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Introduction: Beta-amyloid accumulation in the brain appears to be a key

initiating event in Alzheimer’s disease (AD), and factors associated with

increased deposition of beta-amyloid are of great interest. Enhanced

deposition of amyloid-b peptides is due to an imbalance between their

production and elimination. Previous studies show that diminished levels of

CSF amyloid beta 42 (Ab42) is a biomarker in AD; however, the role of serum

Ab42 in AD is contradictory. BMI and obesity have been reported to be related to

increased serum Ab42 levels. Therefore, we aimed to investigate the relation

between metabolic syndrome (MetS), its clinical measures (abdominal obesity,

high glucose, high triglyceride, low high-density lipoprotein cholesterol level,

and hypertension), and serum Ab42 levels.

Methods: A total of 1261 subjects, aged 18–89 years in Chengdu, China, were

enrolled from January 2020 to January 2021 to explore the correlation of serum

Ab42 levels with body mass index (BMI), blood lipids, and blood pressure.

Furthermore, as the risk of MetS is closely related to age, 1,212 participants (N

= 49 with age ≥ 80 years old were excluded) were analyzed for the correlation of

serum Ab42 level and MetS clinical measures.

Results: The results showed that log-transformed serum Ab42 level was

positively correlated with BMI (R = 0.29; p < 0.001), log-transformed

triglyceride (R = 0.14; p < 0.001), and diastolic blood pressure (DBP) (R = 0.12;

p < 0.001) and negatively correlated with high-density lipoprotein (HDL-c) (R =

−0.18; p < 0.001). After adjusting for age, sex, and other covariates, elevated

serum Ab42 level was correlated with higher values of BMI (bmodel1 = 2.694,

bmodel2 = 2.703) and DBP (bmodel1 = 0.541, bmodel2 = 0.546) but a lower level

of HDL-c (bmodel2 = −1.741). Furthermore, serum Ab42 level was positively

correlated with MetS and its clinical measures, including BMI and DBP, and

negatively correlated with HDL-c level in the Han Chinese population. However,

the level of serum Ab42 did not show a significant correlation with high glucose

or high triglyceride.
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Discussion: These observations indicate that MetS and its components are

associated with higher levels of serum Ab42 and hence limit the potential of

serum Ab42 as a suitable diagnostic biomarker for AD. As such, we recommend

serum Ab42 serve as a direct risk biomarker for MetS rather than for AD.
KEYWORDS

metabolic syndrome, serum amyloid beta 42 (Ab42), bodymass index (BMI), blood lipids,
blood pressure, Alzheimer’s disease (AD)
1 Introduction

The accumulation of amyloid-b (Ab) peptides (mainly Ab42 and

Ab40) in the brain parenchyma and cerebral vasculature is a major

hallmark of AD pathogenesis (1, 2). The amyloid hypothesis reveals

that amyloid precursor protein (APP) is cleaved into pathological

forms of Ab by b- and g-secretase enzymes, driving the imbalance

between Ab production and clearance (3). Ab42 is the most abundant

protein in amyloid plaques due to its higher rate of fibrillization and

insolubility. Ab42 in the cerebrospinal fluid (CSF) has been established

as a reliable biomarker to support an AD diagnosis. Additionally,

studies have shown that changes in CSF Ab are greater than those in

plasma because CSF is in direct contact with the brain and only a small

fraction of brain proteins reaches the bloodstream (4, 5). Hence, CSF

Ab42, plasma-based two fractions of b amyloid peptide ratio (Ab42/
40), and phosphorylated tau (p-tau) are considered promising

prospective biomarkers for AD diagnosis and progression (6, 7).

The imbalance between the production and clearance of Ab,
which occurs not only in the brain but also in the periphery, is

considered an initial factor in AD (8). An increasing number of

studies support the hypothesis that systemic abnormalities

(circadian rhythm, oxidative stress, metabolic syndrome, etc.) are

risk factors for AD development, especially metabolic syndrome

(MetS) and its individual components, including abdominal

obesity, high glucose, high triglyceride, low high-density

lipoprotein cholesterol levels, or hypertension (8–13). MetS is also

associated with an increased risk of developing cardiovascular

disease, AD, and dementia (3, 10, 14–17). Recently, a study also

showed that MetS causes a fast decline in cognitive performance

and stimulates Ab42 production in the brain (18). The prevalence of
MetS reached approximately 25% of the global population in 2018

and increased every year (19).

Evidence indicates that central obesity plays a central role in the

development of the MetS and appears to precede the appearance of

the other MetS components (14). Several previous meta-analyses
a 42; AD, Alzheimer’s

drome; DBP, diastolic

igh-density lipoprotein;

G, triglyceride; LDL-c,
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implied that midlife obesity was a potentially modifiable risk factor

for dementia and AD, but this is still uncertain with rather

heterogeneous results (20–23). Recent studies revealed APP is

highly expressed in adipose tissue and upregulated in obesity

(24). The concentration of Ab in blood was significantly

increased in both mouse models and obese individuals (25, 26).

In addition, there has been evidence showing plasma Ab42 level was
positively correlated with BMI in small groups of nondemented

adults and children (27–30). A prospective study indicated an

increase over 5 years of HDL-c was a negative predictor for the

decrease of plasma Ab42 levels (31), while another study showed a

positive correlation of plasma Ab42 levels with HDL (32).

Additionally, abnormal blood pressure is tightly associated with

dysregulated lipid metabolism (33). An animal study revealed that

Ab-induced hypertension can be an early pathophysiologic

consequence of AD processes (34). One cross-sectional study also

revealed that many factors influence the association between plasma

Ab42 levels and AD cognitive impairment, and they proposed that

plasma Ab42 may be a peripheral biomarker for AD screening in

the Chinese elderly population, but it is necessary to establish

standardized detection methods and establish different

demarcation criteria for various influencing factors (35).

Therefore, whether and how serum Ab42 level is directly related
to MetS and its components in the Han population on a large scale

is still vague. We hypothesize that the concentration of Ab42 in the

periphery is a biomarker of MetS and its components, independent

from AD. To test this, we conducted a cross-sectional study in a

regular health check-up population to analyze the association of

serum Ab42 level with MetS and its clinical measures, including

abdominal obesity, high glucose, high triglyceride, low high-density

lipoprotein cholesterol levels, and hypertension.
2 Methods

2.1 Participants

We enrolled a total of 1,261 participants between the ages of 18–89

years from a regular health check-up population in the Sichuan

Academy of Medical Sciences and Sichuan Provincial People’s

Hospital between January 2020 to January 2021 (Figure 1).
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Participants were excluded by diagnoses of CAD, renal disease,

autoimmune disease, hypersensitivity, gastrointestinal disease,

pulmonary disease, cancer, acute illness, or hospitalization within

15 days. This study was approved by the Ethics Committee of the

Sichuan Academy of Medical Sciences and Sichuan Provincial People’s

Hospital (2020No.281). All subjects provided written informed consent

prior to participation.
2.2 Diagnostic criteria of obesity,
hypertension, and dyslipidemia

According to the health criteria WS/T 428-2013 issued by the

National Health Commission of the People’s Republic of China,

subjects with BMI ≥ 28, 24 < BMI < 28, and BMI ≤ 24 are defined as

obese, overweight, and normal weight, respectively. According to

the 2020 International Society of Hypertension global hypertension

practice guidelines, a subject with systolic blood pressure (SBP) ≥

140 mmHg and/or diastolic blood pressure (DBP) ≥ 90 mmHg is

defined as hypertensive (36). According to the Chinese guidelines

for the prevention and treatment of dyslipidemia, a subject with

total cholesterol (TC) ≥ 5.18 mmol/L and/or triglyceride (TG) ≥

1.70 mmol/L and/or low-density lipoprotein cholesterol (LDL-c) ≥

3.37 mmol/L and/or HDL-c ≤ 1.04 mmol/L is defined as having

dyslipidemia (37).
2.3 Diagnostic criteria of
metabolic syndrome

In this study, the modified ATP III criteria were applied in the

diagnosis of MetS, which requires the presence of at least three

abnormal findings out of five factors (38): (i) Abdominal density as

defined by waist circumference ≥ 90 cm and ≥ 80 cm in men and

women, respectively according to the Asian World Health

Organization criteria.; (ii) TG ≥ 1.7 mmol/L; (iii) HDL-c <

1.03mmol/L and < 1.29mmol/L in men and women, respectively;

(iv) SBP ≥ 130mmHg or DBP ≥ 85mmHg; and (v) glucose (GLU) ≥

5.6mmol/L as impaired fasting glucose (IFG).
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2.4 General information collection and
blood pressure measurement

All participants were required to fill out a questionnaire to

collect general information, including weight, height, waist

circumference, etc. A mercury sphygmomanometer was applied

on the right arm (with a regular adult cuff) of each participant after

having rested for 5 min in a seated position to measure blood

pressure (SBP and DBP) before blood sample collection.
2.5 Blood collection and
biochemical analysis

Fasting blood was collected into serum separator tubes (BD,

Franklin Lakes, NJ, USA) with a standard venipuncture technique

in the morning. Serum was separated from the blood samples by

centrifugation at 1,000×g for 20 min immediately after clotting and

stored in an aliquot at −80°C until laboratory analysis of Ab42 and
other relevant biomarkers in this study. Biochemical analysis

including serum TC, TG, HDL-c, LDL-c, and GLU was

performed using the Abbott ARCHITECT c16000 clinical

chemistry system (Abbott Co., Chicago, USA) in the Department

of Laboratory Medicine, Sichuan Academy of Medical Sciences, and

Sichuan Provincial People’s Hospital.
2.6 Measurement of serum Ab42

The concentration of serum Ab42 was measured by a double-

antibody sandwich method with a commercial kit (Mlbio Co.,

Shanghai, China) according to its manufacturer’s instructions. In

detail, 50 mL of serum sample or Standard were added in duplicate

to the appropriate well of the 96-well microtiter plate that had been

precoated with antihuman Ab1–42 capture antibody, and

subsequently, 100 mL of HRP-conjugated detecting antibody was

added to each well except the blank well. The microtiter plate was

incubated for 60 min at 37°C and then manually wash with wash

solution (1×) four times. After that, 50 mL of substrate A and 50 mL
FIGURE 1

Flow chart of participant screening.
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of substrate B were added to each well of the microtiter plate and

incubated for 15 min in the dark at 37°C. After adding 50 mL of stop
solution to each well, the O.D. at OD450 was measured with a

microtiter plate reader (Bio-Rad, Californie, USA) within 15 min.

The mean O.D. value of two wells was calculated for each standard

and sample and subtracted by the mean value of the blank wells.

The standard curve was generated by plotting the O.D. of the six

standards on the vertical (x)-axis versus the corresponding

concentration of Ab42 (240 pg/mL, 120 pg/mL, 60 pg/mL, 30 pg/

mL, 15 pg/mL, or 7.5 pg/mL) on the horizontal (y)-axis. The

concentration of Ab42 in each sample was then determined by

plotting its O.D. in the standard curve.
2.7 Statistical analysis

The skewness, kurtosis, and P-P plots were used to test the

distribution of each covariate. Age, TC, HDL-c, LDL-c, SBP, DBP,

BMI, hip circumference, and waist circumference conformed to a

normal distribution, and these covariates were expressed as mean

(SD). Serum Ab42 levels, TG, and GLU did not conform to the

normal distribution. Hence, they were expressed as median

(interquartile range) and were log-transformed for further

analysis. The participants were divided into different groups

according to their BMI, blood lipids, and blood pressure. The

covariates were compared between different groups by unpaired

Student’s t-test, Mann–Whitney U test, and Kruskal–Wallis test.
Frontiers in Endocrinology 04
Categorical variables were expressed as numbers (percentage) and

were compared by c2 tests. Pearson correlation was performed to

explore the linear trend between log-transformed serum Ab42
levels and BMI, blood lipids, and blood pressure. In addition,

multiple linear regression analysis was performed to further

explore their potential relationships, with a variance inflation

factor (VIF) higher than 10 considered colinear. All these

statistical analyses were performed by SPSS 22.0 (SPSS Inc.,

Chicago, IL, USA), and a p-value of less than 0.05 was

considered statistically significant.
3 Results

3.1 Clinical characteristics of
the participants

A total of 1,261 participants were analyzed for correlation

between serum Ab42 levels and BMI, blood lipids, and blood

pressure, as shown in Tables 1–4. The anthropometric and

metabolic characteristics of the subjects are summarized in each

table. As the risk of MetS is closely associated with age, we tested

this association in adults across ages (39, 40). We then classified the

participants into three age groups, young (18–29 years), middle-

aged (30–64 years), and old (65–79 years) adults. Therefore, 1,212

participants were analyzed including 459 individuals with MetS

diagnosed by the modified ATP III criteria (Table 5).
TABLE 1 Comparison of serum Ab42 levels among participants divided by BMI.

Normal weight (n = 348) Overweight (n = 414) Obesity (n = 499) p-value

Age (years) 50.93 ± 17.68 52.40 ± 14.35 52.00 ± 15.11 0.433

Male (n (%)) 153 (43.97) 249 (59.90) 274 (54.91) <0.001

Smoking (n (%)) 119 (34.19) 121 (29.22) 153 (30.67) 0.321

Drinking (n (%)) 58 (16.67) 76 (18.36) 62 (12.42) 0.110

BMI (kg/m2) 21.62 ± 1.66 25.69 ± 1.11 30.09 ± 2.07 <0.001

Waistline (cm) 76.18 ± 7.62 87.55 ± 6.67 96.59 ± 8.09 <0.001

Hip circumference (cm) 91.98 ± 4.42 97.45 ± 4.46 103.93 ± 5.68 <0.001

SBP (mmHg) 123.874 ± 19.68 129.80 ± 17.99 133.82 ± 17.64 <0.001

DBP (mmHg) 72.94 ± 10.64 77.45 ± 10.93 80.08 ± 11.57 <0.001

GLU (mmol/L) 5.03 ± 4.7 5.27 ± 4.86 5.38 ± 4.96 <0.001

LDL-c (mmol/L) 2.62 ± 0.75 2.85 ± 0.79 2.85 ± 0.75 <0.001

HDL-c (mmol/L) 1.50 ± 0.34 1.32 ± 0.29 1.25 ± 0.26 <0.001

TC (mmol/L) 4.79 ± 0.95 5.00 ± 1.02 4.92 ± 0.94 0.012

TG (mmol/L) 1.12 ± 0.76 1.56 ± 1.05 1.66 ± 1.18 <0.001

ApoE ϵ4 (n (%)) 46 (13.22) 49 (11.84) 56 (11.22) 0.675

Ab42 (pg/mL) 36.63 ± 20.10 54.35 ± 33.64 60.24 ± 39.21 <0.001
fro
Ab, amyloid beta; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein; LDL-c, low-density lipoprotein; SBP, systolic blood pressure; DBP, diastolic
blood pressure; ApoE, apolipoprotein E. Subjects with BMI ≥ 28, 24 < BMI < 28, and BMI ≤ 24 are defined as obese, overweight, and normal weight, respectively. A subject with at least one allele
of ϵ4 is defined as an ApoE ϵ4 carrier.
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TABLE 2 Comparison of serum Ab42 levels among participants divided by TC, TG, LDL-c, and HDL-c.

-c Normal LDL-c
(n = 1,003)

p-
value

Low HDL-C
(n = 196)

Normal HDL-C
(n = 1,065)

p-
value

51.51 ± 16.07 0.194 50.71 ± 15.55 52.05 ± 15.64 0.267

523 (52.14) 0.036 141 (71.94) 535 (50.23) <0.001

307 (30.61) 0.41 69 (35.20) 324 (30.42) 0.18

162 (16.15) 0.29 29 (14.80) 167 (15.68) 0.83

26.16 ± 3.85 0.176 28.24 ± 3.44 25.95 ± 3.80 <0.001

87.42 ± 11.21 <0.001 94.35 ± 9.74 86.90 ± 11.01 <0.001

98.29 ± 7.03 0.002 101.28 ± 7.26 98.09 ± 6.78 <0.001

2 129.09 ± 18.67 0.018 129.65 ± 16.80 129.73 ± 19.12 0.954

76.96 ± 11.56 0.085 78.43 ± 10.93 77.03 ± 11.57 0.116

5.57 ± 1.59 0.322 5.87 ± 1.82 5.54 ± 1.61 0.005

2.51 ± 0.56 <0.001 2.49 ± 0.81 2.84 ± 0.75 <0.001

1.33 ± 0.31 0.041 0.94 ± 0.08 1.42 ± 0.28 <0.001

4.60 ± 0.77 <0.001 4.55 ± 1.09 4.98 ± 0.93 <0.001

1.73 ± 1.27 <0.001 2.73 ± 1.93 1.59 ± 0.88 <0.001

124 (12.30) 0.453 23 (11.73) 127 (11.87) 1

52.36 ± 27.46 0.994 59.29 ± 29.58 50.79 ± 26.55 0.003

tolic blood pressure; DBP, diastolic blood pressure; ApoE, apolipoprotein E. A subject with TC ≥ 5.18 mmol/L and/or
fined as ApoE ϵ4 carrier.
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High TC
(n = 474)

Normal TC
(n = 787)

p-
value

High TG
(n = 506)

Normal TG
(n = 755)

p-
value

High LDL
(n = 258)

Age (years) 52.87 ± 13.76 51.23 ± 16.65 0.071 51.79 ± 14.54 51.88 ± 16.32 0.925 53.16 ± 13.72

Male (n (%)) 262 (55.27) 414 (52.60) 0.351 328 (64.82) 348 (46.09) <0.001 153 (59.30)

Smoking
(n (%))

160 (33.76) 233 (29.61) 0.13 170 (34.78) 223 (28.37) 0.10 86 (33.33)

Drinking
(n (%))

63 (13.29) 133 (16.90) 0.09 69 (13.64) 127 (16.82) 0.15 34 (13.18)

BMI (kg/m2) 26.44 ± 3.59 26.23 ± 3.98 0.329 27.20 ± 3.38 25.71 ± 4.00 <0.001 26.89 ± 3.72

Waistline
(cm)

88.96 ± 10.45 87.52 ± 11.52 0.054 91.00 ± 9.33 86.08 ± 11.82 <0.001 90.57 ± 10.55

Hip
circumference
(cm)

98.81 ± 6.58 98.46 ± 7.16 0.256 99.62 ± 6.54 97.89 ± 7.13 <0.001 99.75 ± 10.55

SBP (mmHg) 132.38 ± 18.53 128.11 ± 18.78 <0.001 132.48 ± 18.67 127.87 ± 18.65 <0.001 132.18 ± 19.0

DBP (mmHg) 78.96 ± 11.57 76.21 ± 11.31 <0.001 79.39 ± 11.32 75.81 ± 11.38 <0.001 78.34 ± 11.08

GLU
(mmol/L)

5.50 ± 1.42 5.75 ± 1.97 0.005 5.86 ± 1.87 5.41 ± 1.81 <0.001 5.70 ± 1.86

LDL-c
(mmol/L)

3.45 ± 0.60 2.38 ± 0.55 <0.001 2.91 ± 0.81 2.70 ± 0.72 <0.001 3.86 ± 0.43

HDL-c
(mmol/L)

1.41 ± 0.33 1.30 ± 0.29 <0.001 1.21 ± 0.24 1.43 ± 0.32 <0.001 1.38 ± 0.29

TC (mmol/L) 5.86 ± 0.66 4.33 ± 0.60 <0.001 5.27 ± 1.00 4.67 ± 0.87 <0.001 6.10 ± 0.74

TG (mmol/L) 1.52 ± 0.95 2.17 ± 1.41 <0.001 2.76 ± 1.29 1.09 ± 0.31 <0.001 1.88 ± 0.79

ApoE ϵ4
(n (%))

53 (11.18) 98 (12.45) 0.531 49 (9.68) 102 (13.42) 0.051 27 (10.47)

Ab42 (pg/mL) 50.32 ± 26.32 52.82 ± 27.93 0.527 55.07 ± 27.59 48.72 ± 27.44 0.002 50.84 ± 28.32

Ab, amyloid beta; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein; LDL-c, low-density lipoprotein; SBP, sys
TG ≥ 1.70 mmol/L and/or LDL-c ≥ 3.37 mmol/L and/or HDL-c ≤ 1.04 mmol/L is defined as dyslipidemia; A subject with at least one allele of ϵ4 is d
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3.2 Increased serum Ab42 levels are
associated with obesity

The participants were divided into three groups according to their

BMI, and serum Ab42 levels were significantly different between the

normal weight, overweight, and obesity groups (Table 1). Pearson

correlation analysis demonstrated a positive linear correlation between

BMI and log-transformed serum Ab42 levels in participants of all

groups (R = 0.29; p < 0.001) (Figure 2A). Subsequently, multiple linear

regression analysis was carried out to further elucidate the correlation

between serum Ab42 level and BMI. All covariates were not colinear,

except for TC and LDL-c; hence, two models were built to avoid their

cross-interference (Table 2). After adjusting for confounding factors,

both models showed that serum Ab42 levels were positively correlated
with BMI, with the unstandardized regression coefficient (b) = 2.694, p

< 0.05 in model 1 and b = 2.703, p < 0.05 in model 2 (Table 4). These

results elucidated a positive linear correlation trend between serum

Ab42 levels and BMI in a Han Chinese population for the first time.
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3.3 Serum Ab42 levels are correlated to
concentrations of lipid
metabolism biomarkers

All subjects were divided into different groups according to TC,

TG, LDL-c, and HDL-c levels. There were no significant differences

in serum Ab42 levels between normal TC and high TC groups or

between normal LDL-c and high LDL-c groups (Table 2).

Meanwhile, serum Ab42 levels were significantly higher in the

low HDL-c group than the normal HDL-c group (p = 0.003) and

higher in the high TG group compared to the normal TG group (p =

0.002) (Table 2). In addition, the correlations of TC, LDL-c, HDL-c,

and log-transformed TG with log-transformed serum Ab42 levels in
participants of both groups were further analyzed by Pearson

correlation analysis. The results showed that serum Ab42 levels

were positively correlated with the TG level (R = 0.14; p < 0.001)

(Figure 2B) and negatively correlated with the HDL-c level (R =

−0.18; p < 0.001) (Figure 2C). The TC and LDL-c levels showed no

linear correlations with serum Ab42 levels (Figures 2D, E). To

further explore the relationship between serum Ab42 and blood

lipids, the two multiple regression models described in the previous

section were applied to elucidate the linear correlations between TG

and HDL-c levels and serum Ab42 levels. The results showed that

after adjusting for confounding factors, serum Ab42 levels were

negatively and independently correlated with the HDL-c level in

participants of both the normal blood lipid group and dyslipidemia

group in model 2 (b = −1.741; p < 0.05) (Table 4).
TABLE 3 Comparison of serum Ab42 levels among participants divided
by blood pressure.

Normal blood
pressure (n = 862)

Hypertension
(n = 399)

p-
value

Age (years) 48.083 ± 17.68 60.16 ± 14.32 <0.001

Male (n (%)) 448 (51.97) 228 (57.14) 0.089

Smoking
(n (%))

282 (32.71) 111 (27.82) 0.078

Drinking
(n (%))

141 (16.36) 55 (13.78) 0.277

BMI (kg/m2) 25.97 ± 3.85 27.05 ± 3.71 <0.001

Waistline
(cm)

86.91 ± 11.35 90.33 ± 10.29 <0.001

Hip
circumference
(cm)

98.35 ± 6.87 98.85 ± 7.09 0.073

SBP (mmHg) 119.96 ± 11.70 150.81 ± 12.98 <0.001

DBP (mmHg) 72.91 ± 8.23 86.61 ± 11.45 <0.001

GLU
(mmol/L)

5.44 ± 1.48 5.93 ± 1.93 <0.001

LDL-c
(mmol/L)

2.76 ± 0.78 2.84 ± 0.74 0.070

HDL-c
(mmol/L)

1.33 ± 0.30 1.37 ± 0.33 0.041

TC (mmol/L) 4.85 ± 1.00 5.04 ± 0.90 0.001

TG (mmol/L) 1.71 ± 1.21 1.89 ± 1.13 0.011

ApoE ϵ4
(n (%))

97 (11.25) 54 (13.53) 0.263

Ab42 (pg/mL) 50.49 ± 30.93 55.37 ± 33.96 0.164
Ab, amyloid beta; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-c, high-
density lipoprotein; LDL-c, low-density lipoprotein; SBP, systolic blood pressure; DBP,
diastolic blood pressure; ApoE, apolipoprotein E. A subject with systolic blood pressure
(SBP) ≥ 140 mmHg and/or diastolic blood pressure (DBP) ≥ 90 mmHg is defined as
hypertension. A subject with at least one allele of ϵ4 is defined as an ApoE ϵ4 carrier.
TABLE 4 Multiple linear regression analyses for the exploration of the
potential correlations between serum Ab42 levels and BMI, blood lipids,
and blood pressure.

Model Covariate Ab42 (pg/mL)

b 95% CI p-value

1 BMI 2.694 0.386 to 5.002 0.022

HDL-c −1.605 −3.461 to 1.252 0.085

TC −1.005 −5.041 to 3.030 0.625

TG −0.391 −4.940 to 4.159 0.866

SBP −0.300 −0.652 to 0.052 0.094

DBP 0.541 0.016 to 1.066 0.043

2 BMI 2.703 0.395 to 5.010 0.023

LDL-c −2.552 −8.281 to 3.177 0.381

HDL-c −1.741 −3.428 to −0.549 0.043

TG −0.984 −5.025 to 3.056 0.633

SBP −0.301 −0.625 to 0.051 0.094

DBP 0.546 0.021 to 1.071 0.042
fro
Model 1 was adjusted for gender, age, smoking, drinking, waistline and lip circumference,
BMI, TC, TG, HDL-c, SBP, DBP, GLU, and ApoE genotypes. Model 2 was adjusted for sex,
age, smoking, drinking, waistline and lip circumference, BMI, TG, LDL-c, HDL-c, SBP, DBP,
GLU, and ApoE genotypes. b, the unstandardized regression coefficient; Ab, amyloid beta;
BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-c, high-density
lipoprotein; LDL-c, low-density lipoprotein; SBP, systolic blood pressure; DBP, diastolic
blood pressure; ApoE, apolipoprotein E.
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3.4 Association between high serum Ab42
level and hypertension

Serum Ab42 levels were compared between the normal blood

pressure group and the hypertension group, and no significant

difference in serum Ab42 levels was found between these two

groups by Mann–Whitney U test (50.49 pg/mL vs. 55.37 pg/mL,

p = 0.164). The Pearson correlation analysis showed that serum

Ab42 levels were positively correlated with DBP in participants of

both groups (R = 0.12, p < 0.001, Figure 2F), while not correlated

with SBP (Figure 2G). After adjusting for confounding factors,

multiple regression analyses further demonstrated the positive

correlations between serum Ab42 levels and DBP in both models

(model 1: b = 0.541; p < 0.05; model 2: b = 0.546; p < 0.05) (Table 4).
3.5 Correlation between serum Ab42 levels
and MetS in adults

To determine which out of the five MetS components, including

abdominal obesity, high glucose, high triglyceride, low/high-density

lipoprotein cholesterol levels, and hypertension predominantly

cause Ab42 elevations in the peripheral blood, we analyzed

correlations between serum Ab42 of participants with individual

criteria of the metabolic syndrome at least three abnormal findings

out of five factors. According to the above analyses, the level of
Frontiers in Endocrinology 07
serum Ab42 was significantly higher with the presence of

abdominal obesity, high TC, low HDL-c, and hypertension, but

not impaired fasting glucose (Tables 1–5).

To evaluate the association between Ab42 and metabolic

syndrome, multivariate logistic regression analyses were performed

(Table 5). Metabolic syndrome was treated as the outcome

measurement. After multivariate adjustment including age, gender,

smoking, alcohol, and ApoE carrier, logistic regression analysis

showed a significant association between Ab42 level and metabolic

syndrome (OR, 26.8; 95% CI, 14.2–40.7; p < 0.001) (Table 6).

To determine whether the level of Ab42 in peripheral blood

corresponds to the number of clinical measures fulfilling MetS

criteria, we further categorized participants into five groups

(MetS1–MetS5). The serum Ab42 levels significantly increased

with the number of MetS criteria fulfilled from one to five

(Tables 5, 6), which was also consistent with the previous

individual analysis of the five factors. In addition, as expected, we

found that a high serum Ab42 level was related to MetS.
4 Discussion

This clinical observational study demonstrated that Ab42 levels
are positively correlated with BMI and DBP and negatively

correlated with levels of HDL-c. Moreover, we uncovered positive

associations between serum Ab42 levels and MetS, along with their
TABLE 5 Comparison of serum Ab42 levels among participants associated with MetS, divided by age.

Young (≥ 18 and ≤ 29)
(n = 115)

p-
value

Middle (≥ 30 and ≤ 64)
(n = 853)

p-
value

Elder (≥ 65 and ≤ 79)
(n = 244)

p-
value

Age (years) 25.63 ± 2.33 48.07 ± 9.28 71.17 ± 4.36

Male (n (%)) 68 (59.1%) 383 (44.9%) 114 (46.7%)

Smoking (n (%)) 51 (44.3%) 258 (30.2%) 69 (28.3%)

Drinking (n (%)) 21 (18.3%) 128 (15.0%) 21 (8.6%)

ApoE ϵ4 (n (%)) 10 (8.7%) 110 (12.9%) 25 (10.2%)

MetS = 1 −0.2 (−28.1, 38.7) 0.99 22.4 (−0.3, 50.1) 0.05 174.2 (53.7, 388.9) <0.001

MetS = 2 66.1 (15.3, 139.3) 0.007 60.8 (31.7, 96.3) <0.001 174.5 (55.4, 384.9) <0.001

MetS = 3 100.6 (35.3, 197.4) <0.001 59.9 (29.8, 96.9) <0.001 240.4 (95.6, 492.4) <0.001

MetS = 4 151.0 (12.3, 461.0) 0.03 48.6 (17.3, 88.1) 0.001 230.9 (83.4, 497.1) <0.001

MetS = 5 70.9 (−56.1, 565.6) 0.44 49.4 (4.0, 114.7) 0.03 204.6 (45.1, 539.6) 0.003

MetS ≥ 3 105.9 (43.9, 194.6) <0.001 55.3 (28.0, 88.3) <0.001 233.5 (96.1, 467.1) <0.001

Overweight (kg/m2) (24–27.9) 56.8 (11.3, 120.8) 0.01 44.1 (23.6, 68.0) <0.001 183.0 (109.7, 281.8) <0.001

Obesity (kg/m2) (28–41.9) 116.9 (61.4, 191.6) <0.001 76.6 (51.8, 105.4) <0.001 112.3 (57.9, 185.5) <0.001

Waist/hip ratio (>0.9 for men,
>0.8 for women)

71.2 (25.6, 133.3) <0.001 37.1 (21.0, 55.3) <0.001 64.3 (19.5, 125.9) 0.002

Hypertension (SBP ≥140,
DBP ≥90)

−33.8 (−68.9, 41.0) 0.28 8.1 (−5.5, 23.6) 0.26 10.5 (−15.0, 43.8) 0.45

GLU (6.01–6.98 mmol/L) 0.0 (0.0, 0.0) −0.8 (−18.5, 20.7) 0.93 33.5 (−6.9, 91.4) 0.12

GLU (7–22 mmol/L) −32.1 (−84.2, 191.2) 0.6 14.7 (−8.6, 43.9) 0.24 −7.4 (−35.2, 32.4) 0.67
front
MetS = 1, one factor; MetS = 2, two out five factors; MetS = 3, three out five factors; MetS = 4, four out five factors; MetS = 5, all five factors; MetS ≥ 3, at least three factors.
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individual clinical measures. We found no significant relationships

between peripheral Ab42 levels and TC, TG, or LDL-c. Our study

contributes to a body of evidence that attempts to explain the direct

role of serum Ab24 in metabolic conditions by adding unique data

from the Han Chinese population, which has been understudied in

this field, along with strong statistical analyses of a large sample size.

Previous clinical studies in various populations have demonstrated

similar positive correlations between Ab42 levels and MetS and related

risk factors. Higher levels of Ab42 in the peripheral blood of adults and
children were associated with higher BMI (29, 41). Using cross-

sectional analysis, Wei et al. (42) reported that plasma Ab24 levels in

1,436 adults were positively correlated with HDL-c and negatively

correlated with TG. Another 5-year prospective study in 440 elderly
A B

D

E F

G

C

FIGURE 2

Pearson correlation analysis of log-transformed serum Ab42 levels with the BMI (A), log-transformed TG (B), HDL-c (C), TC (D), LDL-c (E), DBP (F),
and SBP (G) in the Han Chinese population. Ab42, amyloid beta 42; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-c, high-
density lipoprotein; LDL-c, low-density lipoprotein; SBP, systolic blood pressure; DBP, diastolic blood pressure.
TABLE 6 Comparison of serum Ab42 levels among participants
associated with MetS.

Age 18 to 79 (n = 1,212) p-value

MetS = 1 38.8 (17.1, 64.5) <0.001

MetS = 2 79.3 (51.8, 111.9) <0.001

MetS = 3 87.9 (58.1, 123.2) <0.001

MetS = 4 80.0 (47.5, 119.6) <0.001

MetS = 5 78.9 (32.3, 141.8) <0.001

MetS ≥ 3 26.8 (14.2, 40.7) <0.001
MetS = 1, one factor; MetS = 2, two out five factors; MetS = 3, three out five factors; MetS = 4,
four out five factors; MetS = 5, all five factors; MetS ≥ 3, at least three factors.
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persons showed that participants with the highest third of TC or LDL-c

at baseline showed lower plasma Ab42 levels at 5 years (31). However,
there has also been contradictory evidence regarding the relationship

between Ab42 and metabolic disorders. A study reported a negative

and marginal correlation (p = 0.05) between BMI and serum Ab42
levels in 530 elderly African American, Caribbean Hispanic, andWhite

participants (43). These opposing conclusions could be a result of

differences in participant ethnic groups and/or immunodetection

methods, including the use of different polyclonal antibodies.

Several mechanisms have been proposed to explain the correlations

observed between metabolic abnormalities, serum Ab42 levels, and

AD. Circulating HDL-c has been shown to play an important role in

translocating Ab42 for degradation and/or excretion (44). As such, low
levels of HDL-c may reflect worse conditions for solubility and

contribute to the imbalance of Ab42 degradation. Indeed, our study

demonstrated a significant and negative correlation between HDL-c

and Ab42 levels. Furthermore, accumulating evidence suggests that

elevated midlife blood pressure is associated with an increased risk of

cognitive impairment and dementia (45, 46), and thus blood pressure

should be considered a potential confound for serum Ab42 levels (47,
48). Unsurprisingly, our results showed a positive correlation between

DBP and Ab42 levels, consistent with previous literature (49). This can
be explained mechanistically, as elevated serum Ab42 has been shown

to reduce endothelial NO synthase, leading to lower NO production,

impaired vascular relaxation, and elevated blood pressure (50).

Controlled animal studies also support human observational studies.

Under a high-fat diet, endogenous melatonin reduction (EMR) mice

showed decreased anti-stress ability and had greater body weight and

more obvious hepatic steatosis compared with the wild-type group;

furthermore, 8-month-old EMR mice had AD-like phenotypes,

including Iba-1 activation, Ab protein deposition, and decreased

spatial memory ability (51).

Yet another pathway by which metabolic disturbances can affect

Ab42 levels is through neuroinflammation and blood–brain-barrier

(BBB) disruption. Previous studies show that MetS is associated with

increased levels of reactive oxygen species, glucose, fibrinogen, and free

fatty acids from the vasculature, skeletal muscle, liver, and adipose

tissue, prompting insulin resistance (IR), hyperglycemia, inflammation,

and dyslipidemia, respectively (52). General inflammation,

neuroinflammation from IR, and the increase in inflammatory

marker IL-6 can upregulate the expression of APP (53), which is

expressed in both central and peripheral tissues and is cleaved by

proteases to generate Ab. Ab can cross the BBB to form a dynamic

equilibrium in the CSF and peripheral blood. LRP1 on the BBB is

responsible for transporting Ab from the CSF to the periphery, while

receptors for advanced glycation end products (RAGE) can transport

peripheral Ab into the brain parenchyma (54). The expression levels of

LRP1 and RAGE on the BBB are related to the risk of AD. Studies have

shown that elevated Ab can reduce the expression of LRP1 and increase
the expression of RAGE levels (55). Thus, in the presence of MetS,

serum Ab42 rises with general inflammation and neuroinflammation,

leading to Ab accumulation in the brain and an unbalanced

equilibrium favoring Ab transport into the CSF by RAGE, resulting

in a cycle that aggravates Ab deposition in the brain.

While serum Ab42 has been proposed as a biomarker for

monitoring the systemic risk of AD in mid-life to predict AD
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occurrence in late life, published results on the correlation of blood

Ab and CSF Ab with the presence of AD are inconsistent and even

contradictory to date. Factors such as liver function (56–58) and, as

we and others have demonstrated, a host of metabolic

abnormalities, greatly affect levels of Ab in the periphery. Ab in

the periphery is not only attributed to efflux of the brain Ab but is

also derived from the proteolytic cleavage of APP expressed in

peripheral organs and tissues (8, 59–62). Hence, serum APP and

Ab42 levels may not reflect the levels of APP and Ab42 in the brain

because a large amount of plasma Ab comes from peripheral

sources (4, 63–65). In contrast, we have demonstrated positive

correlations between serum Ab42 levels and MetS, along with each

of its associated factors. Furthermore, we found that the serum

Ab42 levels were significantly increased with the number of MetS

criteria fulfilled. Thus, we propose the potential role of serum Ab42
as a direct biomarker for MetS rather than for AD.

Aside from studies on Ab, prior literature has more generally

examined the biological complexity of AD pathophysiology through

a systemic lens. For example, studies have shown that the selective

disruption of circadian timing within cortical and limbic circuits

underlies certain cognitive deficits in AD, and events in AD

pathogenesis including amyloid deposition, oxidative stress, and

cell death in turn lead to further disruption of the circadian rhythm

(66, 67). Circadian rhythm disruption has also been related to a lack

of hormonal homeostasis and nonalcoholic fatty liver disease (68,

69) and may be a major contributor to key components of MetS and

its comorbidities (70). The circadian system could be a possible link

between the metabolic disturbances we observe associated with AD,

meriting further study.

It is clear that AD and MetS are complex systemic diseases with

countless involved pathways and numerous methods of study. Here,

we have presented data that reaffirms the connection between Ab42
and MetS and supports the role of Ab42 as a clinical biomarker for

MetS. We also acknowledge the following limitations of our work.

Firstly, our study population includes only the Han population and

precludes conclusions that span multiple ethnic groups, particularly

given the contradicting evidence from previous literature. Secondly,

our study takes place at a single hospital, which may limit its

generalization to other locations. A multicenter study utilizing our

published protocols would greatly strengthen the power of the

results. Finally, we believe that the addition of CSF Ab42
measurements, while logistically difficult, would greatly inform

our understanding of the mechanistic connection between MetS

and AD by correlating brain and serum Ab42 levels. We plan to

collect CSF specimens in a future study for this investigation.
5 Conclusions

To the best of our knowledge, this is the first comprehensive

report on the correlations of serum Ab42 levels with BMI, blood

lipids, blood pressure, and MetS in the Han Chinese population in

Southwest China. We reveal strong correlations between serum

Ab42 levels and MetS, as well as the individual factors comprising

MetS. Furthermore, our study found that BMI and DBP levels were

positively associated with serum Ab42 levels, while HDL-c was
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negatively associated with serum Ab42 levels. These results indicate
that dysregulated MetS is associated with higher serum Ab42 levels.
Therefore, we recommend serum Ab42 be used as a direct risk

biomarker for MetS and its components rather than for AD. The

study was exploratory and aimed to contribute to the body of

controversial evidence surrounding Ab42. The findings encourage
further research investigating the detailed mechanisms of how

serum Ab42 levels interact with brain Ab42 levels in MetS and AD.
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