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Editorial on the Research Topic

Integrative exercise endocrinology
Defining exercise endocrinology is not easy largely because of the many different

avenues of inter-organ messaging that exercise elicits in its control of metabolism,

physiology, behavior, and survival. Although this messaging has been studied for a long

time, it continues to change and evolve. The classical view of exercise signaling

included autonomic nerves releasing the neurotransmitter norepinephrine and

triggering the release of cortisol and adrenal catecholamines (1) for the control of

the metabolic fuel mix appropriate for the type, duration, or intensity of exercise (2, 3)

or for activation of the life-saving fight-or flight behavioral and physiological responses

(4). Hormones, molecules secreted by endocrine glands and released into circulation

(5, 6) such as adrenal norepinephrine, epinephrine, and cortisol (1), pituitary growth

hormone (GH) (7, 8), IGF (9), and pancreatic glucagon (10) were considered to be the

main exercise-associated messengers. The next insight was that exercise could

stimulate messaging by paracrine or autocrine means (5, 6) by molecules made in

various tissues and organs and acting on other cells and tissues in their vicinity rather

than through circulation. Examples are somatostatin in delta pancreatic cells

controlling secretion of glucagon from alpha, and of insulin by beta, cells and

somatostatin in the stomach inhibiting gastric cells in the antrum (11, 12). Similarly,

IGF-gene expression in the muscle is stimulated by mechanical loading to promote in

situ hypertrophy (13). Realization that exercise-induced changes in hormone

pulsatility can affect physiological outcomes, led to the discovery that increased

frequency of GH pulses accelerates mature hamster skeletal and somatic growth (14,

15), and that reduced energy availability associated with exercise reduces in female

athletes frequency, and increases the amplitude, of LH pulses and abolishes menstrual

cycles (16). More recently, explorations of hormone signaling was extended to various

body organs which during exercise release messengers into circulation to specific

targets. Cytokine messengers like interferon, interleukins, and tumor necrosis factor
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control immune system and inflammation (17), while insulin-like

growth factors control cellular growth (8). Myokines such as irisin,

interleukins, and myostatin are released by the muscle (18, 19),

hepatokines such as FGF21 and follistatin by the liver (19),

adipokines leptin, adiponectin, and resisting are released by the

adipose tissue (19, 20). Osteokines like osteocalcin, carboxyterminal

propeptide of type-1 collagen (bone formation osteokine), and

carboxyterminal peptide of type 1 collagen (bone resorption

osteokine) are released from bone osteoblasts and osteoclasts (19,

21, 22). All of these messengers are to a variable extent affected by

exercise and play a role in inter-organ communication and actions

(19). Finally, exercise also releases bioactive molecules within the

extracellular vesicles and exosomes (23, 24).

The editorial team that evaluated the submitted manuscripts

was chosen for their expertise in relevant aspects of integrative

exercise endocrinology: endocrine changes in the athletes subjected

to energy deprivation (25), secretion of exerkines participating in

inter-organ communication (26), effects of exercise-induced IGF-1

isoforms in muscle hypertrophy (27), lipokines facilitating muscle

lipid metabolism (28), and GH and PTH pulsatility in acceleration

of growth (15) and in anabolic responses of postmenopausal

bone (22).

Our efforts resulted in publications. Plomgaard et al. presented

the regulatory role of glucagon and insulin in the release of

hepatokine GDF15. In a clinical study including healthy and

anorexic humans, exercise led to increased glucagon to insulin

ratio and release of GDF15. Since GDF was also elevated in

subjects with anorexia nervosa, this hepatokine may signal chronic

energy deprivation. The second manuscript (30) was published by

Mohammad et al. describing changes in amyloid-beta precursor

protein in an ovariectomized animal. The study with ovariectomized

mice demonstrated that voluntary running increased the

concentration of an enzyme (BACE1) which limits overproduction

of amyloid-beta precursor protein that is implicate in memory loss

and Alzheimer disease. The third study was published by Schön et al.

about the effects of exercise on growth differentiation factor 11

(GDF11). This cytokine (also called bone morphogenetic protein

belonging to TGF alpha family) controls growth, and its gene is

found on the chromosome 12. The study reported that an hour of

running decreased the concentration of GDF11 in cerebrospinal

fluid but not in the blood suggesting cross-talk between the brain

and peripheral tissues. The fourth paper was by Hughes et al.

presenting an argument that the beneficial increase in bone

stiffness arises when the mechanical stimulus of exercise operates
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during periods of active hormonal influences such as during pubertal

growth and administration of PTH analog peritaratide in old age.

This overview of the scope of integrative exercise endocrinology

serves, in part, to attract more research in this area of endocrinology

and to, hopefully, attract more reports on the Research Topic to this

section of Frontiers in Endocrinology.
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