
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Sen Li,
Beijing University of Chinese Medicine, China

REVIEWED BY

Florence Carrouel,
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Samborowska, Żeber-Lubecka, Kulecka and
Klupa. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 02 February 2024

DOI 10.3389/fendo.2023.1332406
The interplay between gingival
crevicular fluid microbiome and
metabolomic profile in
intensively treated people with
type 1 diabetes - a combined
metagenomic/metabolomic
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Aims: This study aimed to assess the gingival crevicular fluid (GCF) microbiome

and metabolome of adults with type 1 diabetes (T1D) treated with continuous

subcutaneous insulin infusion (CSII).

Methods: In this cross-sectional study, the GCF of adults with T1D treated with

CSII and non-diabetic controls were sampled, and metagenomic/metabolomic

analyses were performed.

Results: In total, 65 participants with T1D and 45 healthy controls with a mean

age of 27.05 ± 5.95 years were investigated. There were 22 cases of mild gingivitis

(G) in the T1D group. There were no differences considering the Shannon and

Chao indices and b-diversity between people with T1D and G, with T1D without

G, and healthy controls. Differential taxa were identified, which were mainly

enriched in people with T1D and G. Acetic acid concentration was higher in

people with T1D, regardless of the presence of G, than in healthy controls.

Propionic acid was higher in people with T1D and G than in healthy controls.

Isobutyric and isovaleric acid levels were higher in individuals with T1D and G

than in the other two subgroups. The concentration of valeric acid was lower and

that of caproic acid was higher in people with T1D (regardless of gingival status)

than in healthy controls.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1332406/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1332406/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1332406/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1332406/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1332406/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1332406/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1332406/full
https://orcid.org/0000-0002-1384-9439
https://orcid.org/0000-0002-4288-1024
https://orcid.org/0000-0002-7585-4946
https://orcid.org/0000-0002-0646-0847
https://orcid.org/0000-0003-4036-3191
https://orcid.org/0000-0002-9830-8892
https://orcid.org/0000-0002-7199-4079
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1332406&domain=pdf&date_stamp=2024-02-02
mailto:mich.kania@uj.edu.pl
https://doi.org/10.3389/fendo.2023.1332406
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1332406
https://www.frontiersin.org/journals/endocrinology


Gregorczyk-Maga et al. 10.3389/fendo.2023.1332406

Frontiers in Endocrinology
Conclusions: The identification of early changes in periodontal tissues by

targeting themicrobiome andmetabolome could potentially enable effective

prevention and initial treatment of periodontal disease in people with T1D.
KEYWORDS

type 1 diabetes, continuous subcutaneous insulin infusion, gingival crevicular fluid,
microbiome, metabolome, gingivitis
Highlights
• To our knowledge, this is the first study to investigate the

GCF microbiome in people with T1D. The study

population was treated with modern technologies, such as

CSII, demonstrating good glycemic control.

• Intensively treated people with T1D with satisfactory

glycemic control and non-diabetic individuals generally

showed good oral and periodontal health.

• With relatively well-controlled diabetes, slight differences in

glycemic control did not significantly affect the oral

microbiome, which was comparable to that observed in

people without diabetes.

• Despite good metabolic control of diabetes, people with

T1D in our study had a higher prevalence of mild gingivitis

than healthy controls. This subpopulation exhibited shifts

in the GCF microbiome and metabolome, resembling those

in periodontitis.
1 Introduction

The oral cavity, also known as the mouth or buccal cavity, is the

first section of the digestive system (1–3). It consists of several

distinct microbial niches, such as tooth surfaces, gingiva, gingival

sulci, and mucosal surfaces of the tongue, cheeks, lips, and palate

(4). Species residing in the oral cavity are regarded as part of the oral

microbiome (5), which is one of the most important microbial

complexes in humans (6). It has been reported to include over 1000

species of bacteria, with a few lesser-known taxa emerging from the

most recent studies, archaea, which are less abundant and diverse

than bacteria, approximately 100 species of fungi, and a rich virome

(7). Although the oral microbiome is defined as all microorganisms

residing in the human oral cavity and its extensions (reaching the

distal part of the esophagus), most studies have focused on samples

obtained from the oral cavity itself (4). They can have both positive

and detrimental effects on general health and the local state of the

oral cavity (5, 6). The link between the oral microbiome and

organisms is bidirectional. Diseases affect microbial composition

and function, and microorganisms modify their susceptibility to
02
disease states, course, and prognosis. One such condition is diabetes

(8–10).

Type 1 diabetes (T1D) is a chronic autoimmune disease in

which pancreatic beta cells responsible for insulin production are

destroyed. People with T1D account for 5–10% of the population

with diabetes (11). Continuous subcutaneous insulin infusion

(CSII) using an insulin pump is one of the most notable

advancements in diabetes technology. Insulin pump therapy has

become the preferred treatment for T1D, as it mimics the

physiological secretion of insulin better than multiple daily

injections. People with T1D treated with CSII therapy compared

to traditional multiple daily insulin injections achieve improved

glycemic control (12).

Diabetes not only affects the oral microbiome but also increases

the risk of multiple local oral abnormalities in the oral cavity,

affecting the quality of life of people with diabetes (13). People with

diabetes are highly susceptible to dental caries, tooth loss, and

periodontal disease (PD) (14, 15). The mechanisms responsible

include quantitative and qualitative salivary changes, formation of

advanced glycosylation end products, and their deposition in

tissues, leading to vascular dysfunction due to hyperglycemia and

accompanying atherosclerosis (13, 16).

Alterations in the oral microbiome of people with diabetes have

been extensively investigated; however, most studies have focused

on type 2 diabetes. The oral microbiome of individuals with T1D

has rarely been the subject of extensive research. Interestingly, the

results often contrast and cannot be generalized. Microbiome shifts

have been reported to affect the immune function and metabolic

control in this population (17, 18). Moreover, reports tend to focus

on those with poor oral health, caries, or PD (19, 20).

Subgingival plaque accumulation is associated with the

supragingival environment (21). Caries and PDs, which are

common oral biofilm-related diseases, are caused by resident

microorganisms in the oral cavity (22). The red complex is a

specific group of bacteria considered to play a major role in the

development of adult PD. These bacteria include Porphyromonas

gingivalis, Treponema denticola, and Tannerella forsythia (23).

People with T1D and good metabolic control of diabetes without

a history of oral pathologies, are still underreached, showing

alterations in the oral microbiome, such as a greater abundance

of Streptococcus spp., Actinomyces spp., and Rothia spp.,

than healthy controls (17). Additionally, some studies have
frontiersin.org

https://doi.org/10.3389/fendo.2023.1332406
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gregorczyk-Maga et al. 10.3389/fendo.2023.1332406
implemented traditional bacterial identification methods (24, 25).

Therefore, the oral microbiome signature in T1D has not yet

been established.

Novel approaches to the holistic investigation of phenomena

include metagenomics, transcriptomics, proteomics, and

metabolomics to identify the differences between healthy and

diseased participants and their underlying mechanisms (26–28).

Metabolomics can target various environments, such as stools,

saliva, and gingival crevicular fluid (GCF), metabolites and

metabolomics which can be associated with several diseases,

including diabetes and PD (29–32). The roles of various

metabolites in the human body, such as in the gut, respiratory

tract, genitourinary tract, and oral cavity, are complicated and not

well understood. In some cases, different concentrations of the same

metabolite can have opposite effects depending on its location.

Moreover, metabolites delivered in nutrients can influence

microbiome composition, but these substances are also produced

by bacteria, implicating complex bidirectional relationships (33).

Usually, saliva has been investigated, with only a few studies

assessing the GCF microbiome or its metabolome. The GCF, which

is derived from periodontal tissues, plays an important role in

preserving the junctional epithelium and other periodontal

structures (34, 35). It may play a dual role – either maintaining

periodontal health and assuring the antimicrobial defense of the

periodontium, as it contains immune cells, antibodies, and

cytokines, or, when altered by acute or chronic immune

processes, is responsible for the emergence of PD (36, 37). GCF

contains multiple proteolytic and hydrolytic enzymes, bone-related

biomarkers, cell death, and tissue breakdown products. Oral

bacteria and products of their metabolism can also be identified

in the GCF and add to the complexity of this oral niche (35). Thus,

GCF analysis has the potential to become a predictive, preventive,

and personalized medical approach for the diagnosis of PDs.

Although GCF is inherently associated with PD, its metabolomics

have rarely been investigated (29).

The present study aimed to assess the oral GCF microbiome

and metabolome status in the group of adult people with T1D,

homogenous with respect to the mode of diabetes management

(CSII) and glycemic control.
2 Methods

2.1 Study design and participants

This was a cross-sectional study consecutively that recruited 110

adult participants. Sixty-five people with T1D were treated with

continuous subcutaneous insulin infusion (CSII) in the Outpatient

Clinic of the Department of Metabolic Diseases and Diabetology of

the University Hospital in Krakow, an academic referral center for

diabetes in southeastern Poland. Patients were matched with 45

non-diabetic controls.

Between October 1 and December 31, 2022, patients attending

the clinic who met the inclusion criteria were offered the

opportunity to participate in the study. After obtaining written

consent, the sampling date was set and participants were instructed
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on how to prepare for the study procedures. The inclusion criteria

were age 18–35 years, T1D diagnosed at least 1 year before

recruitment, treatment with CSII for at least 6 months, and

informed consent to participate. The exclusion criteria were

pregnancy or breastfeeding and comorbidities, such as metabolic

syndrome, cardiovascular disease, cancer, severe liver failure, or

kidney failure. Diagnosis of T1D was confirmed based on the

Diabetes Poland criteria. Data on age, sex, comorbidities, diabetes

duration (on the day of sampling), glycated hemoglobin (HbA1c),

and T1D treatment were extracted from the medical records.

HbA1c levels were measured using high-performance liquid

chromatography. Individuals with diabetes were matched with

non-diabetic controls. The ratio of controls per case was set at 0.7:1.

Information on daily oral hygiene routines, frequency of dental

appointments, and history of dental procedures were recorded.

Examination of the oral cavity was performed by a trained dentist in

a specially prepared room equipped with a dental chair and

shadowless lamp to ensure maximal privacy for the participants.

During periodontal examination, a WHO 621 periodontal probe

was used to assess the Gingival Index (38), Gingival Sulcus Bleeding

Index (39), and Plaque Index (39). PerioCP probe-15 was utilized to

assess the Clinical Attachment Level (CAL) and Pocket Probing

Depth. The oral health status was assessed using the Oral Hygiene

Index (40), Community Periodontal Index, and Treatment

Needs (41).

Microbiological samples were collected from the oral cavity by

refraining from brushing the teeth with any kind of toothpaste or

rinsing the oral cavity with any kind of mouthwash for 12 h prior to

the visit. Additionally, information on the previous use of selected

types of oral health products (i.e., toothpaste containing triclosan,

mouthwash containing chlorhexidine, or any oral topical agent) was

recorded. On the day of the examination, the participants refrained

from brushing their teeth and drinking, eating, or smoking for 1 h

before the microbiological samples were collected. To prevent

salivary contamination of GCF, pieces of sterile gauze were used

to remove excess saliva from the mucosal and dental surfaces.

PerioPaper Strips were used to collect GCF samples. The strips were

placed in the gingival pocket for 30–45 s until the surface was

soaked. After the collection, strips were placed in 1 mL of Liquid

Amies in a plastic screw cap tube (COPAN ESwab™).
2.2 DNA extraction and 16S
rRNA sequencing

Genomic DNA was extracted and purified from PerioPaper

Strips using the QIAamp DNA Mini Kit (QIAGEN, Hilden,

Germany) with modifications to the bacterial protocols. DNA

purity was measured on a NanoDrop™ 2000 Spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA) and quantified

using fluorimetry with the Qubit dsDNA High Sensitivity Assay

(Thermo Fisher Scientific, Carlsbad, CA, USA). Bacterial 16S rRNA

libraries were prepared using an Ion 16S™ Metagenomics Kit and

an Ion Plus Fragment Library Kit as previously described (42). Next,

constructed libraries were sequenced on an Ion Torrent Personal

Genome Machine (PGM) platform (Thermo Fisher Scientific,
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Waltham, MA, USA) using Ion PGM™ Hi-Q™ View Kit (Thermo

Fisher Scientific, Waltham, MA, USA).
2.3 GCF microbiome
metabolite quantification

The concentrations of short-chain fatty acids (SCFAs) and

trimethylamine derivatives were determined using liquid

chromatography coupled with mass spectrometry (Waters

Acquity Ultra Performance Liquid Chromatograph, Waters TQ-S

triple-quadrupole mass spectrometer, Waters). Waters MassLynx

software was used for instrument control and data acquisition.

Waters TargetLynx was used to process the data. To evaluate

metabolites’ concentrations, one strip with gingival crevicular

fluid (PerioPaper Strip) was incubated with 50 µL PBS for 30 min

to extract all analytes. SCFAs and lactic acid analysis were based

on derivatization using 3-nitrophenylhydrazine and N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide-pyridine solution.

LC-MS/MS analysis was performed in the negative electrospray

ionization multiple-reaction monitoring mode. The SCFAs were

separated using a Waters BEH C18 column (1.7 µm, 2.1 mm x 50

mm) and a Waters BEH C18 guard column (1.7 µm, 2.1 mm x 5

mm). A 1 mL of formic acid in 1 L of water was used as mobile

phase A, and 1 mL of formic acid in acetonitrile was used as mobile

phase B. The flow rate of the mobile phase was set at 0.6 mL/min.

To determine trimethylamine (TMA), choline, carnitine, betaine

and glycerophosphorylcholine, only 20 µL of a sample was used.

TMA was performed using a butyl bromoacetate solution as the

derivative reagent. The LC-MS/MS method has been previously

described (43).
2.3 Statistical analysis

The null hypothesis used in the study was that there are

significant differences in the alpha and beta diversity of the oral

GCF microbiome between people with T1D treated with CSII and

healthy non-diabetic controls.

Metagenomic analyses included comparisons between healthy

controls and people with T1D and gingivitis (G) vs. those with T1D

without G. Individuals with T1D were additionally divided into

quartiles based on HbA1c and the first and fourth quartiles were

compared. Metabolomic analyses included a comparison between

healthy controls and people with T1D and G vs. those T1D without

G. Additionally, we analyzed the correlation between metabolite

concentrations and HbA1c%. In the metagenomic-metabolomic

analysis, correlations between the identified bacterial taxa and

selected metabolite concentrations were compared.

The PS Imago Pro ver. 8.0 and Statistical ver. (13) were used for

all the statistical analyses. When data were missing, a complete case

selection approach was used. Normality of the continuous variable

distribution was assessed using the Shapiro–Wilk test. Differences

between groups were analyzed using Student’s t-test or

nonparametric tests (Mann–Whitney U test, Kruskal–Wallis

ANOVA), when appropriate. Continuous variables were
Frontiers in Endocrinology 04
presented as arithmetic means (�x) ± standard deviations (SD) or

as the median with interquartile range (IQR) when the data were

not normally distributed. The distribution of categorical variables

was described as counts and percentages. Statistical testing was

performed to compare categorical variables using an independent

sample chi-square test or Fisher’s exact test, when appropriate.

Statistical significance was set at p <0.05. The Bonferroni method

was used to correct multiple comparisons. Power calculations using

the RNASeqPower package estimated a power of 90% for a coverage

depth of 10x, sample size of 45 (each group), coefficient of variation

of 0.5, and effect size (fold-change) of 1.5.

The unmapped BAM files were converted into FASTQ files

using Picard SamToFastq (44). Additional steps of the analysis were

performed using the Mothur version 1.47 software (45). FASTQ

files were converted to FASTA format. For the analyses, only

sequences 200–300 bp in length with an average base quality of

20 in a sliding window of 50 bases and a maximum homopolymer

length of 10 were used. Chimeric sequences were identified using

the VSEARCH chimera detection algorithm with default

parameters (46)and the internal sequence collection as the

reference database. Chimeric sequences were removed and the

remaining 16S rRNA sequences were classified using the Wang

method and the SILVA bacterial 16S rRNA database (47) for

reference (release 138) with an 80% bootstrap cut-off.

Differential taxon abundances were assessed using a mixed-

effects model implemented in LinDA (48). The nonparametric

Shannon diversity index and Chao1 richness index were

determined using Mothur, with differences in the values of the

indices assessed using the Mann–Whitney U-test. Bray–Curtis

indices and principal coordinate analysis (PCoA) were performed

using the vegan package (49). FDR-adjusted (50) P-values ≤ 0.05

were considered statistically significant. For SCFAs and amino

acids, correlations with bacteria were determined using the

Spearman’s coefficient.
2.4 Ethics and reporting guidelines

This study involving humans was approved by the Jagiellonian

University Bioethics Committee (Komisja Bioetyczna Uniwersytetu

Jagiellońskiego). The study was conducted in accordance with local

legislation and institutional requirements. All the participants

provided written informed consent to participate in this study.

This study was conducted in accordance with the Strengthening

the Reporting of Observational Studies in Epidemiology guidelines.

This checklist has been added to the Supplementary File.
3 Results

A total of 110 participants were included in the study: 65 people

with type 1 diabetes and 45 matched healthy controls. The mean age

of the sampled population was 27.05 ± 5.95 years. Sixty percent of

participants were male. The mean duration of diabetes was 15.5 ±

8.4 years. All people with T1D were treated with continuous

subcutaneous insulin infusion. The mean Hba1c% was 6.97 ±
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0.95% (53 ± 2.2 mmol/mmol). No baseline differences were

observed between the groups (Supplementary Table 1).

None of the participants had dental implants or prostheses.

There were no cases of periodontitis in the study population, and 22

cases of mild G were observed in the T1D group. The selected dental

indices and the prevalence of edentulism are summarized in

Supplementary Table 1.
3.1 GCF microbiome analysis

Taxonomic profiling revealed that Firmicutes was the most

abundant phylum (mean: 34%), followed by Proteobacteria (mean:

27%), Bacteroidota (mean: 16%), Actinobacteriota (mean: 12%), and

Fusobacteriota (mean: 7%) (Figure 1). At the genus level

Pasteurellaceae_unclassified, Haemophilus, Actinomyces, Veillonella,

and Fusobacterium were the most abundant genera (Figure 1).

To identify the potential differences in the structure of the GCF

microbiome, we first evaluated the a- and b-diversity in subgroups

of T1D cases and controls divided according to clinical status. The

a-diversity was analyzed using the Shannon index, a marker of

bacterial richness and evenness, and the Chao index, a marker of

richness. The b-diversity was analyzed using PCoA of Bray-

Curtis distances.

GCF community composition did not differ between T1D cases

and controls considering insignificant differences in the Shannon

and Chao indices (Figure 2A, B), whereas there were borderline
Frontiers in Endocrinology 05
significant differences in the b-diversity (p =0.058, Figure 2C). In

the first comparison between people with T1D without G and

healthy controls, after adjusting for multiple comparisons, no

differentiating taxa were identified. Next, we compared the GCF

microbiomes of people with T1D and G to those with T1D and no

gingival pathology. We found as many as 31 differential taxa at the

adjusted p-value significance level when comparing people with

T1D and G to those without G. All but one taxon, Cutibacterium

spp. (p adjusted 0.04; FC -0.88), were overrepresented in

participants with G (Supplementary Table 2). Third, people with

T1D and G were compared with healthy controls. There were 38

differentially expressed taxa at the adjusted p-value significance

level. All but one taxon, Hemophilus spp. (adjusted 0.026; FC 1-.79),

were overrepresented in T1D participants with G (Supplementary

Table 3).

A side-by-side comparison of the differential taxa between

people with T1D and G and those with T1D without G vs. those

with T1D and G and healthy controls is presented in Table 1. In

total, 20 taxa were different in both comparisons: 11 were specific

only for comparisons between people with T1D and G vs. those

with T1D without G, and 17 were present only in comparisons

between people with T1D and G and healthy controls. Most taxa

were enriched in people with T1D with G, apart from

Cutibacterium ssp., which was more abundant than that in people

with T1D without G vs. those with T1D and G, and Hemophilus

spp. which was enriched in healthy controls vs. in people with T1D

and G (Table 1).
FIGURE 1

Krona charts of the genera with a mean abundance greater than 1% of the total found in the gingival crevicular fluid samples.
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Additionally, within the T1D group, those with HbA1c% in the

first and fourth quartiles were compared, regardless of their gingival

status. We further explored the association between the community

structure of the GCF microbiome and HbA1c levels in people with

T1D. There were no significant differences in the Shannon and

Chao indexes and b-diversity (Supplementary Figure 1A–C). Two
Frontiers in Endocrinology 06
genera, Family_XIII_UCG-001 (padj 0.08; FC 2.53) and

Prevotellaceae_YAB2003_group (p-adjusted 0.08; FC 2.25), tended

to be overrepresented in the fourth quartile compared to the those

in the first quartile of HbA1c after adjustment for multiple

comparisons (Supplementary Table 4).
3.2 Metabolome

When comparing three groups – healthy controls without G,

people with T1D without G, and people with T1D and G, after

adjusting for multiple comparisons, there were some significant

differences in the concentrations of the selected metabolites

(Table 2). Acetic acid concentration was higher in people with

T1D than in healthy controls, regardless of the presence of G.

Propionic acid was significantly higher in people with T1D and G

than in healthy controls. Isobutyric and isovaleric acid levels were

higher in people with T1D and G than those in the other two

subgroups. In contrast, valeric acid was lower and caproic acid was

higher in individuals with diabetes (regardless of gingival status)

than those in healthy controls (Figures 3A-E). There were some

borderline insignificant results for the selected SCFAs and TMA

(Figures 3F-H). In the correlation analysis between HbA1c and

SCFA concentrations in people with T1D, there was only one

significant result for VA, but the correlation was weak

(Spearman ’ s corre la t ion coeffic ient -0 .272 , p=0 .031 ;

Supplementary Table 5).
3.3 Integrated metagenomic–
metabolomic analysis

In the metagenomic–metabolomic analysis, we analyzed the

correlations between the identified bacterial taxa and selected

metabolite concentrations. The results are shown in Figures 4A, B.

There were 85 and 46 correlations with absolute value above

0.25 for amino acids and SCFAs, respectively. All correlations were

statistically significant at a nominal p-value <0.05 (Supplementary

Table 6). Among the amino acids, TMA had the strongest positive

correlation with 20 correlations with coefficients above 0.4

(Supplementary Table 6). There were also two strong negative

correlations (coefficient below -0.4). The correlations with SCFAs

were of low strength, with only one absolute value above 0.4. Most

correlations between SCFA concentrations and bacterial genera

were weak or moderate. Bergeyella spp. were negatively correlated

with BA, IBA, and MeB. Kingella spp. were positively correlated

with VA. Micrococcae were negatively correlated with AA, PA, and

MeB. Rothia spp. were negatively correlated with AA and PA.

Streptococcae were negatively correlated with AA, PA, MeB, IBA,

ICA, and IVA. Veilonella spp. were positively correlated with PA,

and Treponema spp. with IVA. Trimethylamine was the only

metabolite that showed moderate correlation with the selected

bacterial genera. The strongest positive correlations were observed

with Treponema spp., Tanerella spp., Filifactor spp., Tanerella spp.,

and Porphyrimonas spp. (Table S6). The greatest negative
A

B

C

FIGURE 2

(A–C). Gingival crevicular fluid microbiome composition of people
with type 1 diabetes and healthy controls. (A) – Shannon diversity;
(B) – Chao diversity; (C) - PCoA (beta diversity); group 1 – people
with type 1 diabetes and gingivitis (G), group 2 – people with type 1
diabetes without gingivitis, group 3 – healthy controls.
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correlations were observed for Streptococcus spp., Hemophilus spp.,

Rothia spp., Basfia spp., and Flavobacterium spp.

4 Discussion

4.1 Microbiome

To date, most oral microbiome studies on people with T1D

have included children or individuals with a wide range of

metabolic controls. Furthermore, saliva is usually analyzed. To the

best of our knowledge, this is the first study to investigate the GCF

microbiome in people with T1D. In our study, we aimed to fill the

knowledge gap in people with longstanding T1D treated with

modern technologies, such as CSII, demonstrating good

glycemic control.

In this study, we showed that intensively treated people with

T1D with satisfactory glycemic control and non-diabetic

individuals did not differ considering the Shannon and Chao

indices, but b-diversity tended towards significant differences,

especially pronounced for people with concomitant T1D and G.

There were no differences within the T1D subgroup when

comparing participants in the first and fourth quartile of HbA1c,

that is, those with the best and worst metabolic control of diabetes.
TABLE 1 Side-by-side comparison of differential taxa between people
with T1D and gingivitis (G) and those with T1D without G vs. those with
T1D and G vs. healthy controls.

Taxon Differential
species T1D
with G vs.
T1D
without G

Differential
species T1D
with G vs.
healthy
controls

Peptoanaerobacter (100) X

Anaeroglobus (100) X

Bacteria_unclassified (100) X X

Bacteroidales_unclassified (100) X

Bacteroides (100) X

Bacteroidia_unclassified (100) X

Campylobacter (100) X X

Campylobacterales_unclassified
(100)

X X

Clostridia_unclassified (100) X

Clostridia_vadinBB60_group_ge
(100)

X X

Cutibacterium (100) X †

Defluviitaleaceae_UCG-011 (100) X

Desulfobacterota_unclassified
(100)

X

Desulfobulbus (100) X X

Family_XIII_UCG-001 (100) X

Filifactor (100) X

Firmicutes_unclassified (100) X

Fretibacterium (100) X

Fusobacteriaceae_unclassified
(100)

X X

Fusobacteriales_unclassified (100) X X

Fusobacterium (100) X X

Haemophilus (100) X †

Lachnospirales_unclassified (100) X X

Lactobacillus (100) X

Muribaculaceae_ge (100) X

Mycoplasma (100) X

Negativicutes_unclassified (100) X

Oscillospiraceae_unclassified (100) X

Peptoanaerobacter (100) X

Peptostreptococcaceae_unclassified
(100)

X X

Peptostreptococcales-
Tissierellales_fa_unclassified (100)

X X

Phocaeicola (100) X

(Continued)
TABLE 1 Continued

Taxon Differential
species T1D
with G vs.
T1D
without G

Differential
species T1D
with G vs.
healthy
controls

Prevotella (100) X

Prevotellaceae_ge (100) X

Prevotellaceae_NK3B31_group
(100)

X X

Prevotellaceae_UCG-001 (100) X X

Prevotellaceae_unclassified (100) X

Proteobacteria_unclassified (100) X

Rikenellaceae_RC9_gut_group
(100)

X X

Rikenellaceae_unclassified (100) X X

Slackia (100) X

Spirochaetaceae_unclassified (100) X X

Spirochaetota_unclassified (100) X X

Synergistaceae_unclassified (100) X X

Tannerella (100) X X

Tannerellaceae_unclassified (100) X

Treponema (100) X X

Veillonellaceae_unclassified (100) X
The abundance of a taxon was higher in people with type 1 diabetes than in the compared
group unless otherwise marked †.
T1D, type 1 diabetes; G, gingivitis.
X, A taxon was present in a subgroup.
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This is an important conclusion of the study. With relatively well-

controlled diabetes, slight differences in glycemic control did not

significantly affect the oral microbiome, which was comparable to

that observed in people without diabetes. Despite good metabolic

control of diabetes, people with T1D had a higher prevalence of

mild G than healthy controls. People with T1D and G show

apparent shifts in the GCF microbiome and metabolome, which

have been associated with periodontitis.

In one study on the oral microbiome in children with

metabolically stable T1D, differences between T1D participants

and healthy children included reduced Shannon diversity in the

T1D group. However, no differences in bacterial diversity have been

reported in a cohort similar to that in the present study (51). When

comparing participants after stratification by HbA1c level, the

differences in microbiome composition were barely notable in our

cohort, which is in line with other studies (17, 51). In contrast,

another study investigated a cohort of people with severely

uncontrolled T1D. Those with high HbA1c levels were

characterized by significantly decreased Chao and Shannon

indices and an increased Simpson index of the oral microbiome

(52). A comparison between individuals with T1D without

periodontal pathology and healthy controls did not reveal any

significant differences in the GCF microbiome, with no apparent

differentiating taxa between these two groups. This may suggest that

in T1D population intensive treatment and good glycemic control

along with the lack of oral pathology can increase the probability of

preserving the “healthy” GCF microbiome in this population.

Previous studies comparing the oral microbiome in people with

T1D and non-diabetic populations have reported some distinctions.

They showed a significantly high abundance of Streptococcus spp.,
Frontiers in Endocrinology 08
Actinomyces spp., and Rothia spp (17).. In another study,

commensal Streptococcus spp., Granulicatella spp., Rothia spp.,

and Rhodococcus spp. were decreased in diabetic children as well

as Veillonella spp. and Prevotella spp. However, these T1D children

presented with severe glycemic dysregulation (52). Importantly, in

studies comparing the oral microbiome between people with T1D

with non-diabetics, a thorough assessment of oral health status has

not been performed widely, in contrast to this study. However, the

results of the selected reports are similar to ours (51). Within the

T1D subgroup (regardless of gingival pathology), the abundance of

Anaerovoracaceae and Prevotellaceae was higher in those with poor

metabolic control. The higher prevalence of Prevotella in

individuals with T1D and worse diabetes control may be

associated with a higher risk of PD in this subgroup. A poor-

quality, high-sugar diet in T1D has been reported to be associated

with a high abundance of Prevotella copri (53). This was linked to an

altered periodontal status (54, 55). Anaerovoracaceae is another

novel taxon that has been reported in oral microbiome studies.

These genes were found to be enriched in individuals with diabetic

retinopathy (56).

Additional analyses comparing individuals with T1D and G and

those with only T1D or non-diabetic individuals with a healthy

periodontium revealed some interesting differences. G seemed to be

responsible for the majority of these discrepancies, as multiple taxa

differentiated participants with G from those without such

pathology, including some associated with various oral

pathologies, such as Fusobacterium spp (57)., Negativicutes (58),

Prevotella spp (54, 55)., Tanerella spp., and Treponema spp (59)..

Previously, periodontally healthy diabetic participants had lower

species richness than healthy controls, but also had higher loads of
TABLE 2 Results of metabolomic analyses.

Metabolite T1D with G T1D without G Healthy controls Adjusted p value

Lactic acid [mmol/l] 93.9 (62.6-180.4) 123.3 (39.8-177.6) 79.8 (55.8-148.3) NS

Acetic acid [mmol/l] 206.6 (134.8-451.3)* 181.8 (122.0-264.1)# 125.9 (88.4-179.9)*# <0.001

Propionic acid [mmol/l] 13.5 (7.0-32.4)* 10.9 (6.0-14.4) 7.2 (7.5-11.3)* 0.006

Isobutyric acid [mmol/l] 1.3 (0.6-4.4)*# 0.6 (0.4-1.5)* 0.5 (0.3-1.1)# <0.001

Butyric acid [mmol/l] 2.9 (1.3-7.5) 1.6 (1.0-2.8) 1.6 (0.8-3.2) 0.09

2-metylobutyric acid [mmol/l] 0.6 (0.2-1.7) 0.3 (0.2-0.7) 0.3 (0.2-0.5) 0.068

Isovaleric acid [mmol/l] 0.9 (0.3-2.6)*# 0.3 (0.1-0.8)# 0.3 (0.1-0.5)* 0.03

Valeric acid [mmol/l] 15.0 (9.8-16.9)* 13.8 (11.2-18.3)# 21.3 (19.1-24.7)*# <0.001

Isocaproic acid [mmol/l] 0.4 (0.1-1.0) 0.2 (0.1-0.6) 0.2 (0.1-0.4) NS

Caproic acid [mmol/l] 2.4 (0.7-4.4)* 2.9 (0.8-4.2)# 0.8 (0.6-0.9)*# <0.001

Trimethylamine [umol/l] 19.3 (7.8-38.6) 10.5 (5.1-38.6) 8.7 (19.3 (7.8-38.6) 0.059

Betaine [umol/l] 171.5 (56.3-482.2) 109.5 (73.0-304.3) 119.4 (37.2-209.0) NS

Glycerophosphorylcholine [umol/l] 74.4 (41.0-108.5) 96.3 (55.9-156.8) 76.4 (47.5-142.7) NS

Choline [umol/l] 351.1 (163.5-553.4) 323.8 (202.3-509.9) 432.3 (215.1-631.5) NS

Carnitine [umol/l] 71.1 (34.7-111.8) 49.0 (29.6-73.9)2 47.7 (35.2-73.2) NS
Data are presented median (interquartile range).
T1D, type 1 diabetes; G, gingivitis; NS, not significant.
*# significant difference in post-hoc analysis at p>0.05.
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FIGURE 3

(A-I). Results of metabolomic analyses. Healthy controls without gingivitis (G), people with T1D without G and those with T1D and G were compared.
Significant differences after adjustment with p value <0.05 are marked. (A) AA was significantly higher in people with T1D and G and those with T1D
without G vs. healthy controls, (B) PA was significantly higher in people with T1D and G vs. healthy controls, (C) IBA was significantly higher in people
with T1D and G vs. those with T1D without G and healthy controls, (D) IVA was significantly higher in people with T1D and G vs. those with T1D
without G and healthy controls, (E) VA was significantly higher in healthy controls vs. all people with T1D, (F) CA was significantly lower in healthy
controls vs. all people with T1D, (G) BA tended to be higher in people with T1D and G vs. those with T1D without D and healthy controls (not
statistically significant), (H) 2MeB tended to be higher in people T1D and G vs. those with T1D without G and healthy controls (not statistically
significant), (I) TMA tended to be higher in people with T1D and G vs. those with T1D without G and healthy controls (not statistically significant). LA,
lactic acid; AA, acetic acid; PA, propionic acid; IBA, isobutyric acid; BA, butyric acid; 2MeB, 2-metylobutyric acid; IVA, isovaleric acid; VA, valeric acid;
ICA, isocaproic acid; CA, caproic acid; TMA, trimethylamine; GPA, glycerophosphorylcholine; A-H, concentration in mmol/l; I, concentration in
umol/l.
A B

FIGURE 4

(A, B). Metagenomic–metabolomic analyses between the identified bacterial taxa and selected metabolites concentrations. Correlation coefficients
significant at p>0.05 are presented and color-coded. (A) lactic acid and short chain fatty acids. (B) trimethylamine and its metabolites. LA, lactic acid;
AA, acetic acid; PA, propionic acid; IBA, isobutyric acid; BA, butyric acid; 2MeB, 2-metylobutyric acid; IVA, isovaleric acid; VA, valeric acid; ICA,
isocaproic acid; CA, caproic acid; TMA, trimethylamine; GPA, glycerophosphorylcholine.
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red complex species responsible for the development of periodontal

pathology, potentially putting them at risk of developing

periodontitis (59, 60). There is no consensus on whether oral

microbiome diversity is higher (61) or lower (60) in people with

diabetes and PD. Specifically, the subgingival tissue microbiome

showed a relatively high abundance of Leptotrichiaceae,

Neisseriaceae, Lactobacillus, Corynebacterium, Pseudomonas,

Saccharibacteria, Aggregatibacter, Neisseria, Gemella, Eikenella,

Selenomonas, Actinomyces, Capnocytophaga, Fusobacterium,

Veillonella, Streptococcus, and Actinomyces. For Filifactor,

Prevotella, and Parvimonas, low abundances were observed (59).

To date, studies have mainly included individuals with

periodontitis. However, in our study, the spectrum of PD was

limited to mild cases of G. This and the good metabolic control

of diabetes may have been one of the reasons for the discrepancies

between our data and those of previous research.

A more detailed analysis of the differences in differentiating taxa

between people with T1D and G and T1D without it vs. those with

T1D and G and non-diabetic controls revealed some interesting

observations. Comparisons within people with T1D omit the impact

of diabetes on any potential differentiating taxa, showing, in our

opinion, the core differences between those with and without G.

Nevertheless, quantitatively, there were more differentiating taxa in

the analysis of nondiabetics than in those with T1D. Qualitatively,

some taxa that differentiated people with T1D and G vs. non-diabetics

but their abundances were similar within people with T1D included

Bacteroides spp., Firmicutes spp., and Lactobacillus spp. This suggests

that individuals with T1D, even those without clinically visible signs of

periodontal pathology, show specific shifts in the GCF microbiome,

putting them at risk of developing PD.
4.2 Metabolome

SCFAs are formed from saturated aliphatic organic acids

containing one–six carbon atoms (62). SCFAs are produced by gut

microbes during fiber fermentation (63). Considering the gut

microbiome, SCFAs have also been investigated as potential additives

in the regular diet to positively influence insulin sensitivity, obesity,

diabetes control, and immune modulation to counter autoimmune

diseases (63, 64). SCFAs, as products of bacterial metabolism, can also

be found in periodontal pockets; however, there are only singular

studies on this subject (65). Bacteria known to produce SCFAs include

Porphyromonas gingivalis, Treponema denticola, Aggregatibacter

actinomycetemcomitans, Prevotella intermedia, and Fusobacterium

nucleatum (66). GCF SCFAs produced locally in gingival pockets

seem to play a role opposite to that in the gut and are considered

responsible for local pathologies, such as PD. The complexity is added

by data suggesting that specific nutrients that modify the level of SCFAs

production in the gut can improve periodontal status (67, 68). Finally,

not only are SCFAs produced by bacteria, but dietary SCFAs can also

influence the microbiome composition, implicating complex

bidirectional associations (33).

In our study, the concentrations of selected SCFAs, including

acetic acid and caproic acid, were higher in people with T1D than in

those without diabetes, whereas isobutyric and isovaleric acids were
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higher in people with T1D and G than in the remaining

participants. However, the concentration of valeric acid was lower

in people with diabetes than in healthy controls. These findings are

in agreement with the results of the integrated metagenomic–

metabolic analysis. For example, Treponema spp. were positively

correlated with isovaleric acid concentrations, which were higher in

participants with T1D and G. Interestingly, we did not identify

differences in the abundance of Streptococcus spp. between T1D

participants and healthy controls but identified negative

correlations between Streptococcus spp. and acetic acid, isobutyric

acid, isocaproic acid, and isovaleric acid concentrations. The levels

of these metabolites were high in the T1D subgroup. This, in

concurrence with the abovementioned findings in differential taxa

between the studied groups, may suggest the first stage towards the

development of an abnormal oral microbiome and, further, the

emergence of PD.

Along with the early alterations in the microbiome discussed

above, disturbances in metabolite concentrations may be treated as

a marker of oral cavity acidification, an auxiliary predisposing factor

for caries and PD (69). This is consistent with previous observations

showing an abundance of acid-producing bacteria in individuals

with diabetes. As this process progresses, it can lead to

destabilization of the balance between Streptococcus spp. and the

emergence of clinical oral pathology (70).

Acetate, derived primarily from microorganisms on the skin in

the oral cavity and the gastrointestinal, urogenital, and respiratory

tracts, has immunomodulatory effects (71). They are also involved

in tissue development, nutrient absorption, and metabolism (72–

74). Acetate plays a role in maintaining the intestinal barrier (75,

76). The metabolic processes affected by acetate include the

accumulation of body fat, liver lipids, and cholesterol synthesis

(77). Acetate in the gut is predominantly produced by Prevotella

and Bifidobacterium spp (78).. Acetate is also used by Firmicutes to

produce butyrate (79). The serum concentrations of acetate and

propionate in individuals with T1D have been reported to be lower

than those in individuals without diabetes (17). Importantly, the

roles of serum and gut acetate seem to contradict that of oral

acetate. Although serum acetate may protect against the emergence

of anti-islet cell autoantibodies (80), local oral acetate

administration may also promote periodontal pathology.

In type 2 diabetes, propionate acts locally on tissues, improving

insulin sensitivity, suppressing cholesterol synthesis, and lowering

the risk of cardiovascular disease (81). In a mouse model, gut

integrity is ensured by the healthy commensalism of lactate- and

butyrate-producing bacteria, with non-butyrate-producing bacteria

preventing optimal mucin synthesis in individuals with type 1

diabetes (82). Butyrate has also been intensely investigated as a

supplement to improve immune function, strength, and physical

function and alleviate symptoms of gastrointestinal tract

diseases (83).

We did not observe any changes in GCF butyrate

concentrations between people with T1D and healthy controls.

One possible explanation for this may be that the gingival pocket

was the site of sampling in our study, as most studies have assessed

its levels in the gut or serum. Moreover, none of the participants had

PD. Nevertheless, we hypothesized that the observed alterations in
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SCFAs concentrations may reflect a predisposition towards the

development of an early preclinical stage of PD.

A few studies that investigated oral propionate and butyrate

have reported that their levels are increased in PDs, regardless of the

diagnosis of diabetes (84). In participants with PD, the GCF

concentrations of acetic, propionic, and butyric acids were

positively correlated with P. gingivalis, T. denticola, F. alocis, T.

socraskii, F. nucleatum, and T. forsythia (85, 86).

In vitro studies have shown that high concentrations of butyrate

can induce apoptosis in gingival fibroblasts, leading to periodontal

tissue damage (87, 88). High concentrations of lactic acid and a

wide range of SCFAs, including acetic, propionic, butyric, and

isovaleric acids, in GCF have been observed in patients with

aggressive periodontitis. Interestingly, the probing depth and

attachment loss were positively correlated with the concentrations

of the selected SCFAs (85). As butyrate can have both detrimental

and beneficial effects, this is likely attributed to the tissues where it is

produced, i.e., where it acts locally, and its concentration (89).

The functional and physiological effects of isobutyric and 2-

methylbutanoic acids are poorly understood. Valeric acid in the gut

is produced by the microbial metabolism of lactic acid and

propionic acids (90). A study of women with gestational diabetes

(GDM) showed that the levels of isobutyric, isovaleric, valeric, and

caproic acids were high in women with GDM (91). The authors

linked high levels of inflammation to hyperglycemia and a dysbiotic

gut microbiome in this population (91). Women with GDM have

also been reported to have a high abundance of Prevotella spp., a

potential caproic acid-producer, which leads to increased caproic

acid production (92). Our findings on valeric, isovaleric, and

caproic acids in the GCF of people with T1D are novel and

partially in contrast with these reports, requiring further

investigation and analysis in conjunction with other potential

factors, such as diet or body composition.

Trimethylamine and its metabolites were not significantly

different between the subgroups in our study, with TMA being

the only metabolite nearing significance, with numerically higher

concentrations in people with T1D and G. Trimethylamine levels

are elevated in patients with PD (93). In our study, trimethylamine

concentrations were positively correlated with typical red complex

bacteria (Tanerella spp., Treponema spp., and Fusobacterium spp.)

that are responsible for the development of PDs.
4.3 Limitations

The inclusion of only relatively young people with T1D with

good glycemic control may be regarded as both a limitation and a

strength. This is a homogeneous subgroup representative of a large

portion of the T1D population. The percentage of well-controlled

people with T1D within the entire T1D population will probably

increase, at least in developed countries, with more common usage

of advanced technologies, such as continuous glucose

measurements and semi-automated or hybrid insulin pumps.

However, our findings cannot be extrapolated to patients with

poor metabolic control. Notably, our group was relatively young

and free of advanced complications of diabetes. Thus, the results of
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our analysis cannot be extrapolated to older populations or

indiv iduals with advanced micro-and macrovascular

complications of diabetes, such as renal failure and advanced

cardiovascular diseases. We did not observe any cases of PD in

our population, which may have affected our microbiome and

metabolome findings. In this study, we focused on limited

confounders related to microbiome and metabolome results. As

more data regarding diet and body structure remain to be analyzed,

the acquired picture may not be fully explained. Finally,

measurements of fecal and serum SCFA levels may poorly reflect

biologically active SCFA levels. Only up to 10% are found in these

types of samples, as active SCFAs are constantly produced, utilized

by microbial cross-feeding, or interact with host cells (17).
5 Conclusions

The GCF microbiome in intensively treated people with T1D

with satisfactory glycemic control and healthy gingival tissues was

similar to that in non-diabetic controls. People with T1D and G

show clear shifts in the GCF microbiome and metabolome. In this

cohort of people with T1D, HbA1c% did not have a significant

impact on SCFA concentrations in the correlation analysis. By

contrast, the GCF microbiome appeared to have a significant

relationship with SCFAs. This suggests that despite good

metabolic control of diabetes, people with T1D are susceptible to

the development of PDs. This was demonstrated by early changes in

the structure of the GCF microbiome and altered concentrations of

selected metabolites in this environment.

To summarize, the identification of early changes in periodontal

tissues by targeting microbiome and metabolome changes could

potentially enable effective prevention and initial treatment of PD in

people with T1D.
Data availability statement

The data presented in the study are deposited in the NCBI

BioProject repository, accession number ID: 1064953.
Ethics statement

This study involving humans was approved by the Jagiellonian

Universi ty Bioethics Committee (Komisja Bioetyczna
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