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cognitive impairment due
to Alzheimer’s disease
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Jason Brandt1,2‡, Norman Haughey1,2‡

and Mackenzie C. Cervenka2‡

1Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine,
Baltimore, MD, United States, 2Department of Neurology, The Johns Hopkins University School of
Medicine, Baltimore, MD, United States, 3Department of Biostatistics, The Johns Hopkins Bloomberg
School of Public Health, Baltimore, MD, United States
Background: Alzheimer’s disease (AD) is increasing in prevalence, but effective

treatments for its cognitive impairment remain severely limited. This study

investigates the impact of ketone body production through dietary

manipulation on memory in persons with mild cognitive impairment due to

early AD and explores potential mechanisms of action.

Methods: We conducted a 12-week, parallel-group, controlled feasibility trial of

a ketogenic diet, the modified Atkins diet (MAD), compared to a control diet in

patients with cognitive impairments attributed to AD. We administered

neuropsychological assessments, including memory tests, and collected blood

samples at baseline and after 12 weeks of intervention. We performed untargeted

lipidomic and targeted metabolomic analyses on plasma samples to detect

changes over time.

Results: A total of 839 individuals were screened to yield 38 randomized

participants, with 20 assigned to receive MAD and 18 assigned to receive a

control diet. Due to attrition, only 13 in the MAD arm and nine in the control arm

were assessed for the primary endpoint, with two participants meeting ketosis

levels used to define MAD adherence criteria. The average change from baseline

in the Memory Composite Score was 1.37 (95% CI: −0.87, 4.90) points higher in

the MAD group compared to the control group. The effect size of the

intervention on baseline MAD change was moderate (Cohen’s D = 0.57, 95%

CI: −0.67, 1.33). In the 15 participants (nine MAD, six control) assessed for

lipidomic and metabolomic-lipidomics and metabolomics, 13 metabolites and

10 lipids showed significant changes from baseline to 12 weeks, including

triacylglycerols (TAGs, 50:5, 52:5, and 52:6), sphingomyelins (SM, 44:3, 46:0,

46:3, and 48:1), acetoacetate, fatty acylcarnitines, glycerol-3-phosphate, and

hydroxy fatty acids.

Conclusions: Attrition was greatest between baseline and week 6. All

participants retained at week 6 completed the study. Despite low rates of
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adherence by criteria defined a priori, lipidomic and metabolomic analyses

indicate significant changes from baseline in circulating lipids and metabolites

between MAD and control participants at 12-week postrandomization, and MAD

participants showed greater, albeit nonsignificant, improvement in memory.
KEYWORDS

mild cognitive impairment, Alzheimer’s disease, lipidomic, metabolomic, ketogenic,
ketone, modified Atkins diet
1 Introduction

The prevalence of Alzheimer’s disease (AD) is increasing as the

aging population grows. In addition to those with dementia, there

are about five million persons in the USA with mild cognitive

impairment (MCI), likely due to AD (1). Advances in drug

therapies for AD have been made (2–4), but concerns have been

raised regarding their safety, cost, and translation to clinical

outcomes (5, 6). Alternative approaches for the treatment and

prevention of AD are needed. Studies examining the influence of

dietary changes on cognition and/or functioning in AD have

produced promising results (7–9).

The role of lipid modulation in the pathogenesis of AD is under

investigation. High serum cholesterol is associated with an

increased risk of developing AD (10–17), and older persons who

consume a low-cholesterol Mediterranean diet have a lower risk of

developing AD (18–20). In mouse models of AD, a high-fat and

high-cholesterol diet increases the production of amyloid-b,
worsens synaptic damage, and further impairs learning and

memory compared with mice fed standard diets (21, 22). As such,

the Dietary Approaches to Stop Hypertension (DASH) and

Mediterranean-DASH Intervention for Neurodegenerative Delay

(MIND) diets have been among the most popular recommended

diets for aging people (23, 24).

Ketone bodies produced by the metabolism of fatty acids in the

liver are used by cells throughout the body, including the brain, as a

source of energy (25). AD brains can metabolize ketone bodies even

when glucose metabolism is impaired (26, 27). Given the clearly

impaired glucose metabolism in AD (25, 28–34), increased attention

has been given to the use of ketogenic diets as treatments for AD.

The ketogenic diet has proven to be an efficacious intervention

for drug-resistant epilepsy but requires precise measurement of all

macronutrient intake and strict adherence (35–37). Fortunately,

ketosis can be induced using a more forgiving diet that is high in fat

and low in carbohydrates, such as the modified Atkins diet (MAD),

which is also effective in reducing epileptic seizures (35, 38, 39). The

MAD is now being investigated as an intervention for several other

neurologic conditions (40) and medical diseases such as obesity (41)

and type 2 diabetes (42).

Studies examining the use of ketogenic diets in AD generally

support the notion that ketogenic diets can enhance cognition in
02
older adults with AD (43–47) and suggest that the degree of

cognitive enhancement depends on the level and duration of

ketosis, but results have been mixed. Petersson et al. (48) showed

that older persons who typically consumed high carbohydrate diets

had an increased risk of MCI and dementia (hazard ratio [HR] =

1.89), whereas those with high fat (HR = 0.56) and high protein

(HR = 0.79) diets had decreased risks. Krikorian et al. (49) showed

that among persons with MCI, only those on low-carbohydrate

diets for 6 weeks showed improved memory, which was correlated

with urine ketone levels. Taylor et al. (50) demonstrated improved

cognition in persons with AD after 3 months on a ketogenic diet

and taking a medium-chain-triglyceride (MCT) fat supplement

(51). Phillips showed that AD patients on a ketogenic diet

improved significantly in quality of life and daily functioning

compared to those following “health-eating” guidelines over a 12-

week period, but improvements in cognition were not significant

(52). Ketosis may not be the only factor influencing memory

performance in individuals on ketogenic diet therapy, and further

investigation is warranted to examine other potential mechanisms

of action.

The present study examined the effects of a 12-week MAD diet

on cognition, dietary adherence, ketosis, and lipidomic-

metabolomics in seniors with AD-related MCI or mild dementia.
2 Methods

We conducted a 12-week, parallel-group, 1:1 randomized

controlled trial of the MAD compared to a control diet (based on

the National Institute on Aging [NIA]’s dietary recommendations

for seniors) for patients with MCI attributed to AD. The study was

fully reviewed and approved by the Institutional Review Board of

the Johns Hopkins University School of Medicine.
2.1 Participants

Complete eligibility criteria, procedures (including detailed

dietary information), methods, and clinical outcomes are

described in a prior publication (53). Briefly, patients with MCI

or early-stage AD were recruited via the Johns Hopkins Alzheimer’s
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Disease Research Center registry, posted flyers, radio and

newspaper advertisements, mailings to persons on the Central

Maryland chapter of the Alzheimer’s Association list, and lectures

at senior centers and retirement communities.

Patients were required to cohabitate with a cognitively intact

study partner whose role was to help the patient shop for and

prepare appropriate foods, document food intake, test and record

urine ketone levels, attend study visits, and provide information

regarding the patient’s functional abilities. Patients taking

medications for AD were not excluded from the study, as long as

they were on the same dose for 3 months or more before the study

began and did not change their dose during the study. Complete

eligibility criteria appear in Supplementary Table S1.
2.2 Procedures

2.2.1 Eligibility screening
Potential participants were contacted by email or telephone to

assess their interest and eligibility. In-person screening visits were

conducted with the participant and study partner. The in-person

screening included administration of the Montreal Cognitive

Assessment (MoCA) (54) to study participants, the Mini-Mental

State Examination, second edition (Standard Version; MMSE-2)

(55) to study partners, and the Clinical Dementia Rating Scale

(CDR) (56) to participant and partner. Study partners were

required to earn a T-score of ≥ 40 (adjusted for age and

education) on the MMSE-2 to demonstrate intact cognition.

Eligible dyads were taught how to complete food records and

provided copies of informed consent forms for their review.

2.2.2 Enrollment/baseline assessments
At the enrollment/baseline visit, informed consent was obtained

from the patient and the study partner (dyad). A urine sample,

fasting blood sample, and vital signs were procured from the

patient. The urine sample was tested for the presence of ketones,

participants were offered a light snack, and a dietitian reviewed food

records with the dyad.

Neuropsychological testing was performed by a research

assistant who was blinded to treatment. Testing included the

Mini-Mental State Examination-2 Expanded Version (MMSE-2-

EV) (55), the Hopkins Verbal Learning Test—Revised (HVLT-R)

(57), and the Brief Visuospatial Memory Test—Revised (BVMT-R)

(58). MMSE-2-EV scores range from 0 to 90, with 90 indicating

perfect performance. HVLT-R and BVMT-R delayed recall trial

scores each range from 0 to 12, with 12 indicat ing

perfect performance.

Finally, dyads who enrolled in the study were randomly

assigned to one of two diets, either the MAD or the NIA, by

using a random number table. Specifically, after informed consent

and baseline data were obtained, the study coordinator accessed the

random number generator, and if an even number was next on the

list, the dyad was randomized to the MAD, and if an odd number,

they were randomized to the NIA. The dyad was given their

respective diet manual.
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2.2.3 Educational visit
Dyads met with a dietitian and were provided with information

to initiate and adhere to their diet, including instructions regarding

food label reading and portion measuring, as well as sample menus

and recipes. Dyads were taught how to record food intake and

perform urine ketone testing. They were given a urine ketone test

kit, multivitamins, and calcium with vitamin D supplements.

Participants had equal time with and access to study dietitians,

regardless of group assignment.

The MAD (59) includes consumption of ¾ 20 or fewer grams

daily of net carbohydrates (total carbohydrates minus fiber), large

amounts of fat, moderate amounts of protein, and proper hydration.

The NIA diet encourages the consumption of fruits, vegetables,

beans, peas, nuts, seeds, whole grains, fat-free or low-fat dairy

products, seafood, lean meats, poultry, eggs, and oils. The NIA diet

limits added sugars, refined grains, sodium, and solid fats.
2.2.4 Follow-up visits
Follow-up assessments, including measurement of vital signs

and urine ketone levels, review of food records, and discussion with

dieticians of any issues with diets or adherence, were conducted

every three weeks. Neuropsychological testing was repeated at

weeks 6 and 12, and blood was collected again at week 12. At

study visits, dyads were offered avocados, a parking voucher, and a

$25 grocery store gift card (totaling $100 across study visits).
2.3 Materials

All chemicals and solvents were ultra-pure LC-MS grade

(60, 61).

2.3.1 Untargeted lipidomics by MS/MSALL

triple TOF
Plasma samples were extracted using a modified Bligh and

Dyer’s procedure (60, 62) to obtain a crude lipid fraction. In brief,

40 mL of each plasma sample was extracted for total lipids using 2

mL of ddH2O and 3.8 mL of methanol/dichloromethane (2:1.9, v/

v), containing 12 internal standards, as reported earlier (60). Lipid

analysis was conducted in MS/MSALL mode on a TripleTOF 5600

(AB Sciex, Redwood City, CA, USA) time-of-flight mass

spectrometer (TOF MS) (60). Samples (50 mL of injection

volume) were directly infused by HPLC at a constant flow rate of

7 µL/min. The obtained mass spectral data were processed using the

LipidView database (version 1.3, Ab Sciex, Concord, Ontario,

Canada) as described (60).

2.3.2 Targeted metabolomics by LC-MS/MS
Metabolites from plasma were extracted as described earlier

(61). Briefly, plasma samples (150 µL) were protein precipitated

using 1 mL of 70% ice-cold methanol (0.5% 1 N HCl), prespiked

with 11 isotopically labeled IS (61). Chromatographic separation of

metabolites was achieved on the pentafluorophenyl column (pursuit

PFP, 150 mm × 2mm, 3 µM particle size, Agilent Technologies, CA,
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USA). A quadrupole ion trap mass spectrometer (API4000 QTRAP

LC-MS/MS, AB Sciex, ON, Canada) was used to identify

metabolites in pseudo-MRM mode. The mass spectrometer was

operated in electrospray ionization (ESI)-positive and ESI-negative

modes individually to detect protonated [M+H]+ and deprotonated

[M-H]− metabolites. Instrument control and quantification were

performed using Analyst 1.4.2 and MultiQuant software (AB Sciex,

Thornhill, ON, Canada). The complete list of targeted metabolites

and their mass spectrometric details are provided in the

Supplementary Materials.
2.4 Data analysis

Adherence for the MAD participants was determined a priori as

demonstrating at least moderate urine ketone levels at three or more

follow-up visits. The primary outcome for memory was defined as

change from baseline to 12 weeks in the Memory Composite Score

(MCS), defined as the sum of the delayed recall trials for the

Hopkins Verbal Learning Test-Revised (HVLT-R) (63) (a

measure of auditory-verbal learning and memory) and the Brief

Visuospatial Memory Test-Revised (BVMT-R) (64) (a measure of

visuospatial learning and memory).

The average treatment effect of the intervention was assessed

using an unadjusted difference in means as well as a covariate-

adjusted difference in means. Covariate adjustment was performed

using analysis of covariance (ANCOVA), regressing the 12-week

outcome on the baseline MCS and treatment assignment.

Standardized effect sizes (Cohen’s D) were also computed.

Confidence intervals and hypothesis tests were conducted using

the 10,000 replicates of the nonparametric bootstrap using the bias-

corrected and accelerated method. Missing values of covariates were

imputed using mean imputation in each bootstrap sample. In

analyses of cognitive outcomes, missing follow-up outcome data

were addressed using inverse probability weighting (IPW) based on

treatment assignment and baseline MCS. Analyses were conducted

according to the allocated treatment arm, irrespective of adherence

to the intervention; all randomized participants were included in

analyses of cognitive outcomes.

Lipidomic and metabolomic data were analyzed using

ANCOVA, where each biomarker at 12-week follow-up was

regressed on treatment assignment and the biomarker assessed at

baseline. Due to sample size limitations, IPW was not performed.

Model-based standard errors were used to compute confidence

intervals. All biomarkers were log-transformed prior to analysis.

Adjustment for multiple testing was performed using the method of

Benjamini and Hochberg (65).

All analyses were conducted in R version 4.3.1 (R Foundation

for Statistical Computing, Vienna, Austria).
3 Results

As shown in Figure 1, 839 people were screened for the larger

study from which the data for the present study were extracted

(53, 66). The most common reasons for exclusion from the study
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were medical conditions, severe cognitive impairment, and living

alone. While most eligible parties expressed interest in participating

in the study, many declined due to not wanting to change their diet,

as well as time and travel costs. Ultimately, 20 were enrolled and

randomized to the MAD arm, while 18 were enrolled and

randomized to the NIA arm. Please see Table 1 for baseline

demographic and clinical factors for all enrolled and randomized

participants. In total, 13 of the MAD and nine of the NIA participants

completed the study, with only two MAD participants meeting

adherence criteria. The most common reasons for withdrawing

were no longer wanting to adhere to a diet, as well as time and

travel costs. Of the completers, nine of the MAD and six of the NIA

were able to provide blood samples deemed adequate for the analyses

conducted in the present study; several participants were not able to

produce enough blood, and several were not fasting. See

Supplementary Table S2 for demographic information regarding

the 15 participants included in lipidomic and metabolomic

analyses. There were no adverse events.
3.1 Memory changes in MAD and
control groups

The results of the 12-week baseline change in MCS analyses can

be found in Table 2. Unadjusted and covariate-adjusted analyses
FIGURE 1

Flow diagram.
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were quantitatively similar, with MAD participants having baseline

changes in MCS scores that were on average 1.37 points higher than

NIA participants (95% CI: −0.87, 4.90). The estimate of the effect

size on baseline change was of “medium” magnitude (Cohen’s D =

0.57, 95% CI: −0.67, 1.33) per Cohen’s (1998) criteria, with a

confidence interval spanning medium magnitude negative effects

to “very large” positive effects.
3.2 Lipids and metabolites with MAD and
control groups

We have identified a shared presence of 378 lipid species and 68

metabolites in both the control diet and MAD groups. The

comprehensive list of these commonly found lipids and
Frontiers in Endocrinology 05
metabolites, along with their respective group classifications, can be

found in the Supplementary Materials. Individuals subjected to a

MAD for 12 weeks displayed notable differences in plasma levels of

lipids and metabolites when compared to those on the control diet.

Specifically, theMAD resulted in lower plasma levels of various lipids,

encompassing three triacylglycerols (TAGs, 50:5, 52:5, and 52:6), four

sphingomyelins (SM, 44:3, 46:3, 46:0, and 48:1), two

lysophosphatidylcholines (LysoPCs, 18:0 and 18:2), two fatty

acylcarnitines (hexanoylcarnitine and stearoylcarnitine), a fatty acid

(hexanoic acid), a hexose sugar (fructose), and a phosphatidylserine

ether species (PS O-40:0). Conversely, individuals on MAD exhibited

higher levels of a ketone body (acetoacetate), glycerol-3-phosphate,

two hydroxy fatty acids (3-hydroxyoctanoate and 5-

hydroxyhexanoate), two phosphatidylethanolamines (PE O-34:1

and PE O-36:3), and choline phosphate. These findings strongly

indicate alterations in the circulating lipids and metabolites of

individuals following a ketogenic diet therapy in comparison to

those on a control diet. The modified list of changes in the lipids

and metabolites, including adjusted p-values and fold-change values,

can be found in Table 3.

Furthermore, our investigation revealed the presence of 77 distinct

lipids that were exclusively identified in either the control or MAD

groups. Notably, a significant observation was that several TAGs,

along with a limited number of glycoceramides present in the control

group, were conspicuously absent in the MAD group. Conversely, a

multitude of ceramides and phosphatidylethanolamines detected

within the MAD group remained undetected in the control group.
TABLE 1 Baseline demographic and clinical factors.

NIA (N = 18) MAD (N = 20) Overall (N
= 38)

Age (years)

Mean (SD) 74.2 (5.8) 74.2 (6) 74.2 (5.8)

Range [60.9, 83.9] [64.9, 87.1] [60.9, 87.1]

Sex

Male 7 (38.9%) 13 (65.0%) 20 (52.6%)

Female 11 (61.1%) 7 (35.0%) 18 (47.4%)

Race

White 14 (77.8%) 19 (95.0%) 33 (86.8%)

Non-white 4 (22.2%) 1 (5.0%) 5 (13.2%)

Education (years)

Mean (SD) 15.9 (3.5) 16.1 (2.2) 16 (2.8)

Range [9, 20] [13, 20] [9, 20]

BMI

Mean (SD) 26.2 (4.5) 28.1 (5.1) 27.2 (4.8)

Range [17, 39.7] [18.6, 39.9] [17, 39.9]

MCS (HVLT + BVMT delayed)

Mean (SD) 3.1 (3.9) 5 (5.6) 4.1 (4.9)

Range [0, 12] [0, 17] [0, 17]

Missing 1 (5.6%) 0 (0%) 1 (2.6%)

CDR global score

0.5 15 (83.3%) 17 (85.0%) 32 (84.2%)

1 3 (16.7%) 3 (15.0%) 6 (15.8%)

MMSE-2 EV

Mean (SD) 40.1 (12.4) 41.9 (9.5) 41.1 (10.8)

Range [17, 56] [25, 62] [17, 62]

Missing 1 (5.6%) 0 (0%) 1 (2.6%)
The NIA participant missing baseline MCS and MMSE-2 EV withdrew between education
and week 3 due to difficulty adhering to the diet.
TABLE 2 Results of 6- and 12-week baseline change in MCS.

NIA (N = 18) MAD (N = 20)

MCS (HVLT + BVMT delayed): W6

Mean (SD) 2.9 (3.4) 6.6 (7.4)

Range [0, 11] [0, 23]

Missing 9 (50.0%) 8 (40.0%)

MCS (HVLT + BVMT delayed): W12

Mean (SD) 2.4 (3.9) 6.8 (7.6)

Range [0, 12] [0, 20]

Missing 9 (50.0%) 7 (35.0%)

MCS change (HVLT + BVMT delayed): W6 − BL

Mean (SD) −0.3 (3.9) 1.2 (2.4)

Range [−10, 4] [−2, 7]

Missing 9 (50.0%) 8 (40.0%)

MCS change (HVLT + BVMT delayed): W12 − BL

Mean (SD) −0.8 (3.8) 0.9 (2)

Range [−10, 3] [−2, 4]

Missing 9 (50.0%) 7 (35.0%)
Nine data points are “missing” for the NIA group, given that only half of those enrolled/
randomized (nine of 18) completed the study. Eight data points are “missing” for the MAD
group given only 12/20 of those enrolled/randomized completed the study. One additional
patient in the MAD group did not complete the HVLT and BVMT needed for MCS at week 6,
resulting in an additional “missing” data point at week 6.
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These findings indicate that the modified Atkins diet elicited specific

and discernible alterations in lipid profiles. The compilation of unique

metabolites identified within each respective group can be found in the

Supplementary Materials.
4 Discussion

Safe and effective therapies for mitigating memory loss in

elderly people with MCI and mild dementia due to AD are

severely lacking. New therapies like lecanemab, an IgG1

monoclonal antibody shown to reduce markers of amyloid in the

brains of patients with early AD (67), are not without limitations.

Serious concerns have arisen regarding safety and cost as well as

translation to meaningful clinical outcomes (5, 6). One promising

strategy for treating this progressive neurodegenerative disease is to

compensate for the reduced cerebral glucose utilization in AD (28,

68) using ketone bodies as an alternative energy source. In this

study, we examined the feasibility of measuring changes in

cognition and the lipids and metabolites during 12 weeks of use

of a ketogenic diet therapy (MAD) compared to a recommended

diet for elderly individuals.
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The present study demonstrated that recruitment for dietary

interventions in older adults with cognitive impairment is very

challenging due to participant eligibility and interest. This study had

high attrition after baseline but retained all participants who were in

the study at week 6, which suggests a run-in period could greatly

reduce attrition after randomization. Rates of attrition were

comparable across treatment groups and to those in similar

studies (50, 69, 70). Possibilities for enhancing recruitment,

adherence, and retention in future efficacy studies could include

the following: adjusting inclusion/exclusion criteria to capture

individuals with greater willingness to change their dietary habits;

educating study staff and participants that remaining in the study is

extremely valuable even if they do not adhere to the assigned diet;

conducting more virtual assessments, whether by telephone, video,

or messaging; making in-person visits less frequent, shorter, and

less burdensome; using automatic/scheduled reminders for

adherence to study protocol at home; including incentives for

adherence; and incorporating virtual consulting/coaching with a

dietitian or nutritionist to supervise shopping and meal

planning/preparation.

Pilot studies are often not powered to detect meaningful

differences in the primary outcome with high confidence, but they
TABLE 3 The list of lipid and metabolite species that were differentially regulated by the MAD diet compared to the control diet.

Category Group Lipids and metabolites Fold_change_estimate Fold_change_p_adjust_all

Lipid Lysophospholipids LysoPC 18:2 −10.96616371 0.043907247

Metabolite Fatty acylcarnitines Hexanoylcarnitine −5.433043215 0.014075101

Metabolite Fatty acylcarnitines Stearoylcarnitine −4.357305955 0.010114821

Metabolite Fatty acids Hexanoic acid −4.275752368 0.000550305

Metabolite Sugars Fructose −2.228621667 0.034695265

Lipid Lysophospholipids LysoPC 18:0 −2.160600267 0.010114821

Lipid Sphingomyelins SM 48:2 −1.919390073 0.036361039

Lipid Triacylglycerols TAG 52:6 −1.735061488 0.028925726

Lipid Triacylglycerols TAG 52:5 −1.72170821 0.041874467

Lipid Triacylglycerols TAG 50:5 −1.567460165 0.033099035

Lipid Sphingomyelins SM 46:3 −1.563999943 0.021239213

Lipid Sphingomyelins SM 46:0 −1.559294415 0.021239213

Lipid Sphingomyelins SM 44:3 −1.386330786 0.030309054

Lipid Phosphatidylserines PS O-40:0 −1.063554114 0.033099035

Lipid Sphingomyelins SM 48:1 −0.838412193 0.025356407

Lipid Phosphatidylethanolamines PE O-34:1 0.618222887 0.033099035

Lipid Phosphatidylethanolamines PE O-36:3 0.944495468 0.030309054

Metabolite Ketone bodies Acetoacetate 1.652590845 0.001410745

Metabolite Others Choline phosphate 2.410712721 0.010114821

Metabolite Hydroxy fatty acid 3-Hydroxyoctanoate 2.433853804 0.025356407

Metabolite Others Glycerol 3-phosphate 3.061953992 0.030309054

Metabolite Hydroxy fatty acid 5-Hydroxyhexanoate 4.096819308 0.000182016
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can provide useful information to investigators planning future

studies in this setting. While the estimates of the effect size and

treatment effect on the change in MCS were positive and the

majority of their 95% confidence intervals were greater than zero,

they were not statistically significant. Results of cognitive outcome

analyses should also be cautiously interpreted, given the issues of

attrition, adherence, and influential observation.

Following a 12-week MAD intervention, we noted a significant

decrease in circulating TAGs (50:5, 52:5, and 52:6). Additionally,

certain TAGs (as indicated in Table 3) that were present in the

control diet group were not detected in the ketogenic diet group.

This suggests an enhanced breakdown of TAGs into fatty acids,

likely driven by increased lipolysis, and their subsequent utilization

through b-oxidation to produce energy and ketone bodies (61, 62).

This interpretation gains support from the observation of elevated

levels of ketone body (acetoacetate) production as well as metabolic

byproducts from medium-chain fatty acids, including 3-

hydroxyoctanoate and 5-hydroxyhexanoate. Moreover, in the

MAD group, lower levels of fatty acylcarnitines, specifically

hexanoylcarnitine and stearoylcarnitine, which are intermediates

of fatty acid oxidation, were observed when compared to the control

diet group. These collective findings lend further credence to the

notion that the ketogenic diet prompts an increased utilization of

fatty acids for energy production through b-oxidation, ultimately

leading to the production of ketone bodies.

Both acetoacetate and medium-chain hydroxy fatty acids have

been linked to potential cognitive benefits (71, 72). Acetoacetate, a

type of ketone body produced during fatty acid metabolism, is

suggested to have neuroprotective properties and is considered a

potential alternative fuel source for the brain (71, 73). Some

research suggests that ketone bodies like acetoacetate may offer

neuroprotection and could be beneficial for cognitive function,

especially in conditions like neurodegenerative diseases and

certain brain injuries (73). However, the exact mechanisms and

extent of cognitive improvement are still areas of ongoing research.

Medium-chain hydroxy fatty acids, such as 3-hydroxyoctanoate

and 5-hydroxyhexanoate, are derived from medium-chain fatty

acids and are involved in energy metabolism (72). While the

impact of specific hydroxy fatty acids in relation to cognitive

outcomes remains under investigation, medium-chain fatty acids,

in general, have been studied for their potential cognitive benefits

(72). Some studies have suggested that the consumption of MCTs,

which can produce medium-chain fatty acids and their derivatives

like hydroxy fatty acids, might have positive effects on cognitive

function, particularly memory, and brain health (72, 74–76). It is

important to note that while there is emerging evidence supporting

the potential cognitive benefits of acetoacetate and certain hydroxy

fatty acids, the research is still in its early stages, and more studies

are needed to establish the exact impact and mechanisms of these

compounds on cognitive outcomes.

This study had several important limitations. First, sample sizes

were small in both study groups, with challenges in recruitment,

retention, and adherence (53). Dropout and adherence may be

related to participant characteristics that are directly or indirectly

related to their cognitive function, which can lead to selection bias.

Second, although great care was taken to enhance the probability
Frontiers in Endocrinology 07
that participants’ cognitive impairments were due to AD, it is

possible that some participants did not have the pathophysiology

of AD, rendering the potential benefits of ketosis less likely. Third,

participants, study partners, dieticians, and study coordinators were

not blinded to the assigned diet, so the potential for bias cannot be

entirely ruled out. In addition, the study’s eligibility criteria

intentionally resulted in a sample free of comorbidities that are

common in the elderly, including cardiovascular disease and severe

diabetes. As such, results from this study may not be generalizable

to the larger AD population, in which these comorbidities are also

common. The study site and inclusion/exclusion criteria yielded a

sample limited to mostly white and highly educated participants,

which greatly limits the generalizability of our findings. We targeted

patients with MCI and mild dementia due to AD. Perhaps even

these early-stage patients are too advanced to benefit from a

ketogenic diet. Implementing MAD in less cognitively impaired

persons with “subjective cognitive decline” (77–81) might result in

larger effects. Finally, not all of the participants who completed the

study provided blood samples deemed adequate for analysis,

primarily due to nonfasting and/or limited blood supply, which

may have introduced bias as well.
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