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Introduction

Insulin, a polypeptide hormone that is produced in the b-cells of the pancreatic islets of
Langerhans, has multifaceted effects on metabolism in virtually all tissues. Insulin facilitates

glucose entry into cells, stimulates glycogen formation in liver and muscle, and enhances fat

and protein synthesis (1). Insulin also has a mitogenic function, stimulating cell growth and

proliferation (2). By crossing the blood-brain barrier, insulin can affect feeding and

cognition through CNS mechanisms (3). Binding of insulin to its receptor tyrosine

kinase (RTK) triggers signal transduction, with phosphorylation of cellular substrates

(IRS) and activation of phosphatidylinositol-3-kinase (PI3K), which initiates a chain of

events directly involved in the metabolic and mitogenic effects of insulin (1, 4). The second

pathway involves activation of mitogen-activated protein kinases (MAPK), which play a

predominant role in the control of mitogenic effects of insulin (5). Disruption of the IRS/

PI3K pathway leads to decreased tissue sensitivity to the metabolic action of insulin - a state

of insulin resistance (IR), which is characteristic of patients with type 2 diabetes (T2D),

obesity and arterial hypertension (6, 7).

The renin-angiotensin system (RAS) contributes to the pathophysiology of IR – thus

angiotensin II (ANGII) disrupts insulin signaling by promoting phosphorylation of the

insulin receptor and IRS-1 and PI3K which impairs their function (8–11). Given the close

relationship between these signaling systems, we hypothesize that insulin itself may

influence the RAS and regulate its function. We also discuss possible pathological

consequences of RAS dysfunction due to impaired insulin signaling relevant to IR and

diabetes complications.
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Briefly about RAS - components
and function

As a universal regulatory system, the RAS ensures normal

functioning of basic life processes such as hemodynamics, fluid-

salt and glucose homeostasis, behavior, and also participates in the

regulation of immunity, apoptosis, inflammation and many others

(10, 12–14). The major peptide effector of RAS, ANGII, is formed

from the protein precursor angiotensinogen (AGT) by proteolytic

processing involving renin and angiotensin-converting enzyme

(ACE) (12). ANGII acts through two subtypes of G-protein-

coupled receptors (GPCRs), the AT1R and AT2R receptors.

Alternative processing of AGT involving ACE2 results in the

formation of other angiotensins - ANG-(1-7) and ANGIV, which

have their own receptors, Mas-receptor and IRAP (insulin-

regulated aminopeptidase), respectively (12, 14–17).

Physiological effects of RAS are achieved through the interaction

of counterbalancing activity pathways: “pathophysiological” ACE/

ANGII/AT1R, whose activation is associated with hypertension,

oxidative stress, hypertrophy, fibrosis and inflammation, and
Frontiers in Endocrinology 02
“protective” ACE/ANGII/AT2R, which has the opposite function,

including hypotensive and anti-inflammatory effects (18). Alternative

pathways involving ANG-(1-7) and AngIV in general function within

the “protective” RAS axis (15–17).

In addition to the central RAS circulating in the blood system,

there are local RAS in the brain, pancreas, kidneys, intestines, etc.

involved in the regulation of the functional activity of these organs

(18–21). Thus, pancreatic RAS, represented by a full set of

functional components, including ANGII and ANG-(1-7) and

their receptors, affects cell proliferation, apoptosis, oxidative

stress, and inflammation (21–23). It has been shown that islet

RAS regulates insulin biosynthesis and secretion, affects the mass of

islet b−cells and is able to alter glucose homeostasis (24).
Evidence of the effect of insulin on
the activity of RAS components

Insulin has a significant effect on RAS function by affecting the

expression, secretion, and activity of its components (Table 1, Figure 1A).
TABLE 1 Effect of insulin on the renin-angiotensin system (summary of cited literature).

Effect of insulin on RAS Model Experimental details Ref.

Secretion and activity of RAS components

Increase in plasma renin and
ANGII activity

Humans
(healthy male volunteers;

26-27 years)

Euglycemic insulin clamp (160
mU/ml)

(25)

Increase in AGT protein and
ANGII secretion

Human abdominal subcutaneous adipocytes
(from female subjects; 40 -50 years; tissue culture)

Treatment with insulin
(1-1000x10-9 M; 48 h)

(26)

Increase in renin secretion in the
renal cortex

Renal cortical slices
(rats, Sprague-Dawley normal males; 180-220 g)

Treatment with insulin
(3.5x10-9 M; 30 min)

(27)

Expression of renal RAS components

Suppression of AGT gene expression Rat immortalized renal proximal tubular cells
(cell culture)

Incubation with insulin
(10-7 M; 24 h)

(28)

Increase in ACE2 gene expression Mouse growth-restricted, conditionally immortalized podocytes
(cell culture)

Incubation with insulin
(2x10-7 M; 1, 24, 48 h)

(29)

Expression of vascular and cardiac RAS components

Suppression of AGT and renin mRNA
expression

Stimulation of ACE activity (high doses
of insulin)

Human aortic endothelial cells
(cell culture)

Incubation with insulin
(10, 100, 1000 mU/ml; 48 h)

(30)

Overexpression of AT1aR receptors Rat aortic VSMCs
(cell culture)

Incubation with insulin
(10-7 M, 24 h)

(31)

Decrease in AT1aR expression;
Increase in AT2R expression;
Decrease in AT1aR/AT2R ratio

Tissue sections of rat ventricle
(Sprague-Dawley, normal females (230 ± 8 g)

Chronic hyperinsulinemia (insulin
osmotic minipumps
2 U/day; 1 ml/h; 7 wk)

(32)

Modulation of angiotensin peptide action

Reduce in ANGII–induced Ca2+ response
(insulin sensitive subjects)

Human skin fibroblasts (from hypertensive (age 50 ± 8 years) insulin-
sensitive and insulin-resistant males; cell culture)

Preincubation with insulin (10-7

M; 20 min)
(33)

(Continued)
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Insulin promotes an increase in circulating
ANGII levels

Insulin increases circulating ANGII levels by stimulating

plasma renin activity (25) and also increases AGT expression and

ANGII secretion in subcutaneous adipose tissue, which is an

important source of circulating ANGII (26).
Insulin affects the expression of
components of local RASs

In renal RAS, insulin stimulates renin production (renal cortex)

(27), and suppresses AGT expression by interacting with a specific

insulin-responsive element located in the promoter region of the

AGT gene (proximal tubule cells) (28). In cultured podocytes,

insulin increases the expression of ACE2, responsible for the

production of ANG-(1-7), a functional ANGII antagonist, which

shifts the ANGII/ANG-(1-7) ratio in favor of an “anti-ANG II”

profile and contributes to reduced fibrosis and apoptosis (29).

In the vascular RAS (aortic endothelial cells) insulin suppresses

AGT and renin expression but stimulates ACE biosynthesis (30).

Insulin also induces AT1R overexpression in blood vessels, which
Frontiers in Endocrinology 03
may lead to increased biological efficacy of ANGII and thereby

induce hypertension and atherosclerosis (31). In cardiac tissue, high

concentrations of insulin cause the opposite effect, altering the

AT1R/AT2R ratio in favor of an increase in AT2R, leading to

pathological changes in the organ (32).
Insulin modulates the action of
angiotensin peptides

Insulin reduces ANGII-induced Ca2+ response in various cell

types such as human skin fibroblasts and mesangial cells (33, 34) as

well as in vascular smooth muscle cells (VSMCs) of various origins

(34–37). In rat renal tissue (cortical thick ascending limb), insulin

does not alter ANGII-induced Ca2+ release from intracellular

reservoirs but stimulates Ca2+ influx (38). Insulin dose-

dependently suppresses the vasoconstrictive effects of ANGII in

arterial and venous systems, suggesting that insulin may modulate

ANGII-mediated vascular function (39).

Intraperitoneal administration of 1 U of insulin abolishes

ANGII-mediated activation of complex instrumental behavior in

rats and halves the hypertensive effect of ANGII (40). Continuous

insulin infusion (i.v.) reduces the pressor response to ANGII in rats
TABLE 1 Continued

Effect of insulin on RAS Model Experimental details Ref.

Decrease in ANGII-induced Ca2+ response
and cell contraction

Rat mesangial cells
(Wistar males; cell culture)

Preincubation with insulin
(5 mg/ml; 2 h)

(34)

Reduce in ANGII-induced Ca2+ response Rat VSMCs
(Wistar-Kyoto males; cell culture)

Preincubation with insulin (0.5x
10-9 M; 10 min)

(35)

Inhibition of ANGII -induced cell
contractions

Decrease in ANGII –induced
Ca2+ response

Dog VSMCs
(cell culture)

Preincubation with insulin
(40 mU/mL; 20 min or 7 day)

(36)

Decrease in ANGII -induced
Ca2+ response

Rat aortic VSMCs
(Sprague-Dawley, normal males, 250-300g; cell culture)

Preincubation with insulin
(10 mU/ml - 100 mU/ml; 20 min)

(37)

Stimulation of the Ca2+ influx induced
by ANGII

Isolated rat cortical thick ascending limb
(Sprague Dawley, normal males; 130 –180 g)

Preincubation with insulin
(10-7 M; 20 min)

(38)

Reduction of ANG II-induced arterial and
venous contraction

Isolated femoral artery and vein
(rabbits, males; 2.5-3.5 kg)

Incubation with insulin (0.12-120
mU/ml)

(39)

Reduction of hemodynamic and behavioral
effects of ANGII

Rats
(Wistar, normal males; 350-400 g)

Pretreatment with insulin
(1 U intraperitoneally; 30 min)

(40)

Reduce in the pressor response to ANGII
Increase in the pressor response to ANGII

(sustained euglycemia)

Rats
(Wistar, normal males; 350-400 g)

Continuous infusion of insulin
(i.v.; 60 pmol kg-1min-1)
Sustained euglycemia

(insulin 2-600 pmol kg-1 min-1

+glucose 5 – 15%)

(41)

Increase in the pressor response to ANGII Rats
(Sprague-Dawley, normal males; 250-300 g)

Insulin perfusion
(i.c.v., 12 mU/h; 2 h at a flow rate

of 4 ml/h)

(42)

Modulation of hemodynamic effects of
ANG-(1-7)

Rats
(Wistar, normal males; 350-400 g)

Pretreatment with insulin
(1 U intraperitoneally; 30 min)

(43)

Modulation of hemodynamic effects
of ANGIV

Rats
(Wistar normal males; 350-400 g)

Pretreatment with insulin
(1 U intraperitoneally; 30 min)

(44)
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and, conversely, increases it if euglycemia is artificially maintained

(41). Centrally administered (i.c.v.) insulin potentiates ANGII

pressor effects at the hypothalamic level (42).

Insulin regulates the activity of ANGII bioactive derivatives,

ANG-(1-7) and ANGIV, which elicit responses generally opposite

to ANGII. When rats were injected intraperitoneally with 1 U of

insulin, the weak hypotensive effect of ANG-(1-7) changed into a

biphasic hyper-hypotensive effect (43). In a similar experiment, the

weak hypotensive effect of ANGIV on the background of insulin was

changed to hypertensive (increase in blood pressure by 11-16%) with

subsequent prolonged vasodilatation and tachyarrhythmia (44).
Frontiers in Endocrinology 04
Insulin regulates IRAP function

The specific ANGIV receptor, IRAP, is an insulin-regulated

aminopeptidase with which ANGIV interacts as an inhibitor (45).

Expressed in the brain, heart, kidney, and blood vessels, IRAP is

involved in the regulation of blood flow, glucose metabolism, and

processes related to cognition, as well as several other functions

(46). Insulin stimulates the translocation of IRAP together with the

insulin-responsive glucose transporter GLUT4 from intracellular

vesicles to the cell membrane, where IRAP performs its function by

cleaving vasopressin, somatostatin and other active peptides (47).
B

A

FIGURE 1

Effect of insulin on RAS function. (A) Insulin affects central and local RAS by acting on their receptors, enzymes and angiotensin peptides
(experimentally confirmed effects, details in the text of the article); ANG, angiotensin; AGT, angiotensinogen; ACE, angiotensin-converting enzyme;
AT1R and AT2R, angiotensin receptors; IRAP, insulin-regulated aminopeptidase; (↑) – increasing; (↓) – reducing; (*) - high concentrations of insulin.
(B) Mechanism of angiotensin-dependent IR as a vicious circle.
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Discussion

The study of the functional relationship between insulin and

renin-angiotensin signaling systems, which play a key role in the

control metabolism and homeostasis, seems particularly important

due to the confirmed clinical association between IR and

hypertension (48). Insulin signaling system and RAS are in a

balanced relationship of reciprocal regulation, where the activity

of each system depends to a certain extent on the functioning of the

other. Thus, ANGII regulates insulin secretion by activating AT1Rs

on the surface of b−cells (24) and plays an important role in the

development of IR, which occurs in various pathological conditions,

including diabetic (8–10). Insulin, in turn, affects central and local

RASs by acting on their receptors, enzymes, and angiotensin

effector peptides (Figure 1A).

We suggest that RAS activity is largely dependent on the state of

the insulin signaling system and this may be extremely important

for both normal body functioning and the development of

pathology. This regulation can be flexible and efficient under

physiological conditions and dramatically impaired under

pathological conditions. Normally, insulin can increase ANGII

concentrations and at the same time counterbalance the

hyperactivity of this hormone by suppressing its effects, causing a

kind of temporary “insulin-dependent resistance to ANGII”.

Possible mechanisms for the inhibitory effect of insulin on ANGII

signaling in this case could be chemical modification and

inactivation of angiotensin receptors, as insulin-activated RTKs

are able to phosphorylate GPCRs (49) or “borrow” components

of GPCR signaling, including b-arrestins and G-protein-coupled

kinases (50). In the absence of the hypoglycemic effect of insulin,

which is characteristic of the IR state, insulin may, in contrast,

enhance the hypertensive properties of ANGII (41) and thereby

contribute to the hypertension that usually accompanies IR.

RAS hyperactivation is characteristic of the IR state, but in this

case a chicken-or-egg situation may be observed (51). We propose to

consider the mechanism of development of IR as a vicious circle

(Figure 1B), which is triggered by any causes that contributes to a

chronic increase in insulin release (overeating, preference for high

insulin index foods such as sweets, baked goods, etc.). Excess insulin

secretion stimulates overproduction of ANGII in circulating and local

RASs and overgrowth of adipose tissue, which in response to insulin

increases synthesis and release of ANGII into the bloodstream,

further increasing its concentration (25). Since ANGII can inhibit

insulin signaling, its ever-increasing levels contribute to IR. Under

conditions of IR, insulin inadequately regulates glucose homeostasis

and other metabolic processes due to disruption of the IRS/PI3K

signaling pathway, whereas MAPK-pathway signaling is preserved,

which contributes to the maintenance or even enhancement of other,

non-metabolic effects of insulin (5). In these conditions insulin can

affect tissues that are not directly involved in metabolism and retain

insulin reactivity, thereby causing specific responses with potentially

dangerous consequences including arterial hypertension (5). Because

insulin promotes activation of predominantly prohypertensive

components of the RAS, hypertension in patients with IR may be

largely related to hyperactivation of the RAS due to compensatory

hyperinsulinemia accompanying IR. Further activation of the ACE/
Frontiers in Endocrinology 05
ANGII/AT1R axis under these conditions, especially in the vascular

endothelium, aggravates hypertension characteristic of obesity and

IR. Excess ANGII levels in blood and tissues in IR promote

profibrotic, inflammatory and hypertrophic processes causing

remodeling and dysfunction of cardiovascular and renal tissues. On

the other hand, the state of IR is characterized by chronic

vasoconstriction in the area of insulin secretion due to high

expression of AT1Rs of islet RAS on the background of high levels

of ANGII, which dramatically reduces islet blood flow and negatively

affects insulin synthesis and release, leading to glucose intolerance

(22, 52). Further aggravation of disturbed insulin signaling in the

presence of increasing ANGII, eventually leads to metabolic

syndrome and T2D (53). We believe that our results may

illuminate the relationship between T2D, cardiovascular disease

and renal dysfunction, whose molecular mechanisms include

among others IR and hyperactivity of the RAS (54).

Each of the angiotensin peptides can cause different, even

opposite effects - for example, the specific action of ANGII is

determined by the type of receptor it interacts with - AT1R or

AT2R (17). ANGIV and ANG-(1-7), which have their own

receptors, can also be AT1R and/or AT2R agonists and,

depending on concentration, exert both AT1R-mediated

vasoconstrictor and AT2R-mediated vasodilator effects (55–57).

Insulin, by influencing the expression and function of various

angiotensin receptors, may be a factor regulating their effective

concentration and availability for ligands, which ultimately

determines the spectrum of physiologic effects of various

angiotensin peptides and maintains a physiologically adequate

balance between the “pathophysiologic” and “protective” branches

of the RAS.

Most hormones, including insulin, have a window of optimal

physiological concentrations (58). Secretory deficiency or excess of

insulin, as well as impaired signaling leading to insulin dysfunction,

can disrupt the balance of regulatory interactions between insulin

and RAS. When drugs affecting insulin secretion and signal

transduction (insulin secretagogues and sensitizers) or insulin

therapy are used, the functional activity of the RAS may shift

towards the “pathophysiological” axis (59–62). This may be the

cause of increased blood pressure during experimental sustained

hyperinsulinemia (63) as well as the development of hypertension

in pregnant women during insulin therapy for gestational diabetes

mellitus (64). Various complications such as angiopathy,

nephropathy, retinopathy, neuropathy, inflammation, etc.,

characteristic of the diabetic state (65–67) may in fact result from

RAS dysregulation against insulin dysfunction due to pathology

and/or medication.

In our opinion, insulin is directly involved in the flexible

regulation of RAS by influencing the expression and activity of its

enzymes, effector peptides and receptors. Impaired insulin signaling

can lead to dysregulation of RAS function resulting in serious

complications characteristic of the diabetic state. We hypothesize

that IR is a consequence of RAS hyperactivation, which is provoked

by excessive insulin secretion promoted by poor diet and/or other

causes. Normalization of insulin secretion, primarily through

dietary correction, as well as pharmacotherapy that restores the

functional balance of insulin and renin-angiotensin signaling
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systems seem essential for the prevention and treatment of IR,

hypertension and diabetic complications.
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