by mimicking steroid
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FIGURE 1

Smog types, composition, and toxic effects of smog on the body.
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hormones, especially estrogens and androgens (Darbre 2018). The

mechanism of EDCs-induced endocrine disruption is depicted in

Figure 3. Therefore, the current review is aimed at identifying the

toxic implications and toxicodynamics of smog and its constituents

related to the endocrine system. Moreover, this review appraises the

available data regarding adverse health implications on humans

including the special population groups such as the elderly, young

adolescents, and pregnant individuals.
2 Methods

For finding relevant studies regarding the endocrine disruptive

effect of smog and its constituents, a wide range of search terms,

including but not limited to “ smog”, “smog constituents”, “Acidic

smog”, Polish smog” and “Photochemical smog” were searched from

different databases such as Scopus, google scholar, and PubMed. For

the study of the effects of PM2.5 on various endocrine systems, the

search terms such as “PM2.5 and endocrine”, “PM2.5 and pituitary”,

“PM2.5 and adrenal”, “PM2.5 and thyroid”, “PM2.5 and estrogen”,

“PM2.5 and testosterone” were used to extract data from Pubmed and

Scopus. After identifying all records, duplicate records, review articles

and animal studies were excluded. Moreover, those articles with

missing full text were also excluded from the study. The remaining

articles were assessed for the study participants, exposure type, and

results. The flow diagram depicting the process for the selection of

research studies is shown in Figure 4.
3 Endocrine disruptive effects of
gaseous constituents of smog

Smog has extensively affected the quality of life by not only

instituting numerous health issues but also aggravating the already

existing diseases. Gaseous components of smog include ozone,

carbon monoxide (CO2), sulfur dioxide, nitrogen oxides,

and others.
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3.1 Endocrine disruptive effects of ozone

Several environmental toxicants produce acute and stress-

related changes through direct or indirect action (18). Several

gases such as ozone and sulfur dioxide alter the metabolism of

carbohydrates. Acute ozone exposure causes release of stress

hormones through the suppression of hypothalamic-pituitary axis

(HPA) (19).

3.1.1 Ozone and stress hormones
Long-term elevation of stress hormones i.e., leptin and

corticosteroids in the circulation results in metabolic diseases and

systemic inflammation (20). The HPA axis is involved in acute O3-

induced extra-pulmonary effects. In addition to the induction of

glucose intolerance, O3 increases the level of leptin and epinephrine

(21). Leptin and epinephrine play a pivotal role in the regulation of

body temperature and weight (22). Stress hormones target the liver

and pancreas to alter glucose and lipid metabolism through the

activation of cellular glucocorticoid and adrenergic receptors

(23, 24).

3.1.2 Dysfunction of parathyroid gland
The exposure of 0.75 ppm O3 altered the function of

parathyroid glands (25). The 48 hours of exposure to 0.75 ppm

O3 in the rabbits’ parathyroid glands resulted in hyperplastic

parathyroiditis. Inhalation of O3 initiated the autoimmune

reaction that resulted in the permanent destruction of the

parathyroid glands. At the initial exposure, parathyroid glands

were compact and in a cluster arrangement but at a later stage,

they were congested and enlarged due to ozone exposure (26).

However, evidences of ozone-induced parathyroid toxicity in

human are unavailable.

3.1.3 Reproductive toxicity of ozone in males
Ozone also induces plasma membrane remolding by

stimulating the adrenergic nervous system through the release of

catecholamine (20). LH is also responsible for the production of

testosterone from the Leydig cell in males.
FIGURE 2

Mechanism of formation of smog and their adverse impact on the Endocrine system.
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3.1.4 Reproductive toxicity of ozone in females
Ozone exposure reduces progesterone and increases estrogen by

post-exposure effect on pituitary gland to alter luteinizing hormone

(LH) (31). Exposure to 0.3 ppm O3 causes menstrual cycle

disturbance in females by fluctuating LH release. These

disturbances affect ovulation, fertilization, maintenance of

endometrial lining, and implantation of fertilized ovum. Exposure

to O3 at level more than 0.3 ppm caused menstrual disturbances

that led to a sterile cycle. In addition, O3 exposure is inversely

related to the ovarian reserve. It is found that exposure to O3 is

positively associated with low excretion of anti-Muellerian

hormone (AMH), an important marker for ovarian reserve (32).

However, some studies showed that exposure to O3 was effective in

treating female infertility. It can protect from inflammatory

problems such as endometritis, and vaginitis, and reduces the

chances of ischemia-induced injury in ovaries (33). Another study
Frontiers in Endocrinology 04
has shown that O3 therapy might enhance ovarian function by

improving oocyte quality and altering the genes involved in the

synthesis of steroidal hormones (34). However, ozone, when used

as a therapeutic agent, should be generated in controlled

concentration from pure oxygen and the intake should be

monitored. Despite the compelling therapeutic evidence, future

research is necessary to critically explore whether the effects of O3

in the female reproductive system are beneficial or not (35).

3.1.5 Developmental toxicities of ozone
The gaseous constituents of smog have significant adverse

consequences on pregnancy if a pregnant mother is exposed to

outer ambient air pollutants for a long duration due to changes in

hormones’ level (36). Preterm birth, preeclampsia, and small-for-

gestational age (SGA) are the adverse outcomes of exposure to smog

air pollutants (Figure 5). SGA is described as infants with a weight
TABLE 1 Composition and concentration of different smog components in the air.

Components of smog Smog type
Concentration in the air
during smog

Reference

Ozone
(Ground level)

Photochemical
smog
Acidic smog

Ozone (0.8 ppm)
Ozone (0.4 - 0.8 ppm)
Ozone (0.8 -1.0 ppm)

(27)
(7)
(8)

Particulate matter (Surface and volume Concentration)
a complex mixture of solid particles and liquid Particulate with a diameter
≤2.5 mm (PM2.5)

Acid smog
Polsih smog
Photochemical
smog

Approx. 949649206 mm2/cm3

PM2.5 4.90 to 38.07 ppm
PM10 7.61 to 38.49 ppm
PM10 10 µg/m3 in Asian cities

(28)
(29)

Nitrogen dioxide
Photochemical
smog

Approx. 200 ppb
UCAR Center of
science education

Benzopyrene Acidic smog
Approx.61.6 ng/m3

Approx. 3.64 ng/m3 (9)

Carbon monoxide
Photochemical
smog
Polish smog

Approx.160 ppm (29)

Carbon black
Acidic smog
Polish smog

More than 20 mg/m3 (10)

Sulphur dioxide

Polish smog
Acid smog
Photochemical
smog

Approx. 0.75 ppm (11)

Peroxyacetyl Nitrate (PAN) Acid smog Approx. 37 ppb (29)

Nitric acid Polish smog Approx. 49 ppb (29)

Formic acid Acidic smog Approx. 19 ppb (28)

Formaldehyde Polish smog Approx. 71 ppb (28)

Phthalate diesters Acidic smog 10-100 ng/m-3 (30)
(12)

Alkylphenols
Photochemical
smog

Approx.1 ng m-3 (12)

Polychlorinated biphenyls (PCBs) Acidic smog Approx. 0.1ng m-3 (12)

Biphenol
C12H10

Photochemical
smog
Acid smog

Approx. 0.1ng m-3 (12)
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FIGURE 4

Prisma diagram for selection, review and analysis of studies.
B

A

FIGURE 3

Mechanism of endocrine damage by Endocrine disrupting chemicals (EDC). (A) Mechanism of EDC induced endocrine disruption (B) molecular basis
for EDC induced endocrine disruption.
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less than 10% at a specified gestational age (37). Previous study

showed that the incidence of preterm birth and pre-eclampsia were

4.4 and 2.7% respectively in pregnant women upon long term

exposure to smog air, especially ozone. It was further confirmed that

a positive association was found between the first trimester, O3, and

preterm birth. A positive correlation was also evident between O3

and pre-eclampsia when the concentration of O3 was increased to

more than 10 µg/m3 (38).

3.16 Association of ozone with insulin resistance
Air-borne pollutants are highly associated with the risk to

diabetes. Acute exposure to O3 changed the metabolism of rats

and increased the risk factors associated with metabolic alterations.

Additionally, it was found that a high O3 level altered glucose

homeostasis by changes in the insulin signaling pathway and liver

endoplasmic reticulum stress in rats (39).
3.2 Endocrine disruptive effects of
sulfur dioxide

Exposure to Sulfur dioxide during pregnancy can cause birth

defects and abortion. Short-term exposure a high concentration of

SO2 is life-threatening (40). Its exposure to human causes

reproductive and developmental effects as mentioned in

Figure 6. A study carried out in Finland’s industrial areas

revealed that SO2 exposure had resulted in spontaneous

abortion (41). Another study in China demonstrated a link

between exposure to SO2 during pregnancy and reduced infants’

birth weight (42). Exposure of pregnant rabbits to SO2 resulted in

minor skeletal variation and delayed bone hardening (43). In

addition, exposure to SO2 caused a significant, dose-related

decrease in plasma insulin levels (44).
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Sulfur dioxide exhibits reproductive toxicity in male animals.

An investigation in the Czech Republic showed that a high-level

exposure to SO2 caused sperm abnormalities such as a decreased

ability to move (45). In an experimental study in mice, it was found

that an exposure to 5 mg/m3 SO2 increased sperm malformation,

decreased sperm count, and exhibited aberrant pathological

changes in testicles. Additionally, mice exposed to SO2 also

increased TUNEL-positive cells, caspase-3 activity, spermatogenic

cell counts, hydrogen peroxide (H2O2) and melondialdehyde

(MDA) content, and decreased superoxide dismutase (SOD)

activity. It was demonstrated that exposure to SO2 altered the

expression of steroidogenic-related genes (LHR, StAR, and ABP),

lowered serum testosterone levels, and altered the mRNA levels of

Bax and Bcl-2 in mice. In conclusion, exposure to SO2 exhibited

male reproductive toxicity through induction of apoptosis, lipid

dysregulation, and generation of reactive oxygen species (ROS).

These outcomes provided a fresh theoretical framework for

understanding the interference of SO2 with spermatogenesis and

infertility (46).
3.3 Endocrine disruptive effects of carbon
monoxide and nitrogen oxides

Gaseous neuromodulators, such as nitrogen monoxide (NO)

and carbon monoxide (CO), regulate the hypothalamic release of

neuropeptides. The stimulatory and inhibitory effects on the HPA

depend upon diverse factors, such as type of stress, intensity of

stress, and species. NO regulates the non-adrenergic and non-

cholinergic relaxation of smooth muscles in the corpora

cavernosa and gastrointestinal tract (47). Exposure to CO inhibits

the secretion of corticotropin-releasing hormone (CRH) and

oxytocin while raising the secretion of gonadotrophin-releasing
FIGURE 5

Effect of smog exposure during pregnancy.
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hormone (GnRH) and prostaglandin (PGE2) in the rat

hypothalamus. Stimulation of the HPA axis increases the body

temperature which is termed stress fever (48).

3.3.1 Reproductive toxicity of NO2 in males
NO2 is one of pivotal factors that contribute to male infertility.

Boggia and his coworkers reported that NO2 exposure had led to

reduced sperm motility, quality and quantity in exposed males as

compared to non-exposed males. Negative effects on sperm quality

were noticed even if NO2 concentration was below than

recommended allowed limit (49, 50). Investigation on the male

genome has shown that NO2 had broken the strands of the sperm

DNA ultimately leading to infertility (51).

3.3.2 Carcinogenicity of NO2 in females
Outdoor exposure to NO2 is closely associated with lung cancer

in females through increased activation of estrogen receptors. A few

studies have demonstrated that estrogen receptor activation

promoted tumor formation by several genomic and non-genomic

pathways (52). Female lung cancer is closely associated with the

activation of estrogen receptor pathway and NO2 is implicated to

activate this pathway (53).

3.3.3 Adverse effects of NO2 during pregnancy
Various studies have revealed the deleterious effects of exposure

to NO2 against pregnancy. Exposure to air pollutants has resulted in

increased DNA fragmentation. These toxicants also cause

alterations in the placenta’s DNA. Early pregnancy exposure to

NOx changed the placental DNA methylation leading to placental

immaturity (54, 55). Chronic interaction with NOx is also linked

with diabetes mellitus. Leiser et al. reported that exposure to NO2

up to 100 ppb for 7 days had increased the chances of miscarriage

by up to 16% (56).
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4 Endocrine disrupting effects of
particulate matter (PM2.5) in smog

The PMs are comprised of dust, soil, acids, metals, and organic

compounds. The PMs are categorized according to their size or

diameter i.e., PMs of 2.5-10 µm are considered coarse particles, PMs

of less than 2.5 µm are fine particles, and PMs of less than 0.1 µm are

ultrafine particles (57). A high concentration of PMs, usually PM2.5

dust, constitutes smog in the winter season. PMs produce systemic

effects by influencing metabolic homeostasis. Long-term exposure to

PM increases the disease progression (58, 59). Exposure to PM2.5

induces insulin resistance and stimulates the HPA axis which

consequently intensifies glucocorticoid production. In addition,

PM2.5 increases response of the HPA axis to psycho-social stress

especially in adolescent girls who experience high social stress (60).
4.1 PM2.5 and thyroid dysfunction

Thyroid hormones such as thyroxine (T4), and triiodothyronine

(T3) are secreted by the thyroid gland under the influence of thyroid

stimulating hormone (TSH) secreted by pituitary glands. Industrial

chemicals, tobacco smoke, and air pollution impact thyroid

hormone production. Thyroid hormones are responsible for fetal

growth, metabolism, and neuro-development. Low and high levels

of thyroid hormone unfavorably affect child’s growth. PM2.5

exposure may change the thyroid function of a newborn (20, 61,

62). It was found that the exposure to PM2.5 ≥ 16 µg/m3

concentration in air had raised the T4 level to 7.5 percent in the

blood. Moreover, PM2.5 increased the conversion of T4 to T3 (20,

63). This might be due to the changes in genes encoding for steroid

hormone biosynthesis and glycerolipid metabolism caused by

PM2.5 (64).
FIGURE 6

Effect of smog exposure on the reproductive system in males and females. Exposure to SO2, PM2.5 or NO triggers various cell-damaging processes
such as oxidative stress, inflammation, apoptosis, and DNA methylation leading to altered sperm quality and concentration in males while induce
abortion and alters hormone level in females. Low birth weight, birth defects and hypertension in mothers are the consequences of their exposure
during pregnancy etc.
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Exposure to pollutants at the time of birth or during childhood

may increase the risk of cancers in children, the most common are

leukemias and lymphomas. Ambient PM air pollution is also related

to a higher incidence of thyroid cancer (65). Moreover, other studies

have revealed that the chronic exposure to air pollution may

produce alterations in normal ovarian function e.g., estrogen-like

effect or gene mutation, which can lead to ovarian cancer (66).

Additionally, transplacental exposure to PM is connected to higher

placental mutation rate and such epigenetic alterations may be a

reason for placental carcinogenicity (55).
4.2 PM2.5 associated insulin and
glucocorticoid resistance

The toxic effect of ambient air pollution may lead to insulin and

glucocorticoid resistance by interfering with the signaling pathways

involved in inflammation. It was found that increased level of TNF-

a caused inhibition of the insulin signaling pathway (67). PM2.5-

mediated insulin resistance results in the accumulation of fatty acids

in the liver and dysregulates glucose utilization by skeletal muscles

through increased expression of C-C Chemokine receptor (CCR-2)

and reduced GLUT-4 (68). Another study suggested that the

blockage of the glucocorticoid or HPA axis by exposure to smog

pollutants may lead to the overproduction of cytokines and

inhibition of the glucocorticoid-regulated gene, CYP3A5 (69).
4.3 Reproductive toxicity of PM2.5 in males

PM2.5 exposure can lead to reproductive damage in males by

inducing apoptosis and inflammatory pathways. PM2.5 adversely

affects the male reproductive function (Liao et al., 2019). Exposure

to PM may result in increased expression of various cytokines and

methylation at CpG sites. Exposure to PM2.5 specifically increased the

expression of MCP-1, MCP-3, CD40, FGF-2, and other related genes

in young adults (70). Moreover, interleukins, Toll-like receptor genes,

and genes related to apoptosis are upregulated due to smog exposure.

Expression of xenobiotic genes and cytochrome P450 genes is altered

by exposure to PM2.5. Genes associated with cancer development

such as TGFb are overexpressed resulting in the activation of the

linked signaling pathways (71).
4.4 Reproductive toxicity of PM2.5
in females

PM2.5 damages ovarian granulosa cells and oocytes by

decreasing the levels of AMH and increasing the expression of

inflammatory and apoptotic proteins (72). Smog pollutants can

delay normal conception and in-vitro fertilization (IVF) (73). The

effects of PM2.5 on the female reproductive system include the

dysfunction of ovaries and transportation to the embryo or

mutation in the embryo’s DNA (74). Data from an infertility

clinic showed that exposure to PM2.5 was associated with loss in

normal ovarian function resulting in infertility (75).
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4.5 Effect of PM2.5 on pregnancy and
fetus development

Congenital hypothyroidism (CH) is the most common

endocrine disorder in newborns, affecting 1 in 2000-4000

newborns. Air pollution is also responsible for CH (76). It was

found that a exposure to a high concentration of PM is associated

with CH which causes delayed physical and mental development

and may affect the normal functioning of kidneys, lungs, and heart.

The risk of preterm birth, fetal death, low birth weight, congenital

imperfections, and macrosomia fetus is increased due to PM2.5 and

PM10 exposure. Moreover, the reduction in exposure to PM2.5 was

associated with an increased survival rate of newborns (Figure 5)

(38). Similarly, an exposure to PM2.5 up to 10 mg/m3 for seven days

was accompanied by miscarriage (56). The studies regarding the

effect of smog and its constituents on different endocrine systems

are listed in Table 2.
4.6 Effect of PM2.5 on fertility

Various EDCs present in the environment exert a negative effect

on male reproductive health. These factors interfere with the

normal hormonal balance especially a reduction in semen

production (106). A recent study determined that PM2.5 exposure

changed the integrity of the blood-testis barrier by ROS production

and caused the loosening of tight junctions (107). The PAHs and

heavy metal ions present in the particulate matter exert estrogenic,

antiestrogenic, and antiandrogenic activities to disrupt normal

hormone functions (59).
4.7 Obesogenic potential of PM2.5

During pregnancy and lactation, PM2.5 exposure is linked to

metabolic disorders in neonates. Exposure to PM2.5 can elevate the

blood pressure in the offspring which is mediated by alterations in

the transcriptional activity, DNA methylation, oxidative stress and

inflammatory response (108). Studies have shown that maternal

exposure to PM may increase the incidence of obesity and other

metabolic disorders such as fatty liver disease, diabetes militus, and

insulin resistance (109). Methylation of leptin promotor and

increased formation of hypothalamic neuropeptide Y in males are

responsible for PM-induced obesity. PM exposure causes a

reduction in the birth weight of the offspring but in the long run

it induces obesity during adulthood (110).
4.8 Association of PM2.5 with depression,
anxiety, and memory loss

Several studies have demonstrated that the risks of depression,

anxiety, and dementia are increased in adolescent girls, elderly

individuals, and pregnant females exposed to PM2.5. It was found

that the risk of depression in pregnant individuals exposed to PM2.5

during the third trimester was increased due to altered HPA axis
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TABLE 2 The effect of PM2.5 exposure on endocrine systems of the male and female individuals.

Serial
No.

Exposure type Study participants Toxic effects Reference

1. PM2.5 at 3.7 mg/m3 Prenatal exposure increased neonatal TSH levels (77)

2. Ambient PM2.5 at 8.13 µg/m3

concentration
Salivary cortisol output during
pregnancy in a

decline in cortisol throughout the day with
increasing exposure

(78)

3. NO2 at 24.4 ± 14.0 ppb and
PM2.5 at
55.6 ± 41.5 mg/m3/day for
1-14 days

COPD patients to the neuroendocrine
response in COPD patients.

Increase in CRH, ACTH, and norepinephrine, and decreases
in cortisol and epinephrine

(79)

4. PM2.5 Prenatal exposure during third
trimester of pregnancy

Increased depression risk and induces activation of the
HPA axis

(80)

5. PM2.5 Young adolescent girls heightened HPA-axis stress responsivity, Increased
biological sensitivity to social stress

(60)

6. PM2.5 Exposure during pregnancy Dose dependent increase in cortisol levels in cord blood, as
the distance of exposure increased, the decrease in cord-
blood cortisol level

(81)

7. 10 ppb of NO2, PM2.5 45-85 years old participants 9.7% higher wake-up cortisol associated with a 10 ppb NO2,
the cortisol curve became flatter over 5 years.

(82)

8. PM2.5 at 41.1 mg/m3 Young adults NO3 ion was still significantly associated with CRH,
Increased CRH, ACTH and cortisol.

(83)

9. PM2.5 Pregnant individuals first-trimester exposures were associated with mild thyroid
dysfunction throughout pregnancy, dose dependent increase
in toxicity

(84)

10. PM2.5 Elderly women with mean age of
73.5 ± 3.0 years

Higher risk of dementia in women with three estrogen
receptors with SNPs

(85)

11. PM2.5, O3 and NO2 Air pollutants and hormone-assessed
pubertal development

No statistical effect on hormone levels of E2
and testosterone

(86)

12. Three-years exposure to PM2.5 Dementia-free women aged 80
and older

episodic memory declines mediated by depressive symptoms (87)

13. PM2.5 Black women not associated with a higher risk of breast cancer except for
some geographic areas

(88)

14. PM2.5 Pre-conception and early
prenatal periods

can lead to altered steroid adaptation during the state
of pregnancy

(89)

15. PM2.5, NO2 Women with 1-year familial breast
cancer risk

Increased risk among women with a higher familial risk
with NO2 only

(52)

16. Improved air quality with PM2.5 Exposure for 3 years in older women
of less or more than 80 years with
no dementia

improvement in long-term AQ in late life was associated
with slower cognitive declines in older women

(90)

17. NO2, CO, SO2, or PM2.5, PM10 Female adults aged ≥ 40 years Increased risk of osteoporosis in female with PM10 only (91)

18. PM2.5 All cause ovarian cancer patients
18–79 years

PM2.5 concentrations were associated with an increased risk
of all-cause mortality.

(92)

19. PM2.5 4.9 to 17.5 µg/m3 31 years old female participants Weak inverse associations with POM, no dose
response relationships

(93)

20. PM2.5 and PM10 through
road exposure

150 mother-newborn pairs Directly related to increased cortisol levels in cord-blood (81)

21. NO2 at 10 ppb and PM2.5 45–85 years old participants Higher wake-up salivary cortisol with NO2 only which
flattened over 5 years

(82)

22. PM2.5 in residential areas Women in third trimester
of pregnancy

More severe depressive symptoms and activation of
HPA axis

(80)

23. NO2, O3 and PM2.5 Obese Latino children
and adolescents

Higher O3 exposure caused higher morning cortisol
PM2.5 exposure (4–10months) caused lower serum
morning cortisol.

(94)

(Continued)
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(80). Moreover, pregnant individuals exposed to PM2.5 displayed

dose-dependent mild thyroid dysfunction which also contributed to

depression (84). Estrogen plays a substantial role in cognitive

function. Different studies have reported that healthy elderly

females were associated with a higher risk of depression and

episodic memory decline while those with genetic polymorphism

in estrogen receptors showed a higher risk of dementia (85, 87). In

addition, adolescent females exhibited a higher response to social

stress and showed symptoms of anxiety due to exposure to

PM2.5 (60).
5 Polycyclic aromatic hydrocarbons
in smog

PAHs, for instance, benzo[a]pyrene and dimethyl Benz[a]

anthracene are the components of Polish smog that are deposited

on land and water in dry form. Benzopyrene exists in food, dust, air,
Frontiers in Endocrinology 10
water, soil, and smoke. The air contaminated with benzopyrene

exerts a profound adverse impact on the health of children and

employees of aluminum and coke–oven factories (111).

Benzopyrene belongs to the class 1 carcinogen and is a strong

mutagenic, genotoxic, teratogenic, anti-fertility and neurotoxic

agent. It involves in depurination of DNA, generation of ROS,

stimulation of aryl hydrocarbon receptors (AhR), and numerous

other epigenetic changes that collectively result in the toxic effects.
5.1 PHAs and thyroid dysfunction

TSH secreted by the pituitary gland activates the synthesis of T4

and T3 in the thyroid gland which are essential for regulating

development, growth, morphogenesis, basal metabolism,

reproduction, and osmoregulatory functions (112). Some studies

have suggested that PAHs interrupt the metabolic functions of

thyroid hormone (113).
TABLE 2 Continued

Serial
No.

Exposure type Study participants Toxic effects Reference

24. PM2.5 at 41.1 mg/m3 CRH, ACTH and cortisol in
young adults

Water-soluble inorganic constituents especially, NO3, caused
stronger activation of HPA axis

(83)

25. PM2.5, PM10 Participants from couples who
underwent in-vitro
fertilization treatment

PM2.5 increased seminal testosterone and malondialdehyde,
and reduced sperm progressive motility.

(95)

26. PM2.5 Prenatal exposure to
pregnant individuals

Reduced anogenital distance of new born (96)

27. PM2.5 Pregnant individuals in
third trimester

Increased in cord blood levels of 17a-hydroxy-pregnenolone (97)

28. PM2.5, SO2 and CO women undergoing assisted
reproductive procedure

Reduced testosterone, progesterone and FSH (98)

29. PM2.5, NO2, SO2, CO, and O3 Effect on testosterone, FSH, LH, E2,
PRL in men aged 20–55 years

immediate and short-term cumulative PM2.5
reduced testosterone.

(99)

30. PM2.5, NO2 and PM10 infertile men PM2.5, and NO2 were negatively associated with
sperm morphology.

(100)

31. PM1, PM2.5, and PM10 Rural adult male and female PM2.5 increased the testosterone in male and reduced
progesterone in both male and female.

(101)

32. PM2.5 particles and bound
eight PAHs

Male college students LMW-PAHs negatively affected sperm morphology, PAHs
increased sperm motility.

(102)

33. single-day and cumulative effects
of air pollutants of PM2.5, SO2,
and NO2

Male young adults PM2.5 concentrations were positively associated with E2.
SO2 and O3 reduced E2.

(103)

34. PM2.5, CO, NO2, PM10 Infertile men PM2.5, CO and NO2 were negatively associated with the
level of testosterone,
PM2.5 also caused immature chromatin

(104)

35. PM2.5 fertile men of 20-45 years Decreased sperm motility, total motility, and sperm quality (105)

36. PM2.5, PM10, SO2, NO2, CO, and
O3

14-18 µg/m3 During the
third trimester

Women with preterm birth
information or low-birth weight

Low birth weight risk was associated with PM2.5, NO2,
and O3

(42)
ACTH, adrenocorticotropic hormone; CRH, Increased corticotropin releasing hormone; COPD, Chronic obstructive pulmonary disease; E2, Estradiol; FSH, follicle stimulating hormone; HPA,
Hypothalamus pituitary axis; LH, luteinizing hormone; LMW, low molecular weight; PAH, Poly aromatic amines; POM, Polycystic ovarian morphology; PRL, prolactin; SNP, Single
nucleotide polymorphism.
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Some PAH like 3-methylcholanthrene, are carcinogenic, and

disruptors of thyroid function in animals which alter the structure

of the thyroid gland and synthesis of thyroid hormones (114). Small

thyroid follicular with cuboidal or columnar epithelial cells have

additional secretory activity as compared to large follicles with

squamous epithelium. Exposure to benzo[a]anthracene caused

thyroid follicles to become large with short epithelium.

Furthermore, exposure to benzo[a]anthracene changed the

plasma levels of TSH, T4 and T3. In fish, exposure to these EDC

caused enlargement of the thyroid gland with an indication of

hypothyroidism (113, 115).

Likewise, polyhalogenated aromatic hydrocarbons (PHAH) are

considered EDC due to alteration in the thyroid and retinol

functions in birds (61, 116). Additionally, these hydrocarbons

may interfere with thyroid transport proteins i.e., transthyretin

(TTR) and retinol binding protein (RBP). Some PHAHs have

structural similarities to T4 and have greater binding affinity to

TTR than T4 (117).
5.2 Reproductive toxicity of PHAs

Benzopyrene contamination in the atmosphere is a leading

threat to health due to hormone receptor binding and activation,

post-receptor signaling pathway, and involvement of co-factors

(118, 119). Benzopyrene impedes the functions of nuclear

hormone receptors i.e., estrogen, androgen, progesterone, thyroid,

and retinoid receptors, membrane receptors, non-steroid receptors,

and orphan receptors (118, 120).

Testosterone production is stimulated by LH produced by the

pituitary gland in response to GnRH (121). Benzo[a]anthracene

reduced the serum and intratesticular testosterone level (122). Tian

et al. reported that exposure to benzo[a]pyrene had reduced the level of

17b-estradiol and progesterone in ovaries and decreased the expression
of metabolizing enzyme, hydroxysteroid dehydrogenase (123).
5.3 Developmental toxicity of PHAs

The production of hormones and exchange of nutrients take

place through syncytiotrophoblasts (STs) that are exposed to

maternal blood. These STs are formed by the fusion of

cytotrophoblasts. Any abnormal change in the formation of STs

may cause premature birth or abnormal fetal development. It is

previously explored that the trophoblast exposure to formaldehyde

was associated with oxidative stress that adversely affected the

differentiation and fusion of trophoblasts (124). Cathey et al.

studied 659 pregnant women and observed a positive association

between PAH and cortisone-releasing hormone, progesterone, and

thyroid T3 hormone; however, a negative relation was found with

testosterone that consequently affected the physiology of pregnancy

(125). Prenatal exposure to PAHs may lead to adverse effects on the

fetus, including weight loss and, reduced height and head

circumference at birth. PAHs have been found in pregnant

women’s blood which provides evidence that they can cross the

placenta (126).
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6 Endocrine toxicity of other trace
compounds in smog

Bisphenols, phthalates, and aldehydes are included in the list of

EDCs that constitute the smog. These chemicals have the potential

to strongly bind to the hormone receptors resulting in the blockade

of the hormone function. For instance, bisphenols can bind to the

estrogen receptors and reduce the production of estradiol, estrone,

testosterone, and androstenedione (127). Some studies have

reported a reduced level of progesterone and estradiol in animals

exposed to phthalates. In these studies, GnRH was found to be

elevated, indicating that these chemicals disrupt the function of the

HPA (128).

Exposure to phthalates and other toxicants also affects thyroid

function and growth hormone homeostasis (129). This effect might

be modulated by thyroid autoantibodies (130). The impact of smog

components on the different organs of the endocrine system is

described in Figure 7.

There is strong evidence that exposure to formaldehyde is

associated with reproductive and developmental toxicities as it

can cross the placental barrier. Menstrual irregularities and

infertility were observed in females exposed to toxic level of

formaldehyde (124). Some studies have demonstrated that a high

cortisol level is significantly associated with exposure to smog

pollutants. Cortisol plays a significant role in cognition and

depression. The response starts in the brain and activates the

hypothalamus-pituitary-adrenal axis to produce more cortisol

which triggers inflammatory and apoptotic gene expression. This

eventually leads to dementia and depression (131).
7 Cumulative endocrine disruptive
effect of toxicants in smog

Several studies have documented the combined effect of smog

toxicants on human endocrine system. These endocrine effects

include an increase in stress hormones, infertility and

insulin resistance.
7.1 Hormonal imbalance with combined
toxicants in smog

It is evident from previous studies that a high concentration of

NO2 and PM2.5 in the air was strongly linked to increased level of

salivary cortisol level, CRH, and adrenocorticotropic hormone

(ACTH) in adults. Moreover, the combined exposure to PM2.5

and NO2 was evaluated which showed an increased risk of cancer

among women with a higher familial E2 polymorphism exposed

only to NO2 only. It was also found that exposure to NO2, O3, and

PM2.5 in young male individuals resulted in significant changes in

estradiol levels (103). In addition, NO2, CO, SO2, or PM2.5 exposure

exhibited a significant change in morning cortisol among children

(94). PM10 exposure increased the risk of osteoporosis among

women over 40 years of age when they were evaluated for
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exposure to NO2, CO, SO2, or PM2.5, and PM10. In addition,

reduced testosterone, progesterone, and FSH were evident in

middle-aged male individuals when exposed to PM2.5, NO2, and

SO2 or CO (98).
7.2 Reproductive toxicity of combined
toxicants in smog

Various animal experiments have displayed that long-term

exposure to ambient air pollutants can result in the reduction of

male fertility. It was found that the chronic exposure to PAHs and

PM2.5 impaired sperm function and spermatogenesis (132).

Exposure to SO2, NO, CO, and CO2 also decreased the sperm

quality (132). Even at low concentration, NOx may affect sperm

motility and sperm morphology (133). Similarly, SO2 is a proven

toxicant for the reproductive organs of mammals (134).

Spermatogenesis may consequently improve with a reduction in

the level of these toxic oxides (74, 135).
7.3 Insulin resistance with combined
toxicants in smog

An elevated level of PM, SO2, and O3 may be associated with

insulin resistance and metabolic alterations that lead to diabetes

mellitus, obesity, and related health risks by triggering oxidative

stress, endoplasmic reticulum stress, and activation of c-Jun N-

terminal kinase signaling (136). The gaseous components of smog

tend to cause more metabolic disorders than PMs (137).
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8 Risk factors and preventive
measures to reduce smog exposure

Factors responsible for the formation of smog are globalization,

urbanization and heavy transport usage, elevation in temperature,

sunny climate, bricks formation, and decline in forestation.

There are numerous techniques and procedures to control smog

formation. There is a need to convert the toxic volatile compounds

emitted from factories into less toxic volatile compounds by

changing the operating conditions and recycling the stream to

decrease air pollution. Reduction in particle size also helps to

mask the hazardous effects of smog. Particle size can be reduced

by a gravity chamber, cyclone filtration, bag filters, and precipitate

scrubbers (138).

Wet scrubbers should be used for absorption, adsorption,

chemical oxidation, and bio-filtrations of gases and vapors

discharged from chemical industries. Fossil fuel engines must be

replaced with alternative engines. Hydrogen fuel additives are

essential to diminish the discharge of pollutants and upsurge the

combustion cycle. Photocatalytic treatment must be carried out to

reduce particle size and nitrogen oxide pollution (139). Furnaces,

condensers, carbon absorbers, scrubbers, and texture channels are

additional devices that should be used for air pollution control. The

main source of smog is open burning. There should be strict

prohibitions and legislation on the open burning of rice stubble,

solid waste, and other dangerous materials.

Environmental Protection Agencies (EPA) should issue policies

to Air quality index departments to control air pollutants such as

PM2.5. EPA should impose rules and regulations for oil refineries to

produce Sulphur free oil to decline the level of PM and SO2 gas (140).
FIGURE 7

Impact of smog components on the different organs of the Endocrine system.
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A single tree fixes approximately 20 kg of CO2 annually. EPA

should work with the forest department to intensify the growth of

plants as plants are environmentally safe agents to fix carbon and

other toxic elements thus declining smog. Large smoke industries

should be shut down to reduce the discharge of pollution. The

federal government should issue directions to all vehicle

manufacturers for the installation of a catalytic converter in

motor vehicles to prevent toxic vehicular emissions such as NOx,

SOx and COx (141).
9 Conclusion and perspectives

This review showed that the gaseous components and PM2.5

present in smog significantly increased the risk of endocrine toxicity

through disruption of the HPA axis. These gases and PM can alter

the expression of proinflammatory cytokines and metabolizing

enzymes to exhibit insulin resistance and metabolic alterations.

These chemicals alter the level of sex hormones to predispose

infertility in males and females and can culminate in birth defects.

Smog, nowadays, has become a global issue with alarming human

health risks. Smog and its constituents are associated with altered

functioning of the ovary, testis or pituitary, adrenal, and thyroid

glands. Moreover, diabetes mellitus, insulin resistance, infertility,

reduced motility and DNA damage in sperms, reduced conception,

and DNA methylation are the consequences of altered gene

expression due to smog exposure. Preterm birth, preeclampsia, and

small for gestational age are the adverse outcomes of exposure to

smog air pollutants. Suitable steps should be taken to avoid smog

exposure and related health issues. Avoiding wood and coal burning,

reducing energy use, using renewable sources of electricity, using

public transport, implementing strict limitations on industrial

gaseous discharge, and staying inside during times of poor air

quality can help in reducing toxic exposure to smog. Federal

agencies should enforce environmental protection laws to achieve a

smog-free atmosphere or attempts should be made to reduce the

exposure duration, amount, and risk of damage to the population.

It is evident from the previous literature that PM2.5 and gaseous

constituents result in neurodegeneration as well as psychiatric

disorders such as depression and anxiety through altered HPA

axis. Learning and memory deficits and psychomotor dysfunction
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are closely linked to endocrine disruption caused by smog.

Therefore, we strongly suggest that further research should be

guided to establish a link between PM2.5 and neuroendocrine,

CNS toxicity, and hormonal disruption.
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