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with glomerular filtration rate in
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Medical University, Tianjin, China, 2Department of Surgery, Peking University Third Hospital,
Beijing, China, 3Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,
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Objective: The co-occurrence of kidney disease in patients with type 2 diabetes

(T2D) is a major public health challenge. Although early detection and

intervention can prevent or slow down the progression, the commonly used

estimated glomerular filtration rate (eGFR) based on serum creatinine may be

influenced by factors unrelated to kidney function. Therefore, there is a need to

identify novel biomarkers that can more accurately assess renal function in T2D

patients. In this study, we employed an interpretable machine-learning

framework to identify plasma metabolomic features associated with GFR in

T2D patients.

Methods: We retrieved 1626 patients with type 2 diabetes (T2D) in Liaoning

Medical University First Affiliated Hospital (LMUFAH) as a development cohort

and 716 T2D patients in Second Affiliated Hospital of Dalian Medical University

(SAHDMU) as an external validation cohort. The metabolite features were

screened by the orthogonal partial least squares discriminant analysis (OPLS-

DA). We compared machine learning prediction methods, including logistic

regression (LR), support vector machine (SVM), random forest (RF), and

eXtreme Gradient Boosting (XGBoost). The Shapley Additive exPlanations

(SHAP) were used to explain the optimal model.

Results: For T2D patients, compared with the normal or elevated eGFR group,

glutarylcarnitine (C5DC) and decanoylcarnitine (C10) were significantly elevated

in GFR mild reduction group, and citrulline and 9 acylcarnitines were also

elevated significantly (FDR<0.05, FC > 1.2 and VIP > 1) in moderate or severe

reduction group. The XGBoost model with metabolites had the best

performance: in the internal validate dataset (AUROC=0.90, AUPRC=0.65,

BS=0.064) and external validate cohort (AUROC=0.970, AUPRC=0.857,

BS=0.046). Through the SHAP method, we found that C5DC higher than

0.1mmol/L, Cit higher than 26 mmol/L, triglyceride higher than 2 mmol/L, age

greater than 65 years old, and duration of T2D more than 10 years were

associated with reduced GFR.
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Conclusion: Elevated plasma levels of citrulline and a panel of acylcarnitines

were associated with reduced GFR in T2D patients, independent of other

conventional risk factors.
KEYWORDS

type 2 diabetes, metabolomics, amino acids, acylcarnitine, machine learning,
glomerular filtration rate, renal function
1 Introduction

Type 2 diabetes (T2D) has emerged as a major global health

concern (1). According to the US Renal Data System, certain

countries have reported high incidence rates of end-stage renal

disease (ESRD) caused by diabetes, accounting for approximately

50% of cases (2, 3). Despite glucose control, the progression from

T2D to diabetic nephropathy and ESRD is often inevitable (4).

Glomerular filtration rate (GFR) is an independent predictor of the

incidence of ESRD (5), which is recommended by the American

Kidney Foundation as the most important basis for the definition,

staging, screening, and monitoring of chronic kidney disease (CKD)

(6). However, the commonly used creatinine-based eGFR is not

sensitive to detect incipient kidney dysfunction (7). Therefore, it is

necessary to identify novel biomarkers for early detection of the

onset and progression of renal function.

With advances in metabolomics technology, it has become

feasible to identify novel makers that can predict disease (8, 9).

Numerous studies have demonstrated significant metabolic

disorders associated with diabetes and diabetes-related

complications (10, 11). Cross-sectional studies have shown that

the plasma amino acids related to the urea cycle (including

ornithine and citrulline) and tryptophan, as well as most short-

and medium-chain acylcarnitines, are associated with CKD (12, 13).

Additionally, an animal experiment showed that amino acid

administration can increase eGFR (14). However, there is limited

data linking the metabolome to the development of DKD. In this

study, we aimed to identify GFR-associated metabolic phenotypes

in patients with T2D, which may serve as novel biomarkers for

kidney function and the pathophysiology of CKD in T2D patients.

Due to the multidimensional and highly correlated nature of

metabolomics data, it is necessary to employ appropriate methods

to effectively narrow down the range of significant candidate

biomarkers. This is essential to achieve higher learning speed,

improved generalization ability, and enhanced interpretability of

classification models (15–17). Orthogonal partial least squares

discriminant analysis (OPLS-DA) is considered a powerful

statistical analysis tool for addressing collinearity and information

redundancy issues (18, 19). Machine learning (ML) algorithms

provide new techniques for integrating and analyzing various
02
omics data, aiding in the discovery of new biomarkers and

extensively used in disease prediction (20). For example,

metabolomic-based predict individual multi-disease outcomes

(21); metabolic detection of malignant brain gliomas through

support vector machine-based machine learning (22); a novel

deep convolution neural network-based brain tumor classification

model (23); brain tumor identification using data augmentation and

transfer learning approach (24); U-Net-Based models towards

optimal MR brain image segmentation (25); an intuitionistic

approach for the predictability of anti−angiogenic inhibitors in

cancer diagnosis (26).

In this study, the combination of plasma metabolomic profiling

and ML approaches may lead to the identification of metabolic

profiles that enhance our understanding of the underlying causes of

renal impairment.
2 Materials and methods

2.1 Study settings and subjects

From May 2015 to August 2016, a total of 4352 consecutive

patients with T2D were enrolled at Liaoning Medical University

First Affiliated Hospital (LMUFAH), Jinzhou, China. T2D was

diagnosed by the 1999 WHO’s criteria (27) or treated with

antidiabetic drugs. Inclusion criteria for this study were: 1)

Patients diagnosed as T2D or treated with antihyperglycemic

therapy; 2) Complete eGFR, amino acid, and Acylcarnitine.

Exclusion criteria were: 1) T2D patients under 18 years old; 2)

Patients with cancer. A total of 1626 subjects were included.

From April 2018 to April 2019, a total of 1011 consecutive

patients with T2D were enrolled at the Second Affiliated Hospital of

Dalian Medical University (SAHDMU). Removing 295 samples of

missing data, 716 patients with complete data were included as an

external validation cohort.

The Ethics Committee for Clinical Research of LMUFAH and

SAHDMU approved the ethics of the study, and informed consent

was waived due to the retrospective character of the cross-sectional

study, which is consistent with the Helsinki Declaration.
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2.2 Date collection and clinical definitions

We retrieved the data from electronic medical records including

demographic and anthropometric information, current clinical

data, and diabetes course. Demographic data included gender,

age, smoking, and drinking. Anthropometric measurements

included weight, height, systolic blood pressure (SBP), and

diastolic blood pressure (DBP). Clinical parameters encompassed

plasma creatinine (SCR), cholesterol (CHOL), triglycerides (TG),

high-density lipoprotein cholesterol (HDL-C), and low-density

lipoprotein cholesterol (LDL-C). Medication information included

antidiabetic agents and lipid-lowering drugs. Amino acids and

acylcarnitines in plasma were quantified using liquid

chromatography coupled with mass spectrometry.

According to the eGFR: Improving Global Outcomes (KDIGO)

Diabetes Work Group (28), three patient groups were enrolled:

normal or elevated (NOE) eGFR (eGFR≥90mL/min•1.73m2), mild

reduction (MR) eGFR (60≤eGFR<90mL/min•1.73m2) and

moderate or severe reduction (MOMR) eGFR (eGFR<60mL/

min•1.73m2). CKD-EPI formula (29): Calculation formula:
Fron
1. Female: ① SCR ≤ 0.7 mg/dl, GFR = 144*(SCR/0.7)−0.329*

(0.993)age; ② SCR > 0.7 mg/dl, GFR = 144*(SCR/0.7)

−1.209*(0.993)age.

2. Male: ① SCR ≤ 0.9 mg/dl, GFR = 141*(SCR/0.9)−0.411*

(0.993)age; ② SCR > 0.9 mg/dl, GFR = 141*(SCR/0.9)

−1.209*(0.993)age.
2.3 Determination of amino acids
and acylcarnitine

The quantification of amino acids and acylcarnitines was

conducted following the method described in previous studies

(30). In brief, metabolomics analysis was performed using mass

spectrometry. After fasting for a minimum of 8 hours, capillary

whole blood samples were collected from the subjects and prepared

as dry blood spots for metabolomic analysis. Metabolites were

measured using direct infusion MS technology with the AB Sciex

4000 QTrap system (AB Sciex, Framingham, MA, USA). High-

purity water and acetonitrile from Thermo Fisher (Waltham, MA,

USA) were used as the diluting agent and mobile phase,

respectively. Amino acid and acylcarnitine quantification utilized

isotope-labeled internal standards from Cambridge Isotope

Laboratories (Tewksbury, Massachusetts, USA).
2.4 Statistical description

Continuous variables that followed a normal distribution were

described as mean ± standard deviation (SD), while non-normally

distributed variables were presented as median (interquartile

range). Categorical data were reported as numbers (percentages).

To test for differences among different eGFR groups, we employed

chi-square tests for categorical variables, one-way ANOVA for
tiers in Endocrinology 03
variables with a normal distribution, and the Kruskal-Wallis H

test for variables with a skewed distribution.
2.5 Data preprocessing and data
set division

Variables with more than 20% missing data were excluded from

the analysis. The missing values were then interpolated using the

multiple imputation (MI) method (31), which is an advanced

technique for handling missing data. Subsequently, the dataset

was randomly divided into a training set (70%) and an internal

test set (30%).
2.6 Feature selection

The objective of feature selection is to eliminate redundant factors,

reduce the complexity of the prediction model, and improve accuracy

without losing key information. Regarding general information and

physical indicators, we applied zero-mean normalization (Z-Score) to

numerical variables and performed feature selection using the least

absolute shrinkage and selection operator (LASSO). LASSO regression

includes a regularization/penalty term in the cost function to prevent

overfitting and ensure that the model selects relevant features while

disregarding correlated ones. According to the one standard error rule

(1SE rule), the optimal value corresponds to the simplest model, with

the cross-validation error no more than one standard error above the

minimum (32). For plasma amino acids and acylcarnitines, we first

applied the Benjamini-Hochberg false discovery rate (FDR) procedure

for multiple test adjustments. Additionally, we calculated the fold

change (FC) of metabolites between different groups. The FC

represents the difference in expression levels of a particular

metabolite between two groups based on quantitative results.

Furthermore, after logarithmic transformation of the variables,

multivariate analysis was performed using the OPLS-DA method.

Metabolites with FDR < 0.05, FC > 1.2, and VIP > 1 were

considered significant.
2.7 Model development and validation

Models can be implemented in Python 3.9 using standard

libraries that are publicly available, including pandas (1.5.3),

numpy (1.23.5), scikit-learn (1.2.1), and matplotlib (3.7.0). We

constructed four predictive models: conventional logistic

regression model (LR), support vector machine (SVM), random

forest (RF), and eXtreme Gradient Boosting (XGBoost). Four

models were first trained on the randomly selected training set

(fivefold-stratified cross-validation) and then applied to the

withheld test set to access the final performance. We employed a

grid search method to select the optimal hyperparameters for RF

(n_ es t imators , max_depth , min_samples_sp l i t , and

min_samples_leaf) and XGBoost (n_ estimators, max_depth,

min_child_weight, gamma, and subsample) models. For the LR

and SVM models, we implemented the default settings provided by
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scikit-learn. AUROC is a widely used metric for evaluating the

performance of classification models, which provides a

comprehensive assessment of the model’s sensitivity and

specificity trade-off at different thresholds. The range of AUC

values is typically explained from 0.5 to 1, with a higher value

indicating a better ability to distinguish between different classes of

samples. AUPR, as a complimentary assessment, considers the

trade-offs between precision (or positive predictive value) and

recall (or sensitivity) and it is more robust for imbalanced

datasets. The AUPRC ranges from 0 to 1 with a value of 0

signifies no positive examples identified and a value of 1

indicating perfect identification of all positive examples. In

addition, the calibration plot and Brier score (BS) were used to

evaluate calibration.
2.8 Model interpretation

We used Shapley Additive exPlanations (SHAP) to unlock the

machine learning results (33, 34). SHAP measured the impact of

genus characteristics on predicted scores by employing a game

theory approach based on test sets, which allowed us to assess the

importance of each feature. The SHAP value, which quantifies the

influence of a variable on a prediction in terms of direction and
Frontiers in Endocrinology 04
magnitude, was computed by considering the prediction outcome

for every possible combination of features. This comprehensive

analysis provided valuable information about the contribution of

each genus characteristic to the overall predictions.

Statistical description and feature selection were conducted

using R V4.2.2, which is widely recognized as a popular statistical

analysis software. For building the model, Python v3.9.13 was

chosen due to its extensive machine-learning libraries and tools,

such as scikit-learn, which offer a wide range of tuning parameters

and algorithm options.
3 Results

3.1 Baseline characteristics

Table 1 presents the patient characteristics of both LMUFAH

and SAHDMU. LMUFAH included a total of 1626 patients, while

SAHDMU consisted of 716 patients with type 2 diabetes (T2D).

Among the 1626 T2D patients in LMUFAH, 1145 (70.4%) had an

estimated glomerular filtration rate (eGFR) ≥ 90 mL/min•1.73m²,

329 (20.2%) had 60 ≤ eGFR < 90 mL/min•1.73m², and 68 (9.4%)

had an eGFR < 60 mL/min•1.73m². The subject selection procedure

is depicted in Figure 1.
TABLE 1 Patient characteristics.

eGFR

LMUFAH

p

SAHDMU

pNOE MR MOSR NOE MR MOSR

n 1145 329 152 491 157 68

gender (%) man 548 (47.9) 149 (45.3) 77 (50.7) 0.521 252 (51.3) 85 (54.1) 31 (45.6) 0.498

female 597 (52.1) 180 (54.7) 75 (49.3) 239 (48.7) 72 (45.9) 37 (54.4)

Current smoking 837 (73.1) 267 (81.2) 113 (74.3) 0.012 389 (79.2) 138 (87.9) 58 (85.3) 0.036

Current drinking 908 (79.3) 281 (85.4) 125 (82.2) 0.041 440 (89.6) 145 (92.4) 63 (92.6) 0.486

Age, years 54.92 (12.57) 68.36 (10.36) 65.66 (12.10) <0.001 56.15 (12.21) 69.30 (9.86) 66.79 (9.76) <0.001

BMI 25.95 (4.03) 25.59 (3.32) 25.79 (3.82) 0.339 26.71 (4.12) 26.03 (3.05) 27.42 (3.32) 0.032

Duration of T2D, years 7.40 (7.40) 10.74 (9.09) 14.03 (8.82) <0.001 8.80 (7.87) 12.61 (9.77) 17.37 (9.36) <0.001

SBP 141.79 (22.69) 149.01
(21.97)

151.62
(25.31)

<0.001 145.50
(20.90)

152.78
(19.42)

157.19
(21.37)

<0.001

DBP 82.94 (12.59) 80.33 (13.31) 80.05 (14.51) 0.001 82.65 (11.97) 78.18 (11.95) 80.74 (12.92) <0.001

Total cholesterol,
(mmol/l)

4.94 (1.32) 4.76 (1.42) 4.99 (1.61) 0.109 5.04 (1.28) 4.85 (1.31) 5.51 (1.71) 0.003

HDL_C 1.14 (0.35) 1.15 (0.33) 1.12 (0.35) 0.763 1.18 (0.34) 1.20 (0.31) 1.23 (0.31) 0.497

LDL_C 2.75 (0.93) 2.66 (1.02) 2.55 (0.91) 0.044 2.55 (0.83) 2.50 (0.87) 2.51 (0.92) 0.805

Triglyceride, (mmol/L) 1.64
(1.13-2.41)

1.50
(1.06-2.15)

1.86
(1.17-2.81)

0.003 1.60
(1.11-2.24)

1.44
(1.05-1.95)

2.04
(1.31-3.23)

<0.001

Antidiabetic agents (%) 512 (81.1) 133 (77.8) 67 (80.7) 0.615 435 (88.6) 142 (90.4) 61 (89.7) 0.614

Lipid-lowering
agents (%)

512 (81.1) 126 (73.7) 70 (84.3) 0.056 295(100) 0 46(100) –
fron
NOE, Normal or elevated eGFR; MR, Mild reduction eGFR; MOMR, Moderate or severe reduction eGFR; SBP, Systolic blood pressure, mmHg; DBP, Diastolic blood pressure, mmHg; HDL_C,
High-density lipoprotein cholesterol, mmol/L; LDL_C, Low-density lipoprotein cholesterol, mmol/L.
Data are mean (standard deviation), median (IQR), or n (%).
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3.2 Feature selection

3.2.1 Pairwise comparison of clinical factors
After excluding variables with more than 20% missing data,

Lasso was used to screen variables for 12 clinical factors. Eight

variables in the NOE vs MR group and seven variables in the NOE

vs MOMR group were selected to be included in the model

(Supplementary Figure 1). Among these variables, age, SBP, TG,

HDL_C, and gender were all included.

3.2.2 Pairwise comparison of differentially
expressed metabolites in plasma

In metabonomic analysis, we obtained adjusted p-value (FDR), FC,

and VIP for everymetabolite (Supplementary Table 1). Compared with

NOE, four AAs (asparagine, citrulline, leucine and valine) and six

AcylCNs (3-hydroxyisovalerylcarnitine (C5-OH), glutarylcarnitine

(C5DC), octanoylcarnitine (C8), decanoylcarnitine (C10),

lauroylcarnitine (C12), and tetradecenoylcarnitine (C14:1) were

elevated in the other two groups and had significant differences

(FDR<0.05) (Supplementary Table 1). A volcano map based on FC

and p values is displayed in Supplementary Figure 2, with over-

expressed and under-expressed metabolites marked in red and blue

colors, respectively. OPLS-DA analysis, a widely used multivariate

analysis method in metabolomics, was employed to identify

significant metabolites for predicting sample classes. We used this
Frontiers in Endocrinology 05
method to screen for important metabolites with VIP > 1

(Supplementary Figure 3). In the NOE vs MR group, two

metabolites (C5DC and C10) were selected for the final model. In

the NOE vs MOMR group, citrulline and nine acylcarnitines met the

inclusion criteria.
3.3 Model performance

We developed machine learning prediction methods, including

LR, SVM, RF, and XGBoost. Model 1 utilized common clinical

factors, while Model 2 integrated plasma metabolites and clinical

factors. Due to the data imbalance, we employed the area under the

precision-recall curve (AUPRC) as the primary evaluation metric

and the area under the receiver operating characteristic curve

(AUROC) as the secondary evaluation metric.
3.3.1 NOE vs MR
In the internal validation cohort, the XGBoost model

incorporating clinical factors demonstrated the best predictive

performance [AUPRC: 0.561 (0.45-0.66), AUROC: 0.799 (0.74-

0.83)]. However, there were no significant differences observed

when compared to the other models (P > 0.05) (Supplementary

Table 2, Supplementary Figure 4, Table 2).
FIGURE 1

Schematic diagram of subject screening process.
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3.3.2 NOE vs MOMR
The predictive abilities of all models using only clinical factors

were not high, while the addition of metabolite features significantly

promoted the prediction ability of renal function (Supplementary

Table 3, Supplementary Figure 5). The performance of the

XGBoost2 model was optimal in the internal validation cohort

[AUPRC: 0.648 (0.50-0.77), AUROC: 0.894 (0.85-0.94)] compared

with LR2, AUPRC and AUROC increased by 23% and 6.9%,

respectively (Supplementary Table 3, Table 2). At the optimal

threshold determined by Youden’s index, we obtained the

precision, recall, and false negative rate in the internal validation

cohort. Among them, the XGBoost2 model had the highest

precision (0.532), while the SVM model had the best recall

(0.804) and false negative rate (0.196) (Table 3). The result of the

calibration evaluation is shown in Supplementary Figure 6. Among

the four models, the XGBoost2 model had the best consistency with

the true situation and with the smallest BS score (0.064).
3.4 GFR influencing factors assessment

We selected the optimal XGBoost models to further analyze the

influence of predictors on reduced GFR.

3.4.1 NOE vs MOMR
We interpret the model with metabolites using a SHAP plot and

find that age older than 65 and C5DC higher than 0.08mmol/L are

important predictors of mild reduction GFR (Supplementary Figure 7).
Frontiers in Endocrinology 06
3.4.2 NOE vs MOMR
We constructed a SHAP summary plot to assess the importance

of features in the XGBoost2 mode (Figure 2A). As shown in the

SHAP summary plot, the red dots indicate high feature values,

however, blue dots represent low feature values. The higher the

SHAP value, the greater the risk of moderate or severe reduction of

GFR. C5DC, age, citrulline, and duration of T2D contributed more

to the model and they are all the risk factors for moderate or severe

reduction of GFR. The SHAP dependence plot more clearly shows

the effect of a single indicator on the outcome of the study.

(Figures 2B–F). When the SHAP value of each characteristic

exceeds zero, it indicates an increased risk of moderate or severe

reduction GFR. C5DC higher than 0.1mmol/L, Cit higher than

26mmol/L, age greater than 65 years old, duration of T2D more

than 10 years, and triglyceride higher than 2 mmol/L were

associated with increased risk of moderate or severe reduction GFR.
3.5 External validation

3.5.1 Selection of models for external validation
The comparison between the two groups demonstrated that the

XGBoost model exhibited superior performance, thus we selected

this model for external validation. We proceeded to assess the risk

of reduced GFR in patients with type 2 diabetes (T2D) with and

without metabolite features.
3.5.2 Characteristics of the external
validation cohort

Of the 716 patients with T2D, 491 (68.5%) had eGFR≥90mL/

min•1.73m2; 157 (22%) had 60≤eGFR<90mL/min•1.73m2; 68

(9.5%) had eGFR<60mL/min•1.73m2) (Table 1).

3.5.3 Performance of external validation
The Discriminatory ability of XGBoost models was significantly

promoted with the addition of plasma metabolites. XGBoost2

models with plasma metabolites and clinical factors performed

best for NOE vs MR [AUPRC: 0.661(0.58-0.73), AUROC: 0.837

(0.80-0.88)] (Table 4, Figure 3) and for NOE vs MOMR [AUPRC:

0.857 (0.77-0.92), AUROC: 0.970 (0.95-0.98)] (Table 4, Figure 3).

XGBoost2 models had the best consistency with the true situation

and BS were both the smallest for NOE vs MR (0.128) and for NOE

vs MOMR (0.046) (Figure 4).
TABLE 2 Comparison of performance of XGBoost models in the internal validation cohort.

NOE vs M-GFE
P

NOE vs MOMR
P

XGBoost1 XGBoost2 XGBoost1 XGBoost2

AUROC 0.799(0.74-0.85) 0.784(0.73-0.84) 0.27 0.794(0.73-0.85) 0.894(0.85-0.94) <0.001

AUPRC 0.561(0.45-0.66) 0.544(0.43-0.65) 0.20 0.374(0.24-0.53) 0.648(0.50-0.77) <0.001
XGBoost, extreme Gradient Boosting.
XGBoost1 is a model that only includes traditional clinical factors; XGBoost2 adds plasma metabolites.
P, Delong test for the area under the curve of the receiver operating characteristic curve and precision-recall curve.
NOE, Normal or elevated eGFR; MR, Mild reduction eGFR; MOMR, moderate or severe reduction eGFR.
TABLE 3 The performance of the four models for NOE vs MOMR after
the selected thresholds in the internal validation cohort.

model Cutoff Precisi-
on

Recall False
Negative
Rate

LR2 0.143 0.333 0.717 0.283

SVM2 0.101 0.272 0.804 0.196

RF2 0.240 0.507 0.695 0.304

XGBoost2 0.080 0.532 0.717 0.283
LR, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme
Gradient Boosting.
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A

B D

E F

C

FIGURE 2

SHAP plot of XGBoost2 model for NOE vs MOMR. (A) SHAP summary plot. Features are ranked from top to bottom according to their importance.
Each dot on the plot is a SHAP value for each feature. Red dots indicate high feature values, but blue dots represent low feature values for the per-
patient model. (B–F) SHAP dependence plot. The SHAP value of each feature exceeded zero, indicating an increased risk of moderate or severe
reduction of eGFR. C5DC, Cit, age, duration of T2D, and triglyceride were risk factors for moderate or severe reduction of eGFR. SHAP, Shapley
Additive explanation; C2, acetylcarnitine; C4, butyrylcarnitine; C6, hexanoylcarnitine; C8, octanoylcarnitine; C10, decanoylcarnitine; C12,
lauroylcarnitine; C14:1, tetradecenoylcarnitine; C14-OH, 3-hydroxyl-tetradecanoylcarnitine.
TABLE 4 Comparison of performance of XGBoost models in the external validation cohort.

NOE vs C-GFE
P

NOE vs MOMR
P

XGBoost1 XGBoost2 XGBoost1 XGBoost2

AUROC 0.823(0.79-0.86) 0.837(0.80-0.88) 0.10 0.868(0.82-0.91) 0.970(0.95-0.98) <0.001

AUPRC 0.630(0.55-0.71) 0.661(0.58-0.73) <0.001 0.542(0.42-0.67) 0.857(0.77-0.92) <0.001
F
rontiers in Endocrin
ology
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XGBoost, Extreme Gradient Boosting; AUROC, the area under the curve of the receiver operating characteristic curve; AUPRC, area under the precision recall curve; Ref, reference.
XGBoost1 is a model that only includes traditional clinical features; XGBoost2 adds plasma metabolite features.
P, Delong test for the area under the curve of the receiver operating characteristic curve and precision-recall curve.
NOE, Normal or elevated eGFR; MR, Mild reduction eGFR; MOMR, moderate or severe reduction eGFR.
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4 Discussion

In contrast to previous studies, we employed three criteria to

screen for important metabolic information: FDR < 0.05, FC > 1.2,

and VIP > 1. As an extension of PLS-DA, OPLS-DA is capable of
Frontiers in Endocrinology 08
reducing model complexity and enhancing model interpretability

without compromising predictive performance. This allows us to

gain maximum insight into the differences between groups.

Generally, the VIP value associated with a variable indicates its

importance in explaining the X dataset and its association with the
A B

DC

FIGURE 3

Performance of XGBoost models in the external validation cohort. (A, C) Receiver operating characteristic curves of models with clinical factors and
the combination of plasma metabolites and clinical factors, respectively; (B, D) Precision recall curves of models with clinical factors and the
combination of plasma metabolites and clinical factors, respectively. XGBoost1 is a model that only includes traditional clinical factors; XGBoost2
adds plasma metabolites. LR, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme Gradient Boosting; No skill is
the reference line. NOE, Normal or elevated eGFR; MR, Mild reduction eGFR; MOMR, moderate or severe reduction eGFR.
A B

FIGURE 4

The calibration curve of XGBoost models in the external validation cohort. (A) was a comparison of NOE vs MR and (B) was a comparison of NOE vs
MOMR. XGBoost1 is a model that only includes traditional clinical factors; XGBoost2 adds plasma metabolites. The values in brackets represent the
Brier score of the corresponding prediction model. Perfectly calibrated is the reference line; XGBoost, extreme Gradient Boosting. NOE, Normal or
elevated eGFR; MR, Mild reduction eGFR; MOMR, moderate or severe reduction eGFR.
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Y dataset. A VIP value greater than 1 indicates the variable’s

significance in the analysis.

As the end products of cellular regulatory processes, metabolites

are considered to be the ultimate response of biological systems to

pathophysiological changes in various metabolic disorders. They

closely reflect the disease phenotype and address a critical clinical

need, as they represent the downstream expression of the genome,

transcriptome, and proteome (35). The focus of the study was on

profiling the continuously changing metabolites from normal or

elevated eGFR to mild reduction eGFR, and then to moderate or

severe reduction eGFR. In the cohort of patients with T2D in China,

we found significant associations between plasma levels of citrulline,

asparagine, leucine, tryptophan, valine, and most acylcarnitines

with changes in GFR (Supplementary Table 1). After applying

multiple screening criteria (FDR < 0.05, FC > 1.2, VIP > 1), only

C5DC and C10 were retained in the comparison between the

normal or elevated eGFR and mild reduction eGFR group (NOE

vs MR group), while citrulline and 9 acylcarnitines (C2, C4, C5DC,

C6, C8, C10, C12, C14:1, and C14-OH) were reserved in the

comparison between the normal or elevated eGFR and moderate

or severe reduction eGFR group (NOE vs MOMR group). We

constructed machine learning models by combining common

clinical factors and screened plasma metabolites to predict renal

function. The addition of plasma metabolites improved the

predictive performance of the XGBoost models for renal function

status. Furthermore, we conducted an interpretation of the

influence of important metabolites and general clinical features

on the progressive impairment of renal function.

Previous studies have shown that plasma amino acids varied

significantly in patients with CKD (36, 37). Additionally, changes in

plasma valine, glutamate, and glycine have been associated with

different stages of CKD (38). Homocysteine and citrulline have

been proposed as potential biomarkers for kidney injury and GFR

(39). Consistently, our study found that among all amino acids,

citrulline exhibited the strongest association with GFR. Citrulline is a

non-essential amino acid primarily synthesized in the intestine

through the conversion of glutamine (40). In the kidney,

citrulline is produced by the enzyme dimethyl arginine dimethyl

amino hydrolase (DDAH), which metabolizes asymmetric

dimethylarginine (ADMA). Subsequently, citrulline is converted to

arginine through the actions of argininosuccinate synthase (ASS) and

argininosuccinate lyase (ASL) (41). This finding suggests that renal

injury may inhibit the activity of ASS or ASL, leading to abnormal

arginine metabolism. Abnormal ADMA metabolism is indicative of

arginine metabolism disorders. ADMA possesses biological

properties that inhibit nitric oxide (NO) function (42). NO is a

potent endothelial vasodilator that maintains vascular tone and

regulates blood pressure. We speculate that elevated plasma

citrulline levels may be a consequence of the extensive

accumulation of ADMA, which inhibits NO synthesis and

subsequently leads to decreased GFR.

The strongest correlation with renal function performance was

observed with short-chain acylcarnitines. Acylcarnitines are

metabolites of fatty acids (FA) that play critical roles in various

cellular energy metabolism pathways (43). Acylcarnitines are freely

filtered by the glomerulus, with approximately 75% being excreted.
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Decreased eGFR can result in reduced excretion of acylcarnitines.

Acylcarnitines assist in the transport of FA across the inner

mitochondrial membrane for b-oxidation (44). Our analysis

revealed elevated levels of acylcarnitines in patients with a

moderate or severe reduction in eGFR, which may be attributed

to a saturated capacity for mitochondrial b-oxidation in the

presence of insulin resistance mediated by lipotoxicity, driving the

progression of kidney injury (45, 46). Mice fed a high-fat diet

exhibited mitochondrial damage in multiple types of kidney cells,

possibly due to the inhibition of AMP-activated protein kinase

(AMPK) activity, which hinders fatty acid oxidation (FAO) in the

kidney (47). Previous research has also demonstrated the

significance of short- and medium-chain acylcarnitines as

metabolic markers in the progression of renal impairment (13).

In our study, both in mild and moderate or severe reduction in

eGFR, C5DC, and C10 showed increased levels, indicating their

potential as biomarkers for early impaired renal function.

In addition to plasma amino acid and acylcarnitine levels, several

other factors such as a long duration of diabetes, high systolic blood

pressure (SBP), and high triglyceride (TG) levels are also important risk

factors affecting kidney function. Therefore, these groups should

receive particular attention, and the frequency of renal function

screening should be adjusted accordingly. This will enable more

efficient diagnosis and treatment of diseases related to kidney function.

Our study developed an interpretable XGBoost model

framework to identify eGFR-related features. By incorporating

nine acylcarnitines and citrulline into the model, the AUROC

increased significantly from 0.794 to 0.894 (P < 0.001) (Figure 2,

Table 2). The SHAP value of each feature exceeded zero, indicating

an increased risk of reduction of eGFR. C5DC > 0.1mmol/L, Cit > 26

mmol/L, triglyceride > 2 mmol/L, age greater > 65 years old and

duration of T2D > 10 years were associated with eGFR < 60 mL/

min•1.73m² (Figures 2B–F). To our knowledge, this is the first use

of interpretable machine learning methods to investigate the

association of amino acid and acylcarnitine profiles in relation to

change in eGFR in Chinese patients with T2D cohort. Another

strength of this study is that we used the population of two centers

for analysis and the results of the external cohort further proved the

reliability of our conclusions. Our prediction model could remind

doctors and patients to pay attention to the primary and secondary

prevention of renal impairment and increase the renal function

screening rate of the high-risk groups.

However, there are limitations in our study. First, proteinuria

and glycosylated hemoglobin were not included in the analysis due

to too many missing values. However, adjustment for proteinuria in

a Japanese cohort study did not abolish the association between

amino acid and incident-reduced eGFR (48). Second, the subjects

we collected were inpatients with T2D which limits our application

to non-hospitalized T2D patients. Third, due to the nature of cross-

sectional studies, we cannot prove the existence of causality, which

needs to be confirmed in more prospective studies. In the future, we

will try to develop models in larger scale data and explore the

associations between metabolites with eGFR in prospective study.

Our study demonstrated that plasma metabolites offer new

insights into identifying the filtration status of the glomeruli.

These metabolites provide information about the cellular
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metabolic status and function, reflecting the underlying biological

processes involved in the onset and progression of diseases.

Additionally, analyzing the levels of plasma amino acids and

acylcarnitines can help us gain information pertaining to protein

metabolism, energy metabolism, and fatty acid metabolism. This

information is crucial for the diagnosis, treatment, and monitoring

of metabolic disorders, providing valuable clinical insights.
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