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Immunometabolism,
extracellular vesicles
and cardiac injury
Ana C. M. Omoto, Jussara M. do Carmo, Alexandre A. da Silva,
John E. Hall and Alan J. Mouton*

Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson,
MS, United States
Recent evidence from our lab and others suggests that metabolic

reprogramming of immune cells drives changes in immune cell phenotypes

along the inflammatory-to-reparative spectrum and plays a critical role in

mediating the inflammatory responses to cardiac injury (e.g. hypertension,

myocardial infarction). However, the factors that drive metabolic

reprogramming in immune cells are not fully understood. Extracellular vesicles

(EVs) are recognized for their ability to transfer cargo such as microRNAs from

remote sites to influence cardiac remodeling. Furthermore, conditions such as

obesity and metabolic syndrome, which are implicated in the majority of

cardiovascular disease (CVD) cases, can skew production of EVs toward pro-

inflammatory phenotypes. In this mini-review, we discuss the mechanisms by

which EVs may influence immune cell metabolism during cardiac injury and

factors associated with obesity and the metabolic syndrome that can disrupt

normal EV function. We also discuss potential sources of cardio-protective and

anti-inflammatory EVs, such as brown adipose tissue. Finally, we discuss

implications for future therapeutics.
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1 Role of immune cells and immunometabolism in
cardiac injury and remodeling

Immune cells, including neutrophils, macrophages, and B and T lymphocytes, play a

critical role in inflammation and repair after cardiac injury (1). While small resident

populations of immune cells reside in the healthy heart, the majority of immune cells in the

injured heart derive from extra-cardiac sources, primarily from the spleen (2). An acute

inflammatory response is necessary to initiate the proper healing response to cardiac injury.

Immune cells play a wide range of roles in the injured heart, including phagocytosis of

necrotic cells and coordinating remodeling of the vasculature and extracellular matrix.
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Recent studies have highlighted the importance of cardiac

immunometabolism, the study of metabolic pathways that

contribute to immune cell phenotypes (1, 3). The current

paradigm, broadly speaking, is that inflammatory subsets of

monocytes/macrophages or T cells (i.e. M1-like macrophages,

Ly6C-high monocytes, Th1/Th17 cells) rely mainly on glycolysis,

while anti-inflammatory/reparative subsets (M2-like macrophages,

Ly6C-low/resident cardiac macrophages, Tregs) rely more on

mitochondrial oxidative phosphorylation (OXPHOS). Glycolysis

can allow cells to survive in a hypoxic environment, such as the

ischemic heart, and permits activation of the pentose phosphate

pathway (4). Macrophages and T cells can also program their

metabolism to glycolysis even when oxygen is present, a

phenomenon known as the Warburg effect. This glycolytic switch

is mediated by activation of hypoxia-inducible factor-1 alpha (HIF-

1a), which is activated by hypoxia or non-hypoxic signals such as

toll-like receptor-4 (TLR4). Conversely, the mitochondrial

tricarboxylic acid (TCA) cycle and OXPHOS promote pathways

in immune cells that favor anti-inflammatory polarization (1).
2 Role of extracellular vesicles in
cardiovascular health and disease

While immunometabolism appears to be important for immune

cell responses to cardiac injury, little is known of the upstream

signaling mechanisms that drive metabolic reprogramming. One

potential unexplored mechanism is through extracellular vesicles

(EVs), which are released as membrane bound vesicles to mediate

inter-organ communication in many physiological and pathological
Frontiers in Endocrinology 02
processes (Figure 1) (5). Due to their small size (30 nm – 4 mm) and

the fact that EVs contain cargo that can behave as endocrine

signaling molecules, there is much interest in EVs as therapeutic

agents (5). EVs can also mediate communication between different

cell populations of the cardiovascular system controlling normal

tissue function or propagating injury signals during cardiovascular

diseases. In contrast, certain EVs have also been identified to mediate

cardioprotective mechanisms and have been proposed as promising

drug delivery systems due to their low immunogenicity, toxicity and

strong ability to cross cell membranes (6).

EVs can carry many different types of bioactive molecules

within their membrane, including proteins, lipids, DNA,

microRNAs (miRNAs), long non-coding RNAs (lncRNAs),

circulating RNAs (cirRNAs) and mitochondria (7). The

phenotype of the parent cell and its environment dictates EV’s

cargo and how it will influence the target cell and inter-tissue

crosstalk. EVs are generated by 3 different process: 1) fusion of

multivesicular bodies with the cell membrane of the parent cell

(exosomes, 30 – 100 nm), 2) outward budding of the parent cell

membrane (microvesicles, 200 nm – 1 mm) and 3) membrane

decomposition of apoptotic cells (apoptotic bodies, 1 – 4 mm) (8).

Regardless of the biogenesis pathway, EVs contain in their

membrane ligands inherited from their donor cells that could,

theoretically, be used to identify the source of circulating EVs.

However, studies are needed to elucidate specific molecular makers/

ligands that each cell type shares with their EVs.

The content and mode of EVs interaction and/or entry into the

target cell determine their functional effects. For example, EVs can

trigger signaling pathways through interaction with receptors in

recipient cells without being internalized (9). Also, EVs can directly
FIGURE 1

Metabolic regulation of inflammatory pathways during cardiac injury. Metabolic switching between glycolysis and mitochondrial oxidative
phosphorylation is regulated by EVs from different cells population and distant organs.
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enter into the cytoplasm of the recipient cell through endocytosis,

phagocytosis or membrane fusion, subsequently releasing their

contents into the cytoplasm (9). However, the most efficient way

to transfer EVs content to the target cell in the context of

immunometabolism modulation remains elusive.

Studies investigating EVs as potential biomarkers for cardiac

diseases found that their cargo can be used as a signature for specific

diseases. For example, circulating levels of EV-enclosed miR-126

and miR-199a can predict the occurrence of cardiovascular events

in patients with stable coronary artery disease (10). Thus, EVs hold

great potential to monitor and treat cardiovascular diseases but

there are still many unanswered questions related to the regulatory

mechanisms of EV biogenesis, selective sorting of cargo, and cell-

specific EV uptake.
2.1 Inter-cellular communication during
cardiac injury

The cardiovascular system is formed by a complex network of

different cell types including cardiomyocytes, fibroblasts,

endothelial cells, pericytes, adipocytes and immune cells. EVs play

an important role in their interactions to maintain cardiac structure

and function in healthy conditions. However, these cells also release

EVs to propagate injury signals during disease. Evidence for a

potential role of EVs during cardiac injury is suggested by increased

circulating levels of EVs in patients with myocardial infarction (MI)

as well as murine and porcine models of MI (11–13). EVs also

accumulate in the heart early after MI where they may play a crucial

role in regulating inflammation during the first 24 hr after MI (14).

EVs derived from necrotic cardiomyocytes are engulfed by

phagocytic monocytes to promote release of cytokines such as IL-6,

CCL2, and CCL7 (14). Endothelial cells are also potent sources of EVs

after MI, as evidenced by cell surface expression of endothelial

markers such as CD31, ICAM-1, PCAM-1, and P and E selectins

(13). Endothelial-derived EVs are also engulfed by infiltrating

monocytes, in which they promote inflammatory and migratory

immune cell responses. Injecting naïve mice with these MI-derived

EVs promoted monocyte mobilization from the spleen. For example,

endothelial-EVs from diabetic mice impair angiogenesis and re-

vascularization after MI and skeletal muscle ischemia (15, 16).

EV-mediated communication between immune cells and

fibroblasts is proposed to be involved in cardiac fibrosis.

Macrophages exposed to high glucose, mimicking a diabetic

environment, produce EVs containing Human antigen R that

stimulates fibroblasts to increase collagen production (17), thus

enhancing cardiac fibrosis. Also, injection of CD4+ T cell-derived

EVs carrying miR-142-3p exacerbates the effects of MI on cardiac

function and infarct size expansion in mice (18). On the other hand,

cardiac fibroblasts also produce EVs that propagate hypertrophic

signals to cardiomyocytes during cardiac pressure overload (19). In

addition, EVs produced by activated fibroblasts (myofibroblasts)

may mediate endothelial dysfunction during cardiac fibrosis via

miR-200a-3q (20).

Pericytes are another cardiac cell population that release EVs

during cardiac injury, especially in ischemic diseases. These EVs are
Frontiers in Endocrinology 03
involved in cardiac fibroblast and macrophage proliferation (21).

Also, crosstalk between pericytes and endothelial cells during

inflammation in the heart is mediated by EVs in a bi-directional

manner (22).

Epicardial adipose is another source of EVs that acts locally on

the myocardium, atria and coronary arteries. Recently, these EVs

were identified with proinflammatory, profibrotic and

proarrhythmic properties that contribute to the development of

atrial myopathy and atrial fibrillation (23). Altogether, these studies

support an important role of EVs in the pathophysiology of cardiac

diseases and demonstrate a strong interaction among different cell

populations that is mediated by EVs and their cargos. How EVs sort

their cargo in distinct disease models remains to be elucidated,

although some studies suggest the participation of distinct RNA-

biding sites and protein post-translational modifications including

ubiquitination (6).
2.2 Inter-organ communication during
cardiac injury and cardioprotection

Studies using transgenic animals expressing membrane-target

fluorescent markers (mT/mG mice) (24) allowed in vivo tracing of

EVs and showed that EVs produced in one organ can be detected in

another organ during pathophysiologic processes. These findings

suggest that EVs mediate not only inter-cellular but also inter-organ

communications. For example, EVs produced by the heart of

animals with congestive heart failure were detected in the brain,

contributing to sympathetic excitation mediated by oxidative

stress (25).

White adipose tissue (WAT) is proposed to be an important

source of EVs with cardiac effects as demonstrated by studies

showing that WAT from obese mice induces macrophage

activation in a TLR4-dependent manner favoring cardiometabolic

complications (26). Also, injection of lean mice with WAT-derived

EVs, produced in response to obesity-associated stress, shifted

tissue-resident macrophage toward a proinflammatory phenotype

(26). In a diet-induced obese mouse model, WAT-derived EVs

showed increased levels of miRNA-130b-3p, which exacerbated

cardiac ischemia-reperfusion injury due to downregulation of

adenosine monophosphate kinase (AMPK) (27).

Contrary to the detrimental effects of WAT-derived EVs in the

heart, the brown adipose tissue (BAT) has been shown to be a

potent source of EVs with potential cardioprotective and anti-

inflammatory properties (28). Exercise activates release of small

EVs from BAT enriched with cardioprotective miRNAs such as

miR-125b-5p, miR-128-3p, and miR-30d-5p, which inhibit cardiac

myocyte apoptosis following I/R injury via inhibition of the TNF

receptor associated 6/TNF receptor superfamily member 1B

signaling pathway (28). BAT-EVs are also enriched with

mitochondrial components that improve OXPHOS and restore

cardiac function in obese mice (29). Similarly, Lin et al.

demonstrated a cardioprotective effect mediated by EVs

communication from BAT to myocytes and cardiac fibroblasts

(30). However other studies proposed that during obesity BAT-

EVs become enriched with inflammatory proteins as well as the
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glucose transporter GLUT1, which mediates glucose uptake and

glycolytic reprogramming in macrophages (1, 31). Furthermore,

during hypertension, BAT-EVs may transport inducible nitric oxide

synthase (iNOS) to the heart, which could aggravate cardiac

remodeling and hypertrophy (30). Thus, while BAT-EVs appear

to be cardioprotective in the healthy state, they may become

maladaptive in obese or hypertensive subjects.

Another extracardiac source of EVs with cardioprotective

effects are mesenchymal stem cells (MSCs) which reside in the

bone marrow (7, 32). MSC-derived EVs have attracted attention as

a potential therapeutic for MI due to their anti-apoptotic effect on

cardiomyocytes, and their anti-inflammatory/pro-reparative effect

on immune cells such as macrophages (33). Thus, harnessing the

beneficial MSC-EVs while inhibiting cardiac myocyte and

endothelial EVs from the injured heart may be a promising

therapeutic strategy.

Together these studies emphasize the importance of the cell

environment in determining EV’s cargo and their function on the

target cell. Further investigation is needed to understand how EVs

are attracted by the target cell in the distant organ.
3 Potential interactions of
extracellular vesicles and immune cell
metabolism in the heart

EVs clearly play an important role in regulating inflammation

during cardiac injury. However how they impact immunometabolic

reprogramming is still not well understood. Recent studies suggest

that EVs are involved in macrophage polarization in response to

different metabolic environments, thus contributing to the

pathological process of cardiovascular diseases. In this section we

summarize how different EV’s cargo can contribute to this

process (Table 1).
3.1 MiRNAs

Metabolic reprogramming requires finely tuned activation and

simultaneous repression of multiple cell signaling pathways,

metabolites, and genes that can be regulated by multiple miRNAs

(34). Activation of HIF-1a is recognized as a critical mediator of

glycolytic reprogramming, while AMPK is a major regulator of

reprogramming to OXPHOS metabolism (34, 35). Several miRNAs

that regulate inflammation also regulate HIF-1a and several

glycolytic enzymes. For example, miR-223 targets HIF1a and PFK1

to inhibit lipopolysaccharide (LPS)-induced glycolysis and M1-like

polarization in vitro and in mice with sepsis (36). Alternatively, miR-

33 targets AMPK and carnitine palmitoyltransferase 1a (CPT1a) to

decrease fatty acid oxidation and enhance glycolysis, promoting

macrophage M1 polarization (37).

Some miRNAs more directly target immunometabolic

pathways. For example, miR-22 is induced by TLR signaling, and

reduces glycolysis/M1 polarization by targeting GLUT1 (38). Other

miRNAs can target other glycolytic genes, such as hexokinase-2,
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phosphoglucose isomerase, and enolase (39). In CD4+ T cells, miR-

142 regulates the MBD2-MYC axis to promote glycolysis and

exacerbate inflammation during myocarditis (40). Multiple

miRNAs also regulate lactate dehydrogenase (LDHA) in CD4+ T

cells, thus favoring their reliance on OXPHOS and improving their

ability to kill viruses such as HIV (35). Several miRNAs have also

been discovered to regulate mitochondrial function and metabolic

pathways, termed the mitomiRs (41). Collectively, miRNAs that

inhibit glycolysis appear to decrease inflammation, while those that

inhibit fatty acid oxidation/OXPHOS promote inflammation.
3.2 LncRNAs and circRNAs

The role of EVs enriched with long noncoding (lnc) RNA and

circular (circ) RNA on macrophages phenotypic changes is

beginning to be elucidated. However, the interaction of these

subtypes of non-coding RNAs (ncRNAs) with metabolic

pathways that control immune functions is not well established.

LncRNAs are the longest type of ncRNA that participate in gene

transcription, translation and post-translational modification (42).

Recent studies have shown that lncRNA can act as a sponge for

miRNA and alter specific signaling pathways involved in

macrophage polarization (43). For example, EV’s resealed by

endothelial progenitor cells promote M2 macrophage polarization

by suppressing miR-9-5p on SIRT1 through the transfer on lncRNA

taurine upregulated gene 1 (TUG1), an important lncRNA that is

downregulated during sepsis (44). In patients with coronary

atherosclerosis, EVs carrying lncRNA-MRGPRF-6:1 promote M1

macrophage polarization by activating TLR4, myeloid

differentiation factor-8, and mitogen-activated protein kinase

(TLR4-MyD88-MAPK) (45). Also, blockade of lnc-RNA-

ASLNCS5088-enriched EVs dampens the effect of M2

macrophages in fibroblast activation (46).

CircRNAs are evolutionary conserved, stable and endogenous

ncRNAs with important biological effects on protein activity

regulation, epigenetic modulation, and transcription and post-

transcriptional events (47). Yang et al. demonstrated that EVs

derived from hypoxic-pretreated adipose stem cell enclose circ-

RNA-Rps5 that promotes M2 macrophage polarization by

targeting SIRT7 and miR-124-3p during acute ischemic stroke

(48). Conversely, Wang et al. showed that M2 macrophage-derived

EVs carrying circUbe3a promote cardiac fibroblasts proliferation,

migration and phenotypic transformation enhancing fibrosis after

acute myocardial infarction (49). Hence, these studies emphasize the

importance of additional research on new lncRNAs and circRNAs

enclosed into EVs and their role on cardiovascular diseases.
3.3 Proteins

Recent proteomics analyses of various EVs with resolution down

to the single EV level have transformed our knowledge of EV-protein

transport (50). Multiple studies suggest that EV transport of

metabolic enzymes may influence immunometabolism. EVs from

cancer cells can transport signaling proteins such as latent membrane
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protein-1 to cancer-associated fibroblasts, which activate the NF-kB-
glycolysis pathway (51). Glycolytic enzymes are often enriched in

EVs, regardless of origin (51, 52). EVs use glycolysis as an ATP source

while also delivering glycolytic enzymes to recipient cells.

Cardiomyocytes secrete EVs that can deliver the glucose

transporter GLUT1, the major glucose transporter in macrophages

(1), to neighboring cells to enhance glycolysis (53). Monocyte-derived

EVs can also transport GLUT1 in addition to pro-inflammatory

cargo, thus supporting inflammation through activation of glycolytic

pathways (54). Conversely, EVs can also transport enzymes involved

in fatty acid oxidation (55), which promotes anti-inflammatory

pathways in macrophages and T cells (1).
3.4 Metabolites and lipids

EVs a lso carry other cargo that could influence

immunometabolic phenotypes, including metabolites such as

sugars, lipids, and amino acids (56). While most studies have

focused on the protein/nucleic acid composition of EVs until

recently, several studies have begun to focus on the EV lipid and

small metabolite composition (56–58).

Obesity and metabolic disorders often lead to excess fat

deposition in several organs including the heart. Within the

adipose tissue, lipids regulate immune cells such as adipose tissue

macrophages (ATM). Accumulation of lipids inside ATM activates

a program of lysosomal catabolism, a process associated with

systemic metabolic complications such as insulin resistance (59).

Aiming to study how lipids are transferred from adipocytes to

ATM, Flaherty III et al. conducted a series of experiments showing

that adipocytes release EVs enriched with lipids, specifically

triacylglycerol and monoacylglycerides, that were taken up by
TABLE 1 Extracellular vesicle content and their biological effects in the
immune system.

EV content
Biological
Effects

References

Non-
coding RNAs

miR-223

Inhibit
lipopolysaccharide
(LPS)-induced

glycolysis and M1-
like polarization

Dang C.P. &
Leelahavanichkul
A., 2020 (36).

miR-33

Decrease fatty acid
oxidation and enhance
glycolysis, promoting

macrophage
M1 polarization

Gest J. et al.,
2015 (37).

miR-22
Reduce glycolysis/M1

polarization by
targeting GLUT1

Kang Y.J.,
2023 (38).

miR-142

Promote glycolysis and
exacerbate

inflammation
during myocarditis

Sun P. et al.,
2020 (40).

lncRNA
TUG1

Promote M2
macrophage

polarization by
suppressing miR-9-5p

on SIRT1

Wentao M. et al,
2021 (44).

lncRNA-
MRGPRF-6:1

Promote M1
macrophage

polarization by
activating TLR4,

myeloid differentiation
factor-8, and TLR4-
MyD88-MAPK

Dan Hu. et al.,
2022 (45).

lnc-
RNA-

ASLNCS5088

Inhibit the effect of M2
macrophages in

fibroblast activation

Chen J. et al.,
2019 (46).

circ-
RNA-Rps5

Promote M2
macrophage

polarization by
targeting SIRT7 and

miR-124-3p

Yang H. et al.,
2022 (48).

circUbe3a-
enriched

M2
macrophages

Promote cardiac
fibroblasts proliferation,

migration and
phenotypic

transformation
enhancing fibrosis

after MI

Wang Y. et al.,
2021 (49).

Proteins

Membrane
protein-1

Activate the NF-kB-
glycolysis pathway

Fridman E.S.,
2022 (51).

GLUT1 Enhance glycolysis

Garcia N.A., 2016
(53);

Yang M. et al.,
2022 (54).

Enzymes
involved in

fatty
acid

oxidation

Activate anti-
inflammatory pathways

Clement E. et al,
2020 (55)

Mouton A.J.,
2020 (1).

(Continued)
TABLE 1 Continued

EV content
Biological
Effects

References

Lipids
and

metabolites

Lipids
Activation of adipose
tissue macrophages

Flaherty 3rd S.E.
et al., 2019.

Ribose-5-
phosphate
and pentose
phosphate
pathways
enzymes

Immune cell
proliferation during MI

Mouton A.J.et al.,
2023 (4)

Harmati M. et al.,
2021 (56).

Mitochondria

mtDAMPs
Trigger inflammation
via the cGAS/STING/

NF-kB pathway

Di Mambro
et al., 2023 (62).

Healthy
mitochondria

Promote an M2-
like phenotype

Sanz-Ros J. et al.,
2023 (61)

van der Vlist M.
et al., 2022 (65).

Damaged
mitochondria

Enhance OXPHOS and
M2-like polarization

Sanz-Ros J. et al.,
2023 (61)

Phinney D.G.
et al., 2015 (64)
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ATM (59), which can lead to metabolic disorders and development

of cardiac diseases.

EVs enriched with ribose-5-phosphate and pentose phosphate

pathways enzymes, may support immune cell proliferation during

MI (4, 56). Indeed, many other small sugar, amino acid, and

nucleotide metabolites have been discovered in EVs, depending

on the source, size, and cardiovascular disease context (60).
3.5 Mitochondria

EVs can also transport mitochondrial enzymes, mitochondrial

DNA, parts of the electron transport chain, mitochondrial

fragments, and whole mitochondria (61). The role of these

“mitoEVs” carry many implications for inflammatory pathways,

which are tightly regulated by mitochondrial function (62). For

example, mitochondrial damage-associated molecular patterns

(mtDAMPs), which are released from damaged heart muscle, can

trigger inflammation via the cGAS/STING/NF-kB pathway (62).

Delivery of whole mitochondria to macrophages via EVs also plays

a critical role in macrophage polarization (63). Damaged

mitochondria can be packaged into EVs and sent to neighboring

cells for repair (61). For example, MSCs undergoing mitophagy

package damaged mitochondria into EVs, which are delivered to

neighboring macrophages that complete the process of mitophagy,

resulting in enhanced OXPHOS and M2-like polarization (64).

Furthermore, healthy mitochondria from apoptotic cells can be

“recycled” after being taken up by macrophages, in which they

promote an M2-like phenotype (61). Conversely, macrophages can

“donate” their mitochondria to injured or dysfunctional tissue, such

as neurons (65). Thus, the role of mitoEVs in inflammation depends

on the size, source, and contents of the EVs.
4 Gaps in knowledge and
future implications

While several studies have implicated roles for EVs and their

contents in regulating immunometabolism, the extent to which this

occurs during cardiac injury remains unclear. Inflammation is a

promising target for preventing adverse HF outcomes (66),

although optimizing the therapeutic window remains a challenge.

Targeting metabolism in immune cells is a promising therapeutic

option due to availability of bioactive molecules that are well

tolerated, such as NAD+ (67). Combining the potential delivery

of “immunometabolic agents” with the specificity of EVs could

provide a safe, effective method of delivering miRNAs, enzymes,

functional mitochondria, or drugs to target immunometabolic

pathways. However, several challenges still remain. There are

multiple different types of EVs that may act on immune cells in
Frontiers in Endocrinology 06
the injured heart, based on size, cell surface expression, cargo, and

source (33). Additionally, EVs carry a plethora of molecules with

unknown effects, and changes in the donor cell environment can

alter EVs cargo, thus complicating the predictability of EVs-based

therapies (68). Furthermore, EVs can have a short plasma half-life

imposing another challenge with regard the establishment of dose

efficiency and off-target effects (68). Technical challenges also need

to be overcome, including better loading of the therapeutic agents

into EVs, targeting to specific cells within the same organ, and

efficient delivery and uptake by target cells. Further understanding

of these parameters during different types of cardiac injury, at

different stages of disease, in different pre-clinical models (e.g. large

animal models), and the impact of certain risk factors (e.g. obesity/

diabetes) are still needed. As these fields continue to co-evolve and

mature, it is likely that new therapeutic approaches for treating

heart disease will emerge.
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