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Brain-derived neuerotrophic
factor and related mechanisms
that mediate and influence
progesterone-induced
neuroprotection
Meharvan Singh*, Vignesh R. Krishnamoorthy, Seongcheol Kim,
Saira Khurana and Heather M. LaPorte

Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago,
Maywood, IL, United States
Historically, progesterone has been studied significantly within the context of

reproductive biology. However, there is now an abundance of evidence for its

role in regions of the central nervous system (CNS) associated with such non-

reproductive functions that include cognition and affect. Here, we describe

mechanisms of progesterone action that support its brain-protective effects,

and focus particularly on the role of neurotrophins (such as brain-derived

neurotrophic factor, BDNF), the receptors that are critical for their regulation,

and the role of certain microRNA in influencing the brain-protective effects of

progesterone. In addition, we describe evidence to support the particular

importance of glia in mediating the neuroprotective effects of progesterone.

Through this review of these mechanisms and our own prior published work, we

offer insight into why the effects of a progestin on brain protection may be

dependent on the type of progestin (e.g., progesterone versus the synthetic,

medroxyprogesterone acetate) used, and age, and as such, we offer insight into

the future clinical implication of progesterone treatment for such disorders that

include Alzheimer’s disease, stroke, and traumatic brain injury.
KEYWORDS

progesterone, brain-derived neurotrophic factor (BDNF), microRNA (miRNA),
neuroprotection, stroke, brain
The biology of progesterone

Progesterone is a natural progestin and an important gonadal hormone synthesized in

mainly in the ovaries of females and both the adrenal cortex and testes of males. Despite the

fact that progesterone levels are overall higher in females, it is known that there is recorded

similarities between male progesterone levels and those of females specifically during the
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follicular phase in female menstrual cycle, indicating a definite and

important role of progesterone in males (1). Historically,

progesterone has primarily been considered with regards solely to

the reproductive functions. For example, it plays vital role in not

only female fertility and embryo implantation, but also in the

maintenance of the uterus and production of inflammatory

mediators in the uterine cavity during pregnancy to prevent

miscarriage or preterm labor (2). And though our knowledge of

progesterone and related progestins with regards to their role in

reproductive biology is quite extensive, we also now appreciate there

are rather important effects from progesterone in multiple organ

systems including the brain, in which progesterone has

demonstrated protective effects. The mechanisms associated with

the protective effects of progesterone are complex, and as suggested

below, may require the right complement of progesterone receptors

(e.g., the classical progesterone receptor (PR) and membrane

progesterone receptors), may involve the simultaneous influence

on multiple cell types (e.g., glia and neurons), as well as regulation

of certain classes of growth factors (e.g., neurotrophins).
The receptor pharmacology
of progesterone

Brain regions such as the cerebral cortex and hippocampus

express not just the classical progesterone receptors (PR) (3, 4), but

also express membrane progesterone receptors (see (5) for review).

The “classical” PR is generally described as a nuclear transcription

factor, which when bound to specific progesterone response

elements (PRE) within the promoter region of target genes,

regulates the transcription of such genes. PR-A and PR-B, the two

main isoforms of the classical PR, are transcribed from the same

gene, and transcription is usually estrogen-dependent. A third

isoform, known as PR-C, also exists, but its exact function is

unclear (6).

Recently it has been proposed that there are membrane

receptors for progesterone. While it has only been recently that

the membrane-associated progesterone receptors have been cloned,

they have been suggested for years originating from the knowledge

and observation of specific and displaceable binding sites found in

preparations of synaptosome membranes (7, 8). Zhu et al.,

discovered a novel membrane-associated progesterone receptor

which is termed mPR (9) that is predicted to couple to Gi/o class

of G-proteins (10). Additional progesterone membrane receptors

include Progesterone receptor membrane component 1 (Pgmrc1)

(11–13) which is implicated in abundant features of cellular

function ranging from the regulation of reproductive behavior

(11), steroidogenesis (14), growth regulation of triple-negative

breast cancer (15), to neuronal development (16) and potentially

neuroprotective effects of progesterone as described above.

Pgrmc1’s involvement in the cellular functions associated with

cytoprotection may be attributed to its role as a positive regulator of

many cytochrome P450 catalyzed reactions that are imperative for

intracellular sterol metabolism (17). The Singh laboratory has

previously demonstrated that, through our experimental
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classical PR, mPR-alpha, mPR-beta and Pgrmc1 are expressed,

while we recently determined that progesterone’s ability to elicit

an increase in Brain-derived neurotorphic factor (BDNF)

expression is dependent on the classical PR (18). With respect to

Pgrmc1, however, selective knockdown completely abolishes the

ability of progesterone to elicit an increase in BDNF release (19), an

effect that we believe to be critical to progesterone’s neuroprotective

effects (20). Based on these observations, and at least from the

standpoint of neuroprotection, we suggest that the classical PR and

the Pgrmc1 are critical, although perhaps not exclusive, mediators

of progesterone’s effects on cell viability.
Progesterone and neuroprotection

Progesterone has been reported to be protective against a

variety of insults relevant to brain aging or indeed, various

neurodegenerative diseases, that include stroke, traumatic brain

injury (TBI), stroke and Alzheimer’s disease (AD). For example,

progesterone, at physiologically relevant concentrations, has been

shown to significantly ameliorate oxidative and/or excitotoxic

injury resulting from glutamate treatment (20–23), glucose

deprivation (24), as well as FeSO4- and amyloid b-peptide–
induced toxicity (24).

With regards to animal models of stroke, progesterone has been

shown to be protective, as exemplified by the study by Jiang et al.,

which illustrated that treatment with progesterone prior to middle

cerebral artery occlusion (MCAO) resulted in a significant

reduction in cerebral infarction as well as the functional

impairments that resulted from the occlusion (25). Interestingly,

administration of progesterone following ischemia was also found

to be protective (26–28), and resulted in improvements in various

functional outcomes, including the rotarod test, and adhesive-

backed somatosensory and neurological scores (29). Progesterone

has even been shown to provide protection against ischemia-

induced visual impairments, as shown by the work of Allen et al.

(2015), who demonstrated that post-ischemic administration of

progesterone protected against MCAO-induced retinal ganglion

cell (RGC) loss, glutamine synthetase upregulation, and glial

fibrillary acidic protein (GFAP) upregulation (30). The protective

effects of progesterone following insult suggest that both rapid/

immediate and long-term mechanisms of progesterone action may

underlie the protective effects of progesterone.

In experimental models of traumatic brain injury (TBI),

progesterone is also protective. In such models, progesterone

administration has been shown to reduce cerebral edema for up

to 24 hours following injury. Further, progesterone was found to

reduce complement factor C3, glial fibrillary acidic protein (GFAP),

and nuclear factor kappa beta (NFkB) in a rodent model of medial

frontal cortex impact injury (31), all of which can be interpreted as

protective mechanisms. Progesterone not only facilitates cognitive

improvement while reducing secondary neuronal loss caused by

edema in ovariectomized female rats after TBI, but also elicits

similar effects in male rats (32). Lipid peroxidation was also
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decreased following treatment with progesterone when

administered post-TBI in male rats (33).

The neuroprotective effects of progesterone have also been

investigated in the context of experimental systems that simulate

the pathology of such neurodegenerative diseases as Alzheimer’s

disease (AD) and Parkinson’s disease (PD). For instance, a study by

Qin et al. (2015) demonstrated the neuroprotective properties of

progesterone against amyloid beta (Ab)25-35-mediated neuronal cell

death by alleviating mitochondrial membrane potential loss (34).

The neuroprotective effects of progesterone were also noted in

animal models of AD, where progesterone improved cognitive

performance and glucose uptake in neurons in two separate

animal models of AD (35, 36). The protection afforded by

progesterone seemed to also be generalizable to other models of

neurodegeneration, including Parkinson’s disease. For example,

progesterone elicited neuroprotective effects in the murine 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of

Parkinson’s disease. Of note, and similar to that described in an

animal model of stroke, progesterone was protective at

administration time points both pre- and post-MPTP treatment

(37, 38).

While the anatomical focus of the brain disorders/diseases

referenced above were the hippocampus and cortex, it is worth

noting that progesterone has also been shown to be protective in

other regions of the central nervous system. For instance, work by

Thomas et al., highlighted the beneficial effects of progesterone on

spinal cord contusion injuries, by showing a reduction in the size of

the lesion and a prevention of secondary neuronal loss with

progesterone treatment (39). Additionally, progesterone’s

protective actions have been shown in the Wobbler mouse, an

animal model of spinal cord degeneration, where progesterone

treatment promoted morphological and functional recovery (40,

41). Re-myelination can also be induced by progesterone as

evidenced by the increased expression of myelin proteins in the

damaged sciatic nerves of both young adult rats and old (22-24

months of age) males (42). Based on these findings, progesterone

may be of potential therapeutic benefit in diseases where

demyelination is an important component that contributes

to pathogenesis.

While the studies described above were derived from animal

models and cell or tissue culture models, it is noteworthy that a

phase II, randomized, double-blind, placebo-controlled clinical trial

assessing the efficacy of progesterone treatment for acute traumatic

brain injury yielded promising results. Data from this study

suggested that progesterone treatment can improve functional

recovery, at least in those with moderate, but not severe,

traumatic brain injury (43–47). However, the results from the

Phase III study (ProTECTIII) failed to corroborate earlier

findings, potentially due to suboptimal dosing (48). Assessment of

“early dosing” with progesterone, as conducted by Wright et al.

(2014), also failed to show a benefit of progesterone administration

over control despite treatment within 4 hours of injury (49). Given

that TBI in the clinical setting is heterogeneous, unlike the very

reproducible injury that is sustained in pre-clinical (animal) models

of TBI (which have consistently shown a protective effect of
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progesterone), the protective effects of progesterone may be

evident only in a subset of TBI patients. Indeed, studies like that

by Soltani et al. (2017), which focused on diffuse axonal injury (50),

extend the earlier suggestion that progesterone may be protective in

patients with TBI.

Many studies that have investigated the protective effects of

progesterone have done so within the context of estrogen treatment.

More specifically, a significant proportion of these studies have

evaluated the protective effects of estrogen alone in comparison to

combined treatment with estrogen and progesterone. More

recently, however, researchers have addressed the influence of

progesterone alone. Although growing evidence suggests that

treatment with progesterone alone is neuroprotective, the

influence of progesterone on estrogen’s neuroprotective effects is

more equivocal. Some studies suggest that progesterone does not

interfere with the effects of estrogens (E) (21, 51, 52), while other

studies have argued that progesterone or synthetic progestins

antagonize the effects of estrogen (53–58). Specifically, the work

of Murphy and Segal demonstrated that progesterone antagonizes

the effect of 17b-estradiol (E2) on hippocampal spine density (59).

Additionally, McEwen and Woolley showed that in both adult and

developing brains, progesterone contributed to the loss of

hippocampal spines and spine synapses noted across the estrous

cycle (60), although progesterone did result initially (within the first

6 hours) in an increase in hippocampal dendritic spine density (61).

In contrast, a positive effect of progesterone, similar to that of E2 in

the hippocampus of a rat stroke model, was reported by Zhao et al.

(62), while Foy et al. (63) described that progesterone enhanced

long-term potentiation (LTP) and long-term depression (LTD) in

rat hippocampus. Future studies will help clarify the biological basis

of this apparent discrepancy, which may be the result of multiple

factors, that include the experimental model used (reflecting the

types of receptors expressed in the model), the chosen

concentrations/doses of progesterone, the timing of the

progesterone relative to that of estrogen, the timing of

progesterone relative to the insult, or potentially, regional

differences in the effects of combined estrogen and progesterone.
BDNF as a neuroprotectant

BDNF belongs to the family of neurotrophins (that include

NGF, NT-3 and NT4), and plays a vital role in maintaining brain

health by supporting cell viability and synaptic plasticity (64, 65).

The initial synthesis of BDNF occurs in both neurons and glia (66,

67) as a glycosylated precursor (pre-pro-BDNF), which is processed

into a 35 kDa pro-BDNF, and can then be converted into the 14

kDa mature BDNF intracellularly or extracellularly (68, 69).

Released BDNF can exert its functions on target cells by binding

to TrkB (a tropomysin related kinase family (Trk) of receptors) or

p75 neurotrophin receptor (p75NTR) receptor (67, 68, 70, 71).

Differentiating the effects of pro- versus mature BDNF is of high

importance as they often exert contrary biological functions: while

mature BDNF binds to the TrkB receptor to influence neuronal

survival, differentiation, and promote long-term potentiation
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(LTP), pro-BDNF binds preferentially to p75NTR and can promote

neuronal apoptosis and long-term depression (LTD) (see (69) and

references cited therein), particularly in the absence of TrkB.

Furthermore, it is hypothesized that neuronal dysfunction or

atrophy that occurs as a consequence of aging or age-associated

diseases may result not only from a decrease in mature

neurotrophin expression or function (72–75), but potentially also

from increased accumulation of the pro-neurotrophins. Consistent

with this premise, Fahnestock and colleagues have described that

the pro-NGF, the pro-neurotrophin for NGF, is increased in brains

from individuals diagnosed with AD (76).

As suggested above, there is strong evidence to support the role of

BDNF in synaptic plasticity and cognitive function (77, 78), and as

such, alteration in its function and/or expression has been implicated

in the pathophysiology of aged-related neurodegenerative diseases

including AD and PD (79–81), and conversely, restoring BDNF

expression and/or function may be therapeutic. In stroke, BDNF has

been largely shown to play a protective role. The delivery of BDNF

has been shown to promote tissue reparative processes in various

animal models of stroke (82, 83) and interventions that improve

functional recovery are often associated with increased BDNF levels

in the peri-infarct area. For example, Lazarovici et al., reported that

pituitary adenylate cyclase activating peptide (PACAP) is protective

in a rat model of stroke by inducing BDNF expression and release, as

well as activating TrkB receptor (84). Ishrat et al., also showed that the

protective effects of progesterone are mediated by BDNF, helping to

reduce ischemic lesion size and edema in rats experiencing

permanent focal cerebral ischemia (85). Furthermore, gene delivery

of BDNF, using a recombinant adeno-associated virus (rAAV),

decreased cell death in a rat focal ischemic lesion (86). Conversely,

attenuating BDNF levels or its effects following cerebral ischemia

often reduces recovery of function (87, 88). It is noteworthy that

BDNF is also produced in non-neuronal cells (such as astrocytes,

microglia and endothelial cells) after ischemic stroke (89), and

therefore these cells may contribute significantly to the BDNF-

dependent recovery. BDNF has also been implicated as a

neuroprotectant in TBI (for review, see (90) and references cited

therein). In the hippocampus, conditional knock out of BDNF

increased death of adult-born immature neurons following TBI

(91). Conversely, therapeutic improvement and recovery of

function after TBI is associated with an induction of BDNF and its

associated proteins (92, 93). Changes in BDNF signaling have also

been implicated in Alzheimer’s disease and work by Zheng et al.,

2010, shows that Ab reduces mature BDNF expression in vitro (94).

Conversely, BDNF gene delivery has shown to reverse synapse loss

and protect against neuronal death of entorhinal neurons in mouse

models of AD (95).

The mechanisms by which BDNF-mediated protection occurs

may be elicited through multiple mechanisms including the

activation of specific signaling pathways, including the MAPK and

phosphoinositide inositol-3 kinase (PI-3K) pathways. For example,

exogenous BDNF protects primary cortical neurons from apoptosis

in a dose-dependent manner (96). While BDNF increases the

phosphorylation of PI3K and Ak Strain Transforming (Akt) (as an

indicator of their activation), pharmacological inhibition of the PI-3K
Frontiers in Endocrinology 04
pathway by LY294002 prevents the neuroprotective effects of BDNF

in primary cortical neurons (96). Likewise, extracellular-signal

regulated kinase (ERK)1/2 phosphorylation/activation is

significantly increased by BDNF, while pharmacological inhibition

of the ERK1/2 pathway by PD98059 greatly reduces BDNF’s

neuroprotective effects. In addition, direct administration of BDNF,

via intracerebroventricular administration, in postnatal day 7, rats

resulted in phosphorylation of ERK1/2 and Akt within minutes (97),

while pharmacological inhibition of ERK inhibited the ability of

BDNF to block hypoxia/ischemia-induced caspase-3 activation and

tissue loss (97). Based on progesterone’s ability to rapidly activate

both the ERK/MAPK and Akt signaling pathways in the CNS (21, 23,

98), and increase the expression of BDNF as well, either the direct

activation of these signaling pathways (i.e., direct coupling with

activated progesterone receptors) or the regulation of BDNF

synthesis and release may be relevant mechanisms that are, at least

partially, responsible for progesterone’s protective effects.
BDNF as a mediator of progesterone’s
protective effects

Our laboratory (20, 99) and that of others (100, 101) have

shown in various experimental systems, including explants of the

cerebral cortex, the injured spinal cord, and in degenerating

Wobbler motor neurons, that BDNF expression is increased by

progesterone. For instance, a study by Meyer et al., 2013, shows that

progesterone promotes upregulation of BDNF in the hippocampus,

dentate gyrus, and Cornu Ammonis (CA)3 pyramidal regions of the

Wobbler mouse in comparison to vehicle groups (102).

Additionally, progesterone treatment has been shown to increase

BDNF expression in an animal model of TBI (103). Our lab has

shown that in cortical explants, treatment with a physiologically

relevant concentration of progesterone (100 nM) for 24 hours

induces an approximately 75% increase in both BDNF mRNA

and protein expression, an effect that appeared to be consistent

with the protective effects of progesterone (20). Furthermore, the

principal mediator of the effect of progesterone on BDNF

expression was determined to be the “classical” intracellular/

nuclear PR, since this effect was inhibited by the pharmacological

inhibitor of the PR, RU486, and was lost in PR knockout mice (18).

The membrane progesterone receptor (mPR) has also been reported

to be potentially involved in promoting expression of BDNF as

shown by a study by Castelnovo and Thomas (2022), in which

activation of the mPRa in human adipose stem cells differentiated

into Schwann cell-like cells (SLC-ASC) led to an upregulation of

BDNF expression (104).

The regulation of cell signaling pathways consequent to BDNF

action (through interaction with the TrkB receptor) may be an

important way by which progesterone elicits its effects, and as such,

while synthesis is important, the ability to elicit the release of BDNF

is also important. Recently, we have shown that the release of BDNF

from glia is triggered by progesterone (19). Interestingly, this release

was mediated through a novel membrane-associated progesterone

receptor, Pgrmc1, as opposed to the classical PR, which was not
frontiersin.org
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involved in this process as our cultured astrocytes lacked the

expression of PR (19). Furthermore, this was associated with

activation of the ERK5 signaling cascade (19). Based on these

findings, our laboratory proposes that the receptor mechanisms of

both Pgrmc1 and PR are required to afford sustainable protective

effects, since we have shown that the classical PR mediates the effect

of progesterone on BDNF expression, and Pgrmc1 appears to

mediate the effect of BDNF on release. Specifically, we posit that

progesterone, through the PR, replenishes BDNF stores while

simultaneously, through Pgrmc1, promotes the release, and thus,

availability of BDNF to surrounding cells.

Progesterone-mediated BDNF regulation may also be relevant

to progesterone’s cognitive enhancing role. Indeed, numerous

studies implicate BDNF in regulating synaptic plasticity in the

brain, including LTP (105, 106). Specifically, “late” LTP, a

component of LTP that requires de novo synthesis of mRNA and

protein, appears to require BDNF (107–109). Mechanistically,

BDNF is thought to mediate LTP via N-methyl-D aspartic acid

(NMDA) receptor phosphorylation, which in turn, alters the

function of the receptor. Indeed, BDNF-mediated signaling has

been shown to target both the NR1 (110) and the NR2B (111)

subunits of the NMDA receptor. Moreover, functional changes in

the receptor, such as increasing the open probability of the NMDA

receptor channel, are associated with this BDNF-mediated

phosphorylation of the NMDA receptor (112, 113). Studies have

also shown that signaling pathways elicited by progesterone are

implicated in regulating LTP. Specifically, pharmacological or

genetic inhibition/disruption of these pathways can inhibit LTP-

relevant NMDA receptor phosphorylation (114), BDNF-induced

increase in field excitatory postsynaptic potentials (fEPSPs) (115)

and produce frank deficits in hippocampal LTP (116). Accordingly,

progesterone may regulate LTP (thereby enhancing cognitive

function) by direct activation of specific cell signaling pathways

consequent to binding to progesterone receptors, or alternatively,

influence LTP through the induction of BDNF release, which in

turn, activates the signaling pathways that phosphorylate

NMDA receptors.

As previously discussed, the ratio of relative abundance of the

pro- and mature forms of the neurotrophin may govern the

protective effects of synthesized neurotrophins, since pro-

neurotrophins preferentially bind to the p75 “pan” neurotrophin

receptor to promote cell death, while mature neurotrophins

preferentially bind to their cognate Trk receptor and elicit signaling

events consistent with cell survival. The laboratory of Dr. Donald

Stein has recently reported the expression of pro- versus mature

neurotrophins can be differentially regulated by progesterone.

Specifically, progesterone treatment led to a decrease in the pro-

apoptotic, pro-NGF, while increasing the level of mature NGF in a

model of traumatic brain injury (TBI). Although this effect on NGF

appears consistent with the protective effects of progesterone, the

observed effects of progesterone on pro- versus mature BDNF were

not. In fact, progesterone not only decreased the expression of pro-

BDNF, but also reduced the expression of mature BDNF and its

cognate receptor, TrkB (117). However, recent studies from our lab
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show that P4 is protective, and that the efficacy of P4’s protective

effects was enhanced by inhibiting the microRNA, let-7i (118). Future

studies are warranted to help clarify this apparent discrepancy.
Metabolites of progesterone and their
influence on BDNF

When exploring the neuroprotective properties of progesterone,

it is crucial to acknowledge the potential involvement of its

metabolite, allopregnanolone (3a, 5a tetrahydroprogesterone or

THP). This consideration broadens our understanding and opens

up new avenues for research into the mechanisms by which

progesterone exerts its beneficial effects on brain health.

Allopregnanolone, a positive allosteric modulator of the gamma-

amino butyric acid-A (GABA-A) receptor, has been shown to have

neuroprotective effects by reducing excitotoxicity caused by brain

injury or insult (119). There is strong evidence from multiple

studies suggesting that allopregnanolone treatment offers

substantial benefits in reducing various deficits and consequences

associated with traumatic brain injury. Examples of a potential

benefit of allopregnanolone is its ability to reduce levels of

inflammatory cytokines (120), minimize cell death, and alleviate

cognitive deficits (120–125) following traumatic brain injury. It has

been postulated that allopregnanolone plays a pivotal role in

mediating the protective effects of progesterone. In addition to its

other benefits, allopregnanolone has been found to have a

significant impact on neurogenesis (refer to the study cited in

reference (126) and the accompanying sources). Moreover,

extensive research has demonstrated the therapeutic benefits of

allopregnanolone in treating Alzheimer’s disease by promoting

neurogenesis, enhancing cognitive function and memory,

reducing neuroinflammation and beta-amyloid build-up, as well

as improving bioenergetics deficits in 3xTgAD mice (127–130).

Interestingly, studies have demonstrated that allopregnanolone can

exert its protective benefits by modulating BDNF (refer to reference

(125) and the relevant citations therein), while the exact method by

which allopregnanolone triggers BDNF remains uncertain (i.e.,

what receptor(s) allopregnanolone interact with). However,

noting recent reports that allopregnanolone is a ligand for the

PAQR family of membrane progesterone receptors (131), the

involvement of multiple classes of membrane progesterone

receptors (i.e., to include mPRs and Pgrmc1) in mediating the

effect of metabolites of progesterone is indeed emerging.

And while there has been considerable attention to the

neuroprotective effects of allopregnanolone, its precursor, 5a-
dihydroprogesterone, has also been shown to protect neurons

against excitotoxic insults (120, 132, 133). Thus, the protective

effects of progesterone may not only be attributed to the abundance

of progesterone and its cognate receptors, but also the abundance of

the synthetic enzymes responsible for the conversion of

progesterone to its neuroprotective metabolites, and in turn, the

relatively more recently described receptors associated with their

action (e.g., mPR and Pgrmc1).
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Do all clinically used progestins have
similar effects on cytoprotection
and BDNF?

Medroxyprogesterone Acetate (MPA) is a synthetic progestin

often used in conjunction with estrogens to reduce the risk of such

cancers that include uterine cancer, associated with unopposed

estrogen therapy (134, 135). However, we and others have

equivalent effects within the context of their cytoprotective effects.

For example, progesterone, but not MPA, was protective against

glutamate toxicity in both explants derived from the cerebral cortex

(20) and in primary dissociated hippocampal neurons (21). This

disparity between the effects of P4 and MPA have also been noted in

vivo. For example, a study illustrated that the combined

administration of estrogen and progesterone in rhesus monkeys

protects against coronary vasospasm, whereas the co-

administration of MPA with estrogen failed to elicit this protection

(136). This difference between progesterone and MPA is also evident

in humans, where progesterone administration to post-menopausal

women enhanced the protective effects of estrogen on exercise-

induced myocardial ischemia, whereas MPA did not (137).

While the discrepancy between the protective effects of

progesterone and MPA may be attributed to a variety of factors

that include differential regulation of ERK translocation (23), anti-

apoptotic protein regulation (21), and calcium homeostasis (21), it

appears that a fundamental difference in the regulation of BDNF

may also underlie the difference between progesterone and MPA.

Notably, our laboratory showed that that while progesterone

increased the expression of BDNF in cerebral cortical cultures,

MPA suppressed BDNF levels (18).

More recently, the progestin component of a recently FDA-

approved contraceptive vaginal ring, segesterone acetate, was

shown to have neuroprotective effects (138–140) in the MCAO

model of stroke in male rats. Given the preferential affinity of this

compound for the PR over other steroid hormone receptors, such

data bolster the importance of the classical PR in mediating

progesterone’s neuroprotective effects. Further, this study also

supports the potential utility of PR-engaging compounds

(progesterone and related progestins) in eliciting cytoprotective

effects in males as well.
miRNA and their influence of
progesterone’s biological effects

MicroRNAs (miRNAs) are a class of small non-coding RNAs

(approximately 20-22 nucleotides in length) that play a major role

in regulating gene expression (141). miRNAs were first discovered

in Caenorhabditis elegans, in which a short RNA sequence

produced from the lin-14 gene downregulated lin-14 translation

(142). miRNAs are initially synthesized as primary-miRNAs (pri-

miRNA), a hairpin structure that is predominantly transcribed by

the enzyme RNA polymerase II (141). These pri-miRNAs can then
Frontiers in Endocrinology 06
undergo RNA editing by adenosine deaminase acting on RNA

(ADAR), which can convert adenosine into inosine and potentially

modifies cleavage products in succeeding stages of miRNA

processing (141, 143). Pre-miRNAs are subsequently produced

following cleavage of pri-miRNAs by a microprocessor complex

composed of an RNAse III enzyme, Drosha, and the protein

DiGeorge syndrome critical region 8 (DGCR8) (141, 144, 145).

After these processing steps, pre-miRNAs can then be exported out

of the nucleus and into the cytosol through the involvement of

exportin 5 (141). Subsequently, pre-miRNAs then undergo an

additional modification step in which the RNAse III enzyme,

Dicer, binds and cleaves the pre-miRNA to produce a double

stranded mature-miRNA duplex (141). Once processed by Dicer,

the mature miRNA duplex gets associated with endonucleases

belonging to the Argonaute (Ago) family of proteins to form the

pre-RNA-induced silencing complex (pre-RISC) (141, 146). Within

the pre-RISC, one of the strands of the miRNA duplex, the

“passenger strand”, is removed, leaving the single stranded “guide

strand” to form the mature RISC complex (146). The RISC complex

can bind to the 3’ UTR region of a target mRNA and regulate gene

expression through either translation repression or mRNA decay

(141, 147). Through these two mechanisms, miRNAs play a major

role in regulating numerous genes and various cellular processes. It

is estimated that the human genome encodes nearly 2,300 miRNAs,

each of which targets about 100 mRNA transcripts (148).

The cellular effects of gonadal steroid hormones, including

progesterone, estrogen, and testosterone, have been shown to be

influenced by miRNAs. For instance, miRNAs have been shown to

negatively regulate the expression of estrogen receptor-a and

estrogen receptor-b (149–152), and a study by Epis et al., 2009,

suggests that miR-331-3p regulates androgen receptor (AR)-

mediated signaling in prostate cancer cell lines (153). As it

pertains specifically to progesterone, less is known regarding

effects of miRNAs on progesterone in comparison to that of

estrogen. However, studies have shown potential miRNA

binding sites on progesterone receptor (PR) mRNA that can

result in changes in PR expression in breast cancer cell lines and

in endometrial carcinogenesis (154–157). Specifically, Gilam et al.,

2017, showed that miR-181a, miR-23a, and miR-26b reduced PR

expression in ER-positive breast cancer (158). In addition to the

classical PR, the influence of miRNAs has been demonstrated on

Pgrmc1. Wendler et al., 2010, found that the Pgrmc1 mRNA 3’

untranslated region (UTR) contains a binding site for let7/miR-

98, and accordingly, transfection of let-7i in SKOV-3 ovarian

cancer cell lines resulted in a decrease in relative Pgrmc1

expression (159). Our laboratory also showed that Let-7i

decreases the expression of Pgrmc1 (118). Apart from effects on

receptor expression, the release of progesterone has also been

shown to be regulated by miRNAs, as evidenced by the study of

Sirotkin et al., 2009, where thirty six out of eighty tested miRNA

constructs resulted in inhibition of progesterone release from

granulosa cells (160, 161). Additionally, transfection of antisense

constructs for two of the tested miRNAs resulted in an increase in

progesterone release (160, 161). Apart from release, miRNAs have
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also been shown to regulate progesterone synthesis. Work from

An et al., 2020, shows that that transfection of miR-101-3p

promotes progesterone synthesis in granulosa cells via inhibition

of STC1, which functions to inhibit hCG-stimulated progesterone

synthesis, in goat granulosa cells (162). Furthermore, transfection

of miR-101-3p results in an increase in mRNA and protein levels

of cytochrome P450 family 11 subfamily A member 1 (Cyp11a1)

and 3b-hydroxysteroid dehydrogenase (3b-HSD), two enzymes

involved in the synthesis of progesterone from cholesterol (162).

Collectively, these studies underscore the diagnostic potential of

miRNAs in pathological conditions and illustrate miRNAs as a

possible therapeutic target for the treatment of various cancers

and diseases.

Work from our laboratory has highlighted the therapeutic

potential of targeting miRNAs in experimental models of ischemic

stroke. We have previously shown that Pgrmc1 is a key mediator in

promoting the release of BDNF from cortical astrocytes (19, 163).

Based on findings that the miRNA let-7i downregulates expression of

Pgrmc1 in peripheral tissue (159), and that the antagomir to let-7f, a

sister miRNA to let7i, is neuroprotective in models of ischemic stroke

(164), we hypothesized that administration of an antagomir to let-7i,

when combined with progesterone, could promote enhanced BDNF

release and provide protection in experimental models of ischemic

stroke (118). Our findings show that overexpression of let-7i results

in downregulation of mRNA and protein levels of Pgrmc1 and BDNF

expression in primary cortical astrocytes (118). Furthermore, let-7i

was found to inhibit progesterone-mediated BDNF release (118).

Additional experiments revealed that treatment of primary neurons

with conditioned media from progesterone-treated astrocytes led to

an increase in the synaptogenic marker, synaptophysin (SYP) (118).

However, SYP expression was greatly diminished in neurons treated

with conditioned media from astrocytes treated with let-7i and

progesterone, but restored when treated with conditioned media

from anti-let7i and progesterone treated astrocytes (118). These

results were further validated using an animal model of ischemic

stroke, the middle cerebral artery occlusion (MCAo) model, where

animals treated with the combination of progesterone and the let-7i

antagomir showed a robust increase in mature-BDNF protein levels,

significantly reduced infarct sizes, enhanced SYP expression, and

improved functional recovery compared to vehicle-treated animals

(118). Collectively, these results suggest that inhibition of let-7i in

experimental models of stroke promotes neuroprotection by

increasing BDNF release, a process mediated by Pgrmc1. These

significant findings pave the way for future studies in other disease

models in which miRNA dysregulation has been implicated.
The influence of age on
progesterone’s brain-
protective efficacy

Aging is related to a decline in circulating gonadal hormone

levels, which is more pronounced in women due to menopause.

While experimental evidence has shown that estrogen has
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neuroprotective effects against various insults in animal models,

clinical trials such as the Women’s Health Initiative (WHI) have

yielded inconsistent results regarding the cognitive benefits of

hormone therapy in postmenopausal women. The research

conducted in the post-WHI era has yielded compelling evidence

that supports the neuroprotective effects of estradiol in animal models

of various CNS disorders, including Alzheimer’s disease, Parkinson’s

disease, stroke, multiple sclerosis, chronic hypertension, and

traumatic brain injury (165–171). Recent findings, however, have

raised crucial questions about the circumstances in which hormone

therapy after menopause can be beneficial. The effectiveness of

hormone therapy may depend on various factors, such as the

length of the postmenopausal period before hormone intervention

and the subject’s age (172–174). The concept of a therapeutic

“window of opportunity” for hormone therapy after menopause

has gained traction as a potential explanation for the differing

outcomes observed in animal studies and clinical trials. Although

the therapeutic potential of estrogens in the brain has been explored

to some extent, there is a lack of research on whether a similar limited

window of opportunity exists for progesterone and its related

metabolite. The remarkable benefits of progesterone in reducing

the size of stroke-induced lesions have been observed in young

adult (3-month-old) ovariectomized (OVX) C57Bl/6 mice;

however, its impact on the neurological outcome seems to be

limited when tested on old (12-month-old) OVX mice (175). Such

limited information warrants a more comprehensive evaluation of

the brain-protective efficacy of progesterone as a function of age and

in different models of brain aging and disease.
Summary

This review has offered information supporting the potential

for progesterone as being protective in the brain and recognizing

the regulation of BDNF and its associated signaling in this

protection. A schematic of our overall working model by which

progesterone elicits its neuroprotective efficacy, focusing

significantly on BDNF and its associated signaling, and the

factors that may alter progesterone’s cytoprotective efficacy, is

provided in Figure 1. While progesterone regulates the

intracellular content of BDNF, the protein and mRNA, as an

effect facilitated by the classical progesterone receptor, it also

promotes the release of BDNF through the activation of a putative

membrane progesterone receptor. Thus, the release of BDNF leads

to the activation of TrkB receptors which are positioned on the

surface of the adjacent cells, activating a cascade of pro-survival

cell signaling pathways which include the ERK/MAPK and PI3/

Akt signaling pathways. Remarkably so, the ability of progestin to

use neuroprotective properties seems to be associated with its

ability to increase BDNF levels. Not only does this association

support the important function of BDNF in these protective effects

but emphasizes that not all progestins are made identically or

equally, especially with respect to their impact on brain function.

This awareness, including the key receptor targets of progesterone

that relate to various mechanisms that support cell viability,
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potentially direct future advancement and capability of developing

more effective treatments for symptoms of the menopause, and

those (neurodegenerative) diseases whose risk or incidence

increases during the post-menopausal period.
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