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Objectives: Non-alcoholic fatty liver disease (NAFLD) has been linked to an

increased risk of kidney stones in prior observational studies, However, the

results are inconsistent, and the causality remains to be established. We aimed

to investigate the potential causal relationship between NAFLD and kidney stones

using two-sample Mendelian randomization (MR).

Methods:Genetic instruments were used as proxies for NAFLD. Summary-level data

for the associations of exposure-associated SNPs with kidney stones were obtained

from the UK Biobank study (6536 cases and 388,508 controls) and the FinnGen

consortium (9713 cases and 366,693 non-cases). MR methods were conducted,

including inverse variance weighted method (IVW), MR-Egger, weighted median,

andMR-PRESSO.MR-Egger Regression Intercept andCochran’sQ test were used to

assess the directional pleiotropy and heterogeneity.

Results: cALT-associated NAFLD did not exhibit an association with kidney stones in

the Inverse variance weighted (IVW) methods, in both the FinnGen consortium (OR:

1.02, 95%CI: 0.94-1.11, p = 0.632) and the UKBB study (OR: 1.000, 95%CI: 0.998-

1.002, p = 0.852). The results were consistent in European ancestry (FinnGen OR:

1.05, 95%CI: 0.98-1.14, p = 0.144, UKBB OR: 1.000, 95%CI: 0.998-1.002, p = 0.859).

IVW MR analysis also did not reveal a significant causal relationship between NAFLD

and the risk of kidney stone for the other three NAFLD-related traits, including

imaging-based, biopsy-confirmed NAFLD, and more stringent biopsy-confirmed

NAFLD. The results remained consistent and robust in the sensitivity analysis.

Conclusions: The MR study did not provide sufficient evidence to support the

causal associations of NAFLD with kidney stones.
KEYWORDS

NAFLD, kidney stone, Mendelian randomization, causality, genome wide
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1 Introduction

Kidney stones, diverse in type and composition, affect

approximately 15% of the population and have a high recurrence

rate, with 50% of patients experiencing a recurrence within the first

5 years after the initial stone episode (1). This prevalence and

recurrence impose a significant burden on healthcare resources and

public health, with the total annual healthcare resources and public

health, with the total annual healthcare expenditure for kidney

stone treatment exceeding 2 billion dollars in the USA (2). The

main cause of kidney stone disease lies in an imbalance of

promoters and inhibitors of crystallization (3). Kidney stones can

be classified based on their composition, with common types

including calcium oxalate (65%), calcium phosphate (10%), uric

acid (15%), magnesium ammonium phosphate (10%) and cystine

stones (1%) (4). Comprehending the distinct characteristics of these

stones is crucial for devising effective preventive and management

strategies. Genetic variation, nutritional factors, and metabolic

disorders play crucial roles in the pathogenesis of kidney stones.

Non-alcoholic fatty liver disease (NAFLD) represents a

spectrum of disease consisting of simple steatosis, non-alcoholic

steatohepatitis, fibrosis and cirrhosis (5). It ranks among the most

prevalent causes of chronic liver disease globally, impacting

approximately 25% of the population worldwide (6, 7).

Several cross-sectional and prospective studies have consistently

revealed a substantial rise in the prevalence of kidney stones among

patients with NAFLD (8–12). Two meta-analyses have further

consolidated the association between NAFLD and an elevated risk

of urolithiasis (13, 14). Several potential mechanisms linking NAFLD

to kidney stone formation have been proposed, primarily concerning

hepatic steatosis, insulin resistance, and oxidative stress (15–18).

The observed links between NAFLD and kidney stones, as

highlighted by previous epidemiological studies, are undoubtedly

noteworthy. However, the question of whether these associations
Frontiers in Endocrinology 02
represent causal relationships remains undetermined. This

uncertainty can be attributed to several potential limitations in the

existing body of observational research, including residual

confounding and other biases. NAFLD shares strong connections

with risk factors for kidney stones, such as obesity and type 2 diabetes

(19). These overlapping risk factors could confound the relationship

between NAFLD and kidney stones in observational studies.

Mendelian randomization (MR) is a powerful tool for inferring

causality in observational research. As individuals are randomized

at conception to receive genetic variants that either predispose to or

protect from the exposure of interest, these variants can be used as

instruments to study for a causal relationship with a clinically

relevant outcome (20). MR is considered less susceptible to biases

stemming from confounding factors and reverse causality

compared to traditional observational studies (21).

In our study, we employ a two-sample MR approach to explore

the potential causal links between NAFLD and the risk of

developing kidney stones. This method offers a robust framework

for examining these associations, minimizing the impact of

common biases encountered in observational research.
2 Materials and methods

2.1 Study design

Our study adopts a two-sample MR approach, as depicted in

Figure 1, employing single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs). The primary objective is to assess the

causal link between NAFLD and the risk of kidney stones. This

method relies on three key assumptions (1): the SNPs must exhibit a

robust association with NAFLD (2), the SNPs should not exert an

influence on confounding factors that could affect the association

between the exposure (NAFLD) and the outcome (kidney stones),
FIGURE 1

Workflow of Mendelian randomization study revealing causality from NAFLD on kidney stones. NAFLD, Non-alcoholic fatty liver disease; SNP, single-
nucleotide polymorphisms; cALT, chronically elevated serum alanine aminotransferase levels; IVW, inverse variance weighted; MR, Mendelian
randomization; MR-PRESSO, MR pleiotropy residual Sum and outlier.
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and (3) the SNPs should solely impact the outcome through their

effect on the exposure and not through any other pathways.
2.2 The data source for NAFLD and the
selection of IVs

All the databases utilized for gene-exposure and gene-outcome

data were shown in Table 1. The data source for NAFLD and the

selection of IVs were derived from the Million Veteran Program

(MVP) consortium, which commenced participant recruitment in

2011 and has evolved into one of the world’s largest biobanks (26).

Gene-exposure data were obtained from a recent genome-wide

association study (GWAS) within the MVP consortium, where

NAFLD was defined by (1): elevated ALT>40 U liter−1 for men or

>30 U liter−1 for women during at least two time points at least 6

months apart within a 2-year window at any point prior to

enrollment and (2) exclusion of other causes of liver disease,

chronic liver diseases or systemic conditions and/or alcohol use

disorders (22). This comprehensive study identified 77 independent

SNPs with genome-wide significance (p < 5×10^-8) in the discovery

cohort, which included 90,408 cases of chronically elevated ALT

(cALT) and 128,187 controls. In the European ancestry analysis

including 68725 cases and 95472 controls, 55 independent

significant SNPs were identified. Of all the 77 SNPs, 22 and 36

SNPs from this initial set were further validated in two external

cohorts. The first cohort comprised individuals with liver fat

quantified via imaging (either computed tomography or magnetic

resonance imaging), totaling 44,289 participants. The second cohort

consisted of individuals with biopsy-confirmed NAFLD,

comprising 7,397 cases and 56,785 controls. Impressively, 17 of

the 77 cALT SNPs demonstrated nominal significance in both the

imaging and biopsy-confirmed NAFLD cohorts.

Five sets of IVs were extracted for consideration (1): All cALT-

associated SNPs (n=77, p<5×10^−8): This set included all SNPs
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that exhibited a strong association with cALT levels, surpassing the

genome-wide significance threshold (2). cALT-associated SNPs

(n=55, p<5×10^−8) in European ancestry discovery analysis (3).

cALT-associated SNPs with nominal significance and directional

concordance in the imaging cohorts (n=22, p<0.05): This subset

comprised SNPs that not only displayed nominal significance in

relation to cALT but also exhibited a consistent directional

association in the imaging cohorts. Importantly, the effect

estimates for the imaging data (expressed as Z-scores) were

employed for this analysis (4). cALT-associated SNPs with

Nominal Significance and Directional Concordance in the Biopsy

Cohorts (n=36, p<0.05): This group consisted of SNPs that achieved

nominal significance with cALT and maintained consistent

directional concordance in the biopsy cohorts. Here, the effect

estimates were represented as biopsy-confirmed NAFLD (yes/no)

(5). cALT-associated SNPs with nominal significance and

directional concordance in both the imaging and biopsy cohorts

(n=17, p<0.05): SNPs in this category satisfied the criteria of

nominal significance and directional agreement with both

imaging and biopsy cohorts. The effect estimates for this analysis

were also expressed as biopsy-confirmed NAFLD (yes/no).

SNPs were disregarded if they exhibited linkage disequilibrium

(r^2>0.001 and clump_distance<10,000kb), were palindromic with

intermediate allele frequencies, or were unavailable in the outcome

GWAS data. Furthermore, proxy SNPs were not included in the

analysis. To assess the strength of the IVs, F statistics were

calculated, with only SNPs possessing an F statistic exceeding 10

being deemed valid and reliable IVs for NAFLD.
2.3 Outcome data

The outcome data for the associations of NAFLD-associated

was derived from the UK Biobank study (23) and the FinnGen

consortium (25). In UK Biobank, cases with kidney stones were
TABLE 1 Databases utilized for gene-exposure and gene-outcome data.

GWAS
dataset

Phenotype Sample size
Adjustment variables

Ethnicity

GWAS with the MVP
consortium (22)

cALT (yes/no)
90,408 cases and
128,187 controls

Age, gender, audit-C and first 10
principal components.

European-American, African-American,
Hispanic-American
and Asian-American

cALT (yes/no)
68725 cases and
95472 controls

Age, gender, audit-C and first 10 principal
components of ancestry

European-American

Imaging-based NAFLD
(Z-scores)

44,289
Age, gender, and first 10
principal components.

European-American, African-American
and Hispanic
American

biopsy-confirmed
NAFLD (yes/no)

7,397 cases and
56,785
controls

Age, gender, and first 10
principal components.

European-American and
Hispanic American

UK Biobank (23, 24) Kidney stones 6,536 cases and
388,508 controls

Age, sex, and the genotyping platform European ancestry

FinnGen consortium (25) Kidney stones 9,713 cases and
376,406 controls

Age, sex, genetic principal components, and
genotyping batch.

European ancestry
GWAS, genome-wide association study; MVP, Million Veteran Program; cALT, chronically elevated alanine transaminase; NAFLD, Non-alcoholic fatty liver disease.
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defined by the International Classification of Diseases, 10th

Revision (ICD-10), Office of Population and Censuses Surveys,

and self-reported operation codes. GWAS was performed on 6,536

cases and 388,508 controls of European ancestry with the

adjustment for sex, age, and the genotyping platform (24).

The FinnGen consortium provided the second source of

outcome data. In the latest release 9 (https://r9.finngen.fi/), this

dataset KSD (N14_CALCUKIDUR) comprised a remarkable 9,713

individuals who had experienced kidney stone formation, as well as

376,406 healthy controls, all of European ancestry. The dataset

underwent association tests that were meticulously adjusted for

various factors, including age, sex, genetic principal components,

and genotyping batch. It is noteworthy that individuals who had

chosen to withdraw their consent were thoughtfully excluded from

the dataset.
2.4 Statistical analysis

After harmonization of the effect alleles of NAFLD and kidney

stones, we used the following MR approaches to determine MR

estimates of NAFLD for kidney stones: the Inverse variance

weighted (IVW), weighted median, and MR-Egger (1). IVW

meta-analysis: This method was employed as the primary

approach to estimate the causal relationship between NAFLD and

kidney stones. For exposures instrumented by at least 3 SNPs, the

IVWmethod under a multiplicative random-effects model was used

as the primary statistical method; otherwise, the IVW fixed-effects

method was applied. It utilizes the Wald ratio for individual SNPs

and assumes that IVs only influence the outcome (kidney stones)

through the exposure of interest (NAFLD) (27) (2). Weighted

median methods: In addition to the IVW, the weighted median

method was used to provide more robust estimates in a broader

range of scenarios, even though it might yield wider confidence

intervals (28).

Sensitivity analysis is an essential component of MR analysis to

detect pleiotropy and ensure the reliability of the results. We

conducted several sensitivity tests, including (1): Cochran Q

derived p value threshold: A threshold of less than 0.05 was used

from the IVW method to assess the heterogeneity among estimates

of SNPs in each analysis (2). MR-Egger Regression Intercept: This

was used to detect horizontal pleiotropy, with a threshold of less

than 0.05 indicating the presence of pleiotropy (29) (3). MR-

Pleiotropy Residual Sum and Outlier Methods (MR-PRESSO):

MR-PRESSO was employed to identify and correct horizontal

pleiotropy through outlier removal, and MR-PRESSO global test

was used to detect horizontal pleiotropy (28). It is known for its

accuracy when the proportion of horizontal pleiotropy variants is

less than 10% (30).

We estimated R2, representing the proportion of IVs that could

explain each kidney stone event. Statistical power was calculated

using an online tool (https://shiny.cnsgenomics.com/mRnd/) (31).

The results and calculation methods are listed in Supplementary

Table 2. The TwoSample MR package (version 0.5.7) in the R

software (version 4.3.1) was employed to conduct all the analyses.
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3 Results

The selection process of all IVs in each group was detailed in

Supplementary Table 1. The F-statistic range for the association

between NAFLD and the GWAS conducted in the MVP

consortium was robust, ranging from 26.4 to 1113.9, signifying

the excellent strength of the IVs (Supplementary Table 2).

As shown in Figure 2 and Supplementary Table 3, for the cALT-

associated SNPs, IVW MR analysis with a random-effects model

demonstrated no significant causal relationship between NAFLD

and the risk of kidney stones in both the FinnGen consortium and

the UK Biobank (UKBB) study (FinnGen: OR: 1.02, 95% CI: 0.94-

1.11, p = 0.632; UKBB: OR: 1.000, 95% CI: 0.998-1.002, p = 0.852).

While for participants of European ancestry, the results remained

consistent (FinnGen: OR: 1.05, 95% CI: 0.98-1.14, p = 0.144; UKBB:

OR: 1.000, 95% CI: 0.998-1.002, p = 0.859). Consistent results were

observed with the weighted median and MR-Egger methods. MR-

Egger regression analysis indicated no significant intercept in either

the FinnGen consortium (All ancestries: p-value 0.618, European

ancestries: p-value 0.365) or the UKBB study (All ancestries: p-value

0.252, European ancestries: p-value 0.322), suggesting no evidence

of pleiotropy. Cochran ’s Q test revealed potential SNP

heterogeneity using the IVW method in both outcome databases.

For participants with all ancestries, MR-PRESSO analyses identified

one outlier in the FinnGen consortium and one in the UKBB study,

respectively. Notably, the association remained robust even after the

removal of these outliers (FinnGen: OR: 1.04, 95% CI: 0.96-1.12, p =

0.372; UKBB: OR: 1.000, 95% CI: 0.999-1.002, p = 0.662). For

participants with European ancestry, MR-PRESSO analyses

identified one outlier in the UKBB study. The association

persisted robustly upon excluding the outliers (OR: 1.000, 95%

CI: 0.999-1.002, p = 0.642).

For the other three groups of NAFLD-related SNPs, IVW MR

analysis also showed no significant causal relationship between

NAFLD and the risk of kidney stones in both the FinnGen

consortium and the UKBB study. Weighted median and MR-

Egger methods yielded consistent results. MR-Egger regression

analysis showed no statistically significant intercept, except for

the subgroup analysis between biopsy-confirmed NAFLD and the

risk of kidney stones in the UKBB study (p = 0.005), rendering the

result invalid in this subgroup. In the FinnGen consortium,

Cochran’s Q test indicated significant SNP heterogeneity for all

three group analyses. MR-PRESSO analyses identified one outlier

for each MR analysis using imaging-based NAFLD IVs, Biopsy-

confirmed NAFLD IVs, and imaging and biopsy-confirmed

NAFLD IVs. The MR-PRESSO global test outcomes revealed

controlled false positive rates of approximately 5% in the majority

of analyses. However, an exception was noted in the analysis that

incorporated SNPs associated with biopsy-confirmed NAFLD and

those related to imaging and biopsy-confirmed NAFLD in the

UKBB database. Remarkably, the association remained consistent

even after outlier removal. In the UKBB study, Cochran’s Q test

revealed mild SNP heterogeneity in MR analysis using imaging-

based NAFLD IVs, but no outliers were identified using MR-

PRESSO analysis.
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All the forest plots, scatter plots, funnel plots and leave-one-out

plots were shown in Supplementary Figures 1-10. The leave-one-

out sensitivity analysis revealed that no single SNP notably

challenged the overall impact of NAFLD on urolithiasis.
4 Discussion

Our MR study analysis do not provide sufficient evidence of

significant associations of genetically predicted NAFLD and risk of

kidney stones, which was different from most but not all

observational studies. In a previous systematic review and meta-

analysis, large-scale, population-based studies found that NAFLD

was associated with an increased risk of kidney stones (13).
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Additionally, another two meta-analysis reached similar

conclusions, and subgroup analysis suggested a stronger

association when diagnostic criteria based on computed

tomography were used (14, 32). However, discrepancies remained

in the literature. One prospective cohort study with a large sample

size concluded that NAFLD was associated with an increased

incidence of nephrolithiasis in men but not in women (11).

Conversely, a recent study utilizing NHANES data reported an

association between NAFLD and an increased risk of

nephrolithiasis, but this association was observed only in women

(33). In a noteworthy parallel, Zeina’s and Wei’s study, they

reported that the association between fatty liver and

nephrolithiasis remained significant, albeit with a reduced effect

size, after adjusting for other confounding factors (8, 9). This
FIGURE 2

Forest plot for associations of NAFLD and kidney stones in the FinnGen consortium and UK Biobank study. NAFLD, Non-alcoholic fatty liver disease;
OR, Odds ratio; CI, Confidence interval; SNP, single-nucleotide polymorphisms; cALT, chronically elevated serum alanine aminotransferase levels;
IVW, inverse variance weighted; MR, medelian randomization; MR-PRESSO, MR pleiotropy residual Sum and outlier.
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finding suggests that while the direct causal link between NAFLD

and kidney stones might not be strong, there could still be a

nuanced connection influenced by multiple factors.

It is worth noting that several mechanisms have been proposed

to explain the potential link between NAFLD and kidney stone

formation. On one hand, it has been reported that NAFLDmay lead

to changes in urinary constituents, potentially increasing the risk of

stone formation. Studies suggest that metabolic defects associated

with NAFLD, such as impaired glyoxylate detoxification, could

contribute to the development of hyperoxaluria, a known risk factor

for kidney stones (34, 35). On the other hand, NAFLD is

characterized by increased levels of proinflammatory molecules

and lipotoxicity, which might also play a role in kidney stone

formation. Inflammatory processes and lipotoxic effects could

potentially contribute to the pathogenesis of calcium oxalate

nephrolithiasis (36, 37).

However, it is essential to consider several potential factors that

might account for the discrepancies observed in previous

observational studies. First and foremost, the majority of these

studies employed a cross-sectional study design, which inherently

lacks the capacity to establish causal relationships. Moreover, many

previous systematic reviews and meta-analyses also relied heavily

on cross-sectional data when reporting an increased risk of kidney

stones in individuals with NAFLD. This reliance on cross-sectional

studies could introduce a level of bias and complicate the

interpretation of causality, given the limitations of such study

designs. Another crucial aspect to consider is the presence of

classic metabolic risk factors for NAFLD, including obesity,

hypertension, diabetes mellitus, and metabolic syndrome. These

factors have gained recognition as predisposing elements for

urolithiasis in their own right (38). This shared association

between these metabolic risk factors and kidney stone formation

raises the possibility of confounding variables in observational

studies. Furthermore, a significant limitation in many previous

studies is the lack of comprehensive multivariable analyses that

adjust for all relevant confounding factors. Finally, retrospective

study designs and the potential for selection bias in these studies

may further impact the accuracy and reliability of the results.

Our study possesses several noteworthy strengths that merit

discussion. The foremost strength lies in the MR design employed,

which enhances the capacity for causal inference in examining the

associations between NAFLD and the risk of kidney stones. MR

leverages genetic IVs, minimizing the potential for reverse causality

and unmeasured confounding, thereby strengthening the validity of

our findings. Second, our study benefited from the use of large-

scale, summary-level data from the GWAS within the MVP

consortium, ensuring sufficient IV strength. The range of F

statistics, a measure of IV strength, for the association between

NAFLD and kidney stones (ranging from 26.4 to 1113.9)

underscores the robustness of the chosen IVs. Third, we

incorporated gene-exposure data for four distinct NAFLD-related

traits, including cALT-confirmed NAFLD, imaging-related

NAFLD, biopsy-confirmed NAFLD, and imaging and biopsy-

confirmed NAFLD. The gene-exposure data for cALT-confirmed

NAFLD in European ancestry was analyzed separately. Notably, the

consistent lack of significant causal associations between NAFLD,
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as defined by these alternative genetic instruments, and the risk of

kidney stones reinforces the conclusion that NAFLD is not causally

linked to kidney stone development. Finally, we examined these

associations on two independent populations, and the consistent

results guaranteed the robustness of findings.

However, our study is not without its limitations. One

limitation pertains to the restriction of the studied population to

individuals of European ancestry in the outcome database. While

this choice facilitated the internal validity of our study, it might limit

the generalizability of our findings to other populations. To enhance

the external validity of our conclusions, future research should

explore the relationship between NAFLD and kidney stones in

diverse populations. Another notable limitation is the lack of

distinction between different histological stages of NAFLD in the

original GWAS data. This differentiation is of significance, as

certain histological features, particularly fibrosis, have been

specifically associated with kidney stone formation (39, 40).

Future research might benefit from a more nuanced analysis that

considers the histological heterogeneity of NAFLD in the context of

kidney stone risk. Furthermore, the outcome database lacked

information about the types of kidney stones, limiting the analysis

of the causal relationship between NAFLD and kidney stones of

specific compositions. Finally, our study relied on summary-level

data, precluding the performance of subgroup analyses, such as

stratification by sex or ethnicity. Such subgroup analyses have been

conducted in previous observational studies and could provide

valuable insights into potential variations in the association (11, 33).

The interpretation of our MR study warrants careful

consideration. While our findings suggest no significant causal

association between NAFLD and kidney stones, it is imperative to

acknowledge the limitations inherent in our study design, such as

the reliance on summary-level data and the absence of distinction

between different histological stages of NAFLD. In addition, the

gene-environment equivalence assumption must be approached

with caution. The validity of our MR estimates relies on the

assumption that genetic variants used as instruments influence

the outcome (kidney stones) solely through their impact on the

exposure (NAFLD). While this assumption is theoretically sound, it

is crucial to recognize that the inherent complexity of biological

processes may introduce nuances not fully captured by our genetic

instruments. Therefore, cautious interpretation is warranted. We

incorporated MR-PRESSO global test results into our analysis,

providing insights into the performance of MR methods in

detecting horizontal pleiotropy. The controlled false positive rates

of approximately 5%, observed in most analyses, enhance the

robustness of our conclusions. However, the deviation noted in

the analysis involving SNPs related to Imaging and biopsy-

confirmed NAFLD in the UKBB database emphasizes the

importance of cautious interpretation in this specific context.

From a clinical perspective, our findings underscore the

importance of a comprehensive patient assessment when

evaluating the risk of kidney stones in individuals with NAFLD.

Healthcare providers should consider a wide range of risk factors,

including metabolic, dietary, and genetic factors.

In conclusion, the comprehensive MR analysis conducted in

this study fails to provide compelling evidence of a causal
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association between NAFLD and an increased risk of kidney stones.

The solidity of our IVs, the absence of pleiotropy, and the

persistence of our results after the removal of outliers collectively

underscore the strength and stability of our conclusions. This study

challenges conventional assumptions and substantially contributes

to our comprehension of the complex interplay between NAFLD

and kidney stones. While our findings do not substantiate a direct

causal link, they prompt further exploration of the multifaceted

factors involved in the relationship between NAFLD and

kidney stones.
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