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Background: Diabetic retinopathy (DR), a leading cause of vision loss, has limited

options for effective prevention and treatment. This study aims to utilize

genomics and proteomics data to identify potential drug targets for DR.

Methods: We utilized plasma protein quantitative trait loci data from the

Atherosclerosis Risk in Communities Study and the Icelandic Decoding

Genetics Study for discovery and replication, respectively. Genetic associations

with DR, including its subtypes, were derived from the FinnGen study. Mendelian

Randomization (MR) analysis estimated associations between protein levels and

DR risk, complemented by colocalization analysis to examine shared

causal variants.

Results: Our MR analysis identified significant associations of specific plasma

proteins with DR and proliferative DR (PDR). Elevated genetically predicted levels

of WARS (OR = 1.16; 95% CI = 0.095-0.208, FDR = 1.31×10-4) and SIRPG (OR =

1.15; 95% CI = 0.071-0.201, FDR = 1.46×10-2) were associated with higher DR

risk, while increased levels of ALDOC (OR = 1.56; 95% CI = 0.246-0.637, FDR =

5.48×10-3) and SIRPG (OR = 1.15; 95% CI = 0.068-0.208, FDR = 4.73×10-2) were

associated with higher PDR risk. These findings were corroborated by strong

colocalization evidence.

Conclusions: Our study highlights WARS, SIRPG, and ALDOC as significant

proteins associated with DR and PDR, providing a basis for further exploration

in drug development. Additional studies are needed to validate these proteins as

disease biomarkers across diverse populations.
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1 Introduction

Diabetic retinopathy (DR) is a leading cause of vision loss

worldwide, significantly impacting both individual health and

public healthcare systems (1). Approximately one-third of people

with diabetes develop severe visual impairments due to DR, leading

to a substantial proportion suffering from irreversible blindness (2).

The progression of DR is primarily driven by prolonged

hyperglycemia, oxidative stress, and inflammation, resulting in

microvascular damage in the retina (3). Current treatments,

particularly anti-vascular endothelial growth factor (anti-VEGF)

therapies, have marked a significant advancement in managing DR,

effectively slowing its progression in many patients. However, about

40% of patients either resist or respond inadequately to these

treatments, underscoring the need for more diverse and effective

therapeutic strategies (4). Alongside anti-VEGF, other treatments,

including steroid therapies and combination protocols, have been

explored (5, 6). While these have shown limited efficacy, they

represent important attempts in the ongoing effort to combat DR.

Circulatory proteins have become key targets for therapeutic

research in DR, playing critical roles in various molecular processes

(7). Previous studies have highlighted several proteins associated

with the development of DR, including C-C motif chemokine 5

(CCL5), a-2-antiplasmin (SERPINF2), various adhesion molecules,

and C-reactive protein (CRP) (8–10). These findings are significant

in understanding the pathogenesis of DR and offer potential

avenues for treatment. Advancements in high-throughput

proteomics have further enriched our understanding of DR at the

molecular level. For example, research by Lu et al. compared plasma

proteomes of DR patients and identified key biomarkers like afamin

and protein arginine N-methyltransferase 5, which are linked to the

progression and development of diabetes (11). Similarly,

Gopalakrishnan et al. discovered distinct protein expression

profiles between DR and proliferative DR (PDR), with

neuroglobin (NGB) standing out as a notable marker for DR

development (12). However, these associations, primarily derived

from observational studies, necessitate rigorous validation. This is

crucial to ensure that the identified protein associations with DR are

not confounded by external variables or biased by reverse causality.

The pursuit of this validation represents a critical step in translating

these proteomic discoveries into practical therapeutic interventions

for DR.

Mendelian randomization (MR) utilizes single nucleotide

polymorphisms (SNPs) from genome-wide association studies

(GWAS) to uncover causal links between genetic factors and

health outcomes (13). This method capitalizes on the random

distribution of genes at birth, which helps overcome biases and

confounding factors often encountered in observational studies

(13). MR’s integration of advanced genomic and proteomic data

has been instrumental in identifying potential disease biomarkers

for various diseases (14, 15). Despite its proven utility, the

application of MR in DR research remains limited. There is a
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significant opportunity to expand this approach in DR, particularly

by combining insights from GWAS and protein quantitative trait

loci (pQTL) datasets. This integration could offer new perspectives

and solutions in understanding and treating DR, an area where

there is still much to explore and discover.

Our study embarks on a comprehensive proteome-wide MR

analysis, augmented by colocalization analysis, to explore potential

disease biomarkers for DR and PDR. By integrating genomic and

proteomic data, we aim to uncover new pathways and targets,

potentially paving the way for innovative treatments for these

visually debilitating conditions.
2 Materials and methods

2.1 Study design and ethics

Our research methodology is outlined in Figure 1. We utilized

data from three key sources: the large-scale genome-wide blood

proteome study (available at https://www.decode.com/

summarydata/) (16), the Atherosclerosis Risk in Communities

(ARIC) study (http://nilanjanchatterjeelab.org/pwas/) (17), and

the FinnGen study (https://www.finngen.fi/en) (18). All the data

were sourced from established studies that had already obtained

ethical clearance from their respective institutions, eliminating the

need for a separate ethical review for our research.
2.2 Data sources

In the discovery stage, plasma protein pQTL data were obtained

from the ARIC study, which included a total of 4657 plasma proteins

collected from 7213 European Americans (EA) (17). For the

replication stage, plasma protein pQTL data were obtained from

the Icelandic deCODE genetics study by Ferkingstad et al, which

analyzed 4907 plasma proteins from 35,559 Icelanders and reported

more than 272 million genetic variants (16). The use of both datasets

allowed us to balance the discovery and validation phases of our study

effectively. The ARIC dataset provided a detailed platform for initial

protein association findings, while the Icelandic dataset enabled us to

replicate and validate these findings across a different population,

thereby enhancing the generalizability of our study. Proteomics

analyses for both studies were performed using the advanced

SomaScan technology on the v.4.1 platform, ensuring consistent

and high-quality data for our analyses.

We obtained DR and PDR data from the FinnGen study (18).

This included 10,413 DR cases and 308,633 controls, and 9,511 PDR

cases and 362,581 controls. The participants were all of European

descent. We adjusted genetic associations for factors like age, sex,

and genetic correlation, along with genotyping batch and the top 10

principal components. We identified cases of DR and PDR using

International Classification of Diseases codes, specifically ICD-9
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(3620) and ICD-10 (H360) for DR, and ICD-10 (H3603) for

PDR (18).
2.3 Instrument selection and validation

In conducting our MR analysis, we rigorously derived genetic

instrumental variables (IVs) from plasma protein pQTL data, as

referenced in our prior research (16, 17). To ensure a substantial

association between these IVs and the exposure variable, which in

our study is protein abundance, we meticulously selected cis-SNPs

positioned within 1 megabase (Mb) of the gene encoding the

relevant protein. This selection was based on a stringent p-value

threshold of less than 1 × 10-5, a criterion chosen to balance

statistical significance with the likelihood of a genuine biological

impact on protein levels. To secure the independence of these SNPs

and preclude confounding due to linkage disequilibrium, we

employed linkage disequilibrium (LD) clumping using PLINK

software. This process involved evaluating SNPs within a 10 Mb

window, considering them as independent if their LD values (r2)

was less than 0.01. Our choice of reference panel for this analysis

was the genotype data of Europeans from the 1000 Genomes

Project, which aligns with the ancestry of the study’s participant

population. This methodological approach was adopted to ensure
Frontiers in Endocrinology 03
the reliability and relevance of the instrumental variables used in

our MR analysis.
2.4 Mendelian randomization

All MR analyses were undertaken with the TwoSampleMR

package in R. The primary MR analysis was conducted using the

inverse-variance weighted (IVW) method to determine the causal

effects of plasma proteins on DR. FDR correction was performed

using the BH method, and FDR < 0.05 was considered for statistical

significance. The MR results were presented as odds ratio (OR) and

95% confidence interval (95% CI) for risk of DR per genetically

predicted 1-standard deviation (SD) increase in plasma

protein level.

To further identify the associations identified by the primary

analyses, we performed multiple MR analyses of the preliminarily

identified proteins as replications using an independent blood

pQTL database (The Icelandic deCODE genetics study). Multiple

MR analytical approaches, including IVW, Egger, weighted median,

and weighted mode, were applied for validation, of which IVW was

chosen as the pr imary approach accord ing to the

recommendation (19).

To further assess the robustness of the causal relationships

identified by the multiple MR analyses, we also conducted
FIGURE 1

Study design. ARIC, the Atherosclerosis Risk in Communities study; deCODE, the Icelandic Decoding Genetics Study; DR, diabetic retinopathy; PDR,
proliferative diabetic retinopathy; FDR, false discovery rate; MR, Mendelian Randomization.
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sensitivity analyses, including heterogeneity and horizontal

pleiotropy tests. Heterogeneity was assessed using Cochran’s Q

statistic (20). The Cochran’s Q test followed a chi-square

distribution with IV number minus one degree of freedom. MR-

Egger regression intercept was employed as a measure of directional

pleiotropy (20). Proteins with only one IV are not suitable for the

above sensitivity analyses. Heterogeneity tests require at least two

IVs to be analyzed and MR-Egger regression requires at least three

IVs to be analyzed. For the multiple MR and sensitivity analyses, p-

value < 0.05 was considered significant.
2.5 Bayesian colocalization

Colocalization analysis serves as an indispensable complement

to cis-MR, crucial for assessing the validity of IV assumptions (21).

This analysis is pivotal in differentiating whether the same genetic

variants are influencing both the exposure (plasma protein levels)

and the outcome (DR risk). By conducting colocalization analysis

using the coloc.abf function in the R package coloc, we aimed to

determine if the identified proteins and DR share causal genetic

variants within the same genomic regions. This step is crucial for

eliminating potential interference due to LD. We tested the

posterior probability of hypothesis 4 (PPH4), which examines the

likelihood of both the protein and DR sharing variants in the same

region. Interpretation of PPH4 values is critical; a PPH4 greater

than 0.5 suggests a likely colocalization, while a value exceeding 0.75

indicates a high probability of sharing causal variants.

The results of the colocalization analysis were instrumental in

categorizing the identified proteins into tiers based on the strength

of their causal evidence with DR. Proteins that showed consistent

results in replication analyses and had strong supporting evidence

of colocalization (PPH4 greater than 0.75) were classified as Tier 1

targets. This classification underscores a robust association with

DR, suggesting a higher likelihood of being genuine disease

biomarkers. Proteins with only high support evidence of

colocalization (PPH4 greater than 0.75) were categorized as Tier

2 targets. These proteins, while showing potential association with

DR, may require further validation. The remaining proteins, which

did not meet these stringent criteria, were classified as Tier 3 targets.

This tier-based system allows for a nuanced interpretation of the

data, guiding future research and development efforts towards the

most promising disease biomarkers for DR.
3 Results

3.1 MR analysis

In our MR analysis, we assessed 4657 plasma proteins to explore

their potential link with DR, employing a methodology previously

explicated. After applying an adjustment for the FDR, we identified

five proteins with significant associations with DR (Figure 2A).

Specifically, we found that higher genetically predicted levels of the

proteinsWARS (OR = 1.16; 95% CI = 0.095-0.208, FDR = 1.31×10-4),

KLK8 (OR = 1.22; 95% CI = 0.105-0.288, FDR = 1.10×10-2), SIRPG
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(OR = 1.15; 95% CI = 0.071-0.201, FDR = 1.46×10-2), and KLK11

(OR = 1.58; 95% CI = 0.222-0.696, FDR = 4.35×10-2) were associated

with an increased risk of DR. In contrast, an increase in HSPA1A

levels (OR = 0.466; 95% CI = -1.067 to -0.46, FDR = 4.96×10-4) was

linked to a decreased risk of DR (Supplementary Table 1).

Further, when investigating PDR, our analysis revealed three

proteins associated with a higher risk of developing PDR (Figure 2B;

Supplementary Table 2). These include OLFML3 (OR = 1.51; 95%

CI = 0.238-0.591, FDR = 3.75×10-3), ALDOC (OR = 1.56; 95% CI =

0.246-0.637, FDR = 5.48×10-3), and SIRPG (OR = 1.15; 95% CI =

0.068-0.208, FDR = 4.73×10-2). Notably, SIRPG showed a

consistent association with both DR and PDR.
3.2 Replication analyses

In the replication phase of our study, we re-examined five

proteins initially identified as associated with DR. Out of these, two

proteins, WARS and SIRPG, showed consistent results in the

Icelandic deCODE genetics study. The analysis indicated an

increased risk of DR with higher levels of WARS (OR = 1.39;

95% CI = 0.21-0.45; p-value = 5.50 × 10-8) and SIRPG (OR = 1.39;

95% CI = 0.18-0.62; p-value = 3.32 × 10-4), as shown in
A

B

FIGURE 2

Manhattan plots for associations of genetically predicted 4657
plasma proteins levels with DR and PDR in MR analysis. (A)
Associations of genetically predicted plasma protein levels with DR;
(B) associations of genetically predicted plasma protein levels with
PDR. Labelled and color genes refer to MR findings with FDR-
corrected p < 0.05. Red genes indicate the positive effect of the
plasma proteins on outcomes; blue genes indicate the negative
effect of the plasma proteins on outcomes.
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Supplementary Table 3. Our sensitivity analysis, which included

tests for heterogeneity (p-value for Cochran’s Q = 0.442) and

pleiotropy (p-value for MR-Egger intercept = 0.479), found no

significant discrepancies in the association between WARS and DR.

It’s important to note that for SIRPG, due to the availability of only

one IV (rs6043409), we couldn’t perform heterogeneity and

pleiotropy tests (Supplementary Table 4).

For PDR, our analysis replicated the associations for all three

identified proteins: OLFML3, ALDOC, and SIRPG. Specifically,

increased levels of OLFML3 (OR = 1.82; 95% CI = 0.09-1.12; p-

value = 2.19 × 10-2), ALDOC (OR = 1.83; 95% CI = 0.34-0.87; p-value

= 9.28 × 10-6), and SIRPG (OR = 1.58; 95% CI = 0.23-0.68; p-value =

6.65 × 10-5) were associated with a higher risk of developing PDR.

These results are detailed in Supplementary Table 5. Based on

Cochran’s Q statistics, there was little evidence of heterogeneity

between OLFML3 and PDR (p-value for Cochran’s Q = 0.108).

Similar to SIRPG in DR analysis, due to the presence of only one IV

for both SIRPG (rs6043409) and ALDOC (rs141921160),

heterogeneity and pleiotropy analyses were not conducted.
3.3 Colocalization analyses

In our study, we conducted detailed colocalization analyses to

further understand the relationship between certain plasma

proteins and both DR and PDR. Our findings showed significant

colocalization for three of the five analyzed proteins (KLK8, SIRPG,

and WARS) with DR. The evidence for colocalization was strong, as

indicated by the PPH4, which were 78.3%, 80.7%, 94.3%, and 87.6%

respectively for these proteins (Supplementary Table 6). Similarly,

for PDR, two proteins, ALDOC and SIRPG, also showed high

evidence of colocalization with PPH4 values of 99.1% and

93.4%, respectively.

To classify the identified proteins based on the strength of

evidence supporting their role in DR and PDR, we organized them

into tiers. We considered several factors for this classification,

including the consistency of results in replication analyses, the

presence of heterogeneity or horizontal pleiotropy, and the strength

of colocalization evidence. Based on this approach, WARS and

SIRPG were categorized as Tier 1 evidence proteins for DR,

indicating a strong link. For PDR, ALDOC and SIRPG were also
Frontiers in Endocrinology 05
classified as Tier 1 evidence proteins, underscoring their potential

significance in the disease’s development. These categorizations and

the detailed evidence supporting them are presented in Table 1.
4 Discussion

In human genetics research, the focus on identifying disease

biomarkers, especially for conditions like DR, is crucial. A large

portion of FDA-approved drugs in recent years are supported by

genetic research, highlighting the role of genetics in medical

advancements (22). Our study, employing MR and colocalization

analysis, identified four plasma proteins (WARS, KLK8, SIRPG,

ALDOC) as potential markers for DR and PDR. Three of these

proteins, WARS, SIRPG, and ALDOC, were validated in multiple

MR analyses against an independent pQTL database. This

validation strengthens our findings. Our study paves the way for

further research to explore the direct histological links of these

proteins to DR. It highlights the potential of these proteins as targets

for future therapeutic interventions, given their relative ease

of detection.

Our study highlights SIRPG as a significant marker for DR and

its advanced form, PDR, supported by strong evidence. SIRPG, a

member of the SIRP protein family, is primarily found on T cells

and a subset of B cells (23). Genomic studies have linked two

specific genetic variations of SIRPG, rs2281808 (C > T; intronic)

and rs6043409 (G > A; A263 V), to type 1 diabetes (24, 25). The

association of the T allele of rs2281808 with an increased risk of

type 1 diabetes suggests a genetic predisposition (26). Further

analysis using two-sample MR indicates a correlation between

higher levels of SIRPG and an increased risk of type 1 diabetes

(27). These findings suggest a potential link between elevated

SIRPG levels and diabetes susceptibility. However, the direct role

of SIRPG in the development and progression of DR and PDR

needs further investigation. This research opens avenues for

exploring SIRPG as a biomarker in diabetic eye diseases and

understanding its underlying mechanisms in DR pathogenesis.

In our research, we identified WARS as another potential risk

factor for DR. WARS, a fundamental enzyme in protein synthesis,

links tryptophan to its corresponding transfer RNA (28). Previous

studies have shown increased levels of WARS in the tears of patients
TABLE 1 Summary of levels of evidence for target proteins for DR and PDR.

Disease Protein Discovery Replication Heterogenity Pleiotropy Colocalization Targets

DR

WARS 1.31E-04 3.01E-07 4.42E-01 4.80E-01 94.4% Tier 1 Target

HSPA1A 4.96E-04 8.89E-01 1.45E-147 NA 0.0% Tier 3 Target

KLK8 1.10E-02 5.78E-01 1.45E-147 4.91E-02 78.3% Tier 2 Target

SIRPG 1.46E-02 3.32E-04 NA NA 80.7% Tier 1 Target

KLK11 4.35E-02 4.94E-01 1.30E-01 6.01E-01 1.0% Tier 3 Target

PDR

OLFML3 3.75E-03 2.19E-02 1.08E-01 NA 0.0% Tier 3 Target

ALDOC 5.48E-03 9.28E-06 NA NA 99.2% Tier 1 Target

SIRPG 4.73E-02 6.65E-05 NA NA 93.4% Tier 1 Target
f
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with PDR, suggesting its involvement in the disease (29). Our

findings support this link, establishing a causal relationship

between WARS and DR. Interestingly, PDR is characterized by

abnormal blood vessel growth, yet WARS is known to have anti-

angiogenic effects. This includes its influence in ocular angiogenesis

(30) and tumor growth (31). When WARS is broken down, it

produces several smaller molecules, such as mini-WARS and T2-

WARS, known to inhibit blood vessel growth (30–34). Specifically,

T2-WARS interacts with VEGF pathways, reducing endothelial cell

movement and angiogenesis (33, 35). Additionally, WARS acts as a

natural trigger for Toll-like receptors (TLR) 2 and 4, known to play

a role in inflammatory responses. The engagement of WARS with

these receptors leads to the production of various inflammatory

substances (36). Considering the known role of inflammation in

DR, exploring the pathological implications of WARS in this

context is of great importance (37). This further establishes

WARS not only as a marker for DR but also as a potential target

for understanding and managing the disease.

Our study highlighted ALDOC, a member of the class I

fructose-bisphosphate aldolase gene family, as a key protein

associated specifically with proliferative diabetic retinopathy

(PDR). ALDOC’s primary function involves critical steps in

glycolysis, where it aids in breaking down sugars (38). We

observed that increased levels of ALDOC align with elevated

plasma free fatty acid concentrations. This correlation could

influence insulin secretion and potentially lead to type 2 diabetes

mellitus, a known risk factor for PDR (39, 40).

Furthermore, research by Michal et al. has uncovered the

significant role of aldolase proteins, including ALDOC, in

enhancing Wnt signaling (41). This signaling pathway, implicated

in various cellular processes, is critical in the development of

diabetic retinopathy. Specifically, ALDOC and its family members

can modify Wnt signaling by interacting with key molecular

components, thereby influencing cell behavior related to PDR

(42). Although these findings position ALDOC as a potential risk

marker for PDR, its direct role in the disease’s pathogenesis is yet to

be fully understood. More detailed studies are necessary to clarify

the exact relationship between ALDOC levels and PDR, which

could open new avenues for therapeutic interventions.

Our study has limitations, particularly in using blood-derived

proteins, which may not completely reflect changes in DR-specific

tissues like the retina. Future research should explore proteins from

these ocular tissues for deeper insights into DR. Additionally, our

use of SOMAmers technology, while advanced, may not capture the

full range of proteins involved in DR. Exploring diverse proteomic

methods and sample types could uncover more relevant proteins.

Importantly, our focus on European ancestry limits the study’s

broader applicability. Future research must include diverse

populations to understand how genetic differences affect DR

across ethnicities. This is crucial for developing treatments and

prevention strategies effective for a global population.

In summary, our study identifies strong causal connections

between three plasma proteins (SIRPG, WARS, ALDOC) and DR.

This finding opens new avenues for therapeutic research in DR.

Future studies are essential to confirm these links and explore their

underlying mechanisms. This work sets the stage for developing
Frontiers in Endocrinology 06
targeted treatments for DR, addressing a significant

health challenge.
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