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Background: Polycystic ovarian syndrome (PCOS) is a common reproductive

disorder that affects a considerable number of women worldwide. It is

accompanied by irregular menstruation, hyperandrogenism, metabolic

abnormalities, reproductive disorders and other clinical symptoms, which

seriously endangers women’s physical and mental health. The etiology and

pathogenesis of PCOS are not completely clear, but it is hypothesized that

immune system may play a key role in it. However, previous studies

investigating the connection between immune cells and PCOS have

produced conflicting results.

Methods:Mendelian randomization (MR) is a powerful study design that uses

genetic variants as instrumental variables to enable examination of the causal

effect of an exposure on an outcome in observational data. In this study, we

utilized a comprehensive two-sample MR analysis to examine the causal link

between 731 immune cells and PCOS. We employed complementary MR

methods, such as the inverse-variance weighted (IVW) method, and

conducted sensitivity analyses to evaluate the reliability of the outcomes.

Results: Four immunophenotypes were identified to be significantly

associated with PCOS risk: Memory B cell AC (IVW: OR [95%]: 1.123[1.040

to 1.213], p = 0.003), CD39+ CD4+ %CD4+ (IVW: OR [95%]: 0.869[0.784 to

0.963], p = 0.008), CD20 on CD20- CD38-(IVW: OR [95%]:1.297[1.088 to

1.546], p = 0.004), and HLA DR on CD14- CD16+ monocyte (IVW: OR

[95%]:1.225[1.074 to 1.397], p = 0.003). The results of the sensitivity

analyses were consistent with the main findings.

Conclusions: Our MR analysis provides strong evidence supporting a causal

association between immune cells and the susceptibility of PCOS. This

discovery can assist in clinical decision-making regarding disease prognosis

and treatment options, and also provides a new direction for

drug development.
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Introduction

Polycystic ovary syndrome (PCOS) is a prevalent reproductive

endocrine and metabolic disorder that commonly affects women of

childbearing age. It is characterized by chronic anovulation and

hyperandrogenism. Clinical symptoms of PCOS include menstrual

irregularities, hirsutism, acne, and polycystic ovarian morphology.

Additionally, individuals with PCOS may also experience metabolic

conditions such as obesity, insulin resistance, and dyslipidemia (1).

The pathogenic mechanisms of PCOS remain unclear; in addition

to the ovarian-pituitary-hypothalamic-gonadal axis, pathogenesis

of PCOS must also consider ovarian local cytokines, immunology,

and genetics.

Recent research has highlighted the importance of the

inflammatory immune mechanism in the occurrence and

development of PCOS. Numerous studies have reported that

chronic low-grade inflammation is closely associated with and

interacts with PCOS (2–4). The identification of leukocytosis in

polycystic ovaries may indicate that polycystic ovaries are associated

with a pro-inflammatory state (5, 6). The expression of IFN-c, a

cytokine produced by Th1, was significantly increased in PCOS

patients compared to the control group (3). The regulation of

granulosa cells and immune cells is impaired in patients with

PCOS, which may contribute to accelerated anovulation (7).

Systemic and ovarian cytokines, such as tumor necrosis factor

(TNF)-a, interleukin (IL)-6, and IL-18, can alter the local

microenvironment in the ovary, disrupt ovarian function, increase

androgen production, and contribute to insulin resistance through

various mechanisms (2). Immune factors such as vascular

endothelial growth factor (VEGF) and transforming growth

factor-b1, along with inflammation in the fol l icular

microenvironment, may play a role in the dysfunction of the

hypothalamic-pituitary-gonadal axis and the development of

follicular dysplasia. Patients with PCOS had higher levels of

antinuclear antibody, histone antibody resistance, and ds-DNA

antibody levels than the control group. In addition, an increase in

thyroperoxidase or thyroglobulin antibodies in patients with PCOS

was found to be associated with the development of autoimmune

thyroiditis (8).

Wu et al. found that T lymphocytes play a significant role in the

local pathological mechanisms of PCOS (9). T lymphocytes secrete

inflammatory and immunomodulatory molecules that regulate

ovarian function. Additionally, dysregulation of T-cell subsets has

been observed in the peripheral blood and ovaries of patients with

PCOS due to disrupted sex hormone levels (10). Animal models

with elevated androgens have been linked to reproductive

dysfunction, including oligo-anovulation, menstrual disturbances,

and subfertility, which are commonly observed in PCOS (11–15).

Androgens have immunomodulatory effects, and the presence of

elevated androgens is associated with altered immune function,

which can have an impact on reproductive function (16, 17).

Medawar identified the importance of the immune system in

reproduction, and subsequent studies have highlighted the

significance of regulatory T (Treg) cells frequencies in maintaining

normal ovarian function and menstrual cycles (18–20). Androgens
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appear to modulate the differentiation of T cells and the ratios of

Treg cells (3, 17, 21, 22). Furthermore, the differentiation of T cells is

also modulated by epigenetic mechanisms (23–25), which may be

the case in PCOS (17).

PCOS has been shown to be significantly associated with B

lymphocytes. In addition to their role in humoral immunity, B

lymphocytes are involved in antigen detection and regulation of

antigen processing and presentation. This group of lymphocytes

plays a crucial role in the development of insulin resistance

associated with obesity and glucose intolerance. They contribute

to insulin resistance by activating pro-inflammatory T cells and

producing pathological antibodies (26). The pathogenic role of B

cells was identified in PCOS, as the activity of these cells increased

in women with PCOS compared to the control group. Moreover,

mice with PCOS that were treated with CD19 antibody exhibited a

reduction in B cells in their peripheral blood, which led to a

reduction in their cystic follicles and an increase in their corpus

luteum. Based on these findings, it can be concluded that

manipulation of these cells and antibodies could be potential

targets for treating insulin resistance and PCOS (27).

Mendelian randomization (MR) is an analytical method used in

epidemiological etiology inference, which is based on the Mendelian

independent distribution law. It is essential for the causal sequence

of MR to be reasonable (28, 29). Previous observational studies have

identified multiple associations between immune cell traits and

PCOS, supporting the hypothesis of a correlation between them. In

this study, a comprehensive two-sample MR analysis was

conducted to establish a causal association between immune cell

signatures and PCOS.
Materials and methods

Study design

We assessed the causal relationship between 731 immune cell

signatures and PCOS based on a two-sample MR analysis. In order

to acquire dependable outcomes, three hypotheses must be met

during the execution of MR analysis: a robust association between

genetic variants and exposure factors, an absence of correlation

between genetic variants and confounding variables, and the

influence of genetic variants on the outcome solely through

exposure factors, excluding other pathways.
Genome-wide association study data
sources for PCOS

The GWAS statistics for PCOS were sourced from FinnGen

Research’s data release in July 2021 (https://gwas.mrcieu.ac.uk/

datasets/finn-b-E4_POCS/). The diagnostic criteria of PCOS were

based on ICD-9 and ICD-10 standards (presence of two of the three

criteria: chronic anovulation, hyperandrogenism, polycystic ovaries

on ultrasonography), and the GWAS statistics encompassed

16,379,676 loci variations from 642 cases and 118,228 controls.
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Immunity-wide GWAS data sources

The GWAS summary statistics for each immune trait can be

accessed from the GWAS Catalog, with accession numbers ranging

from GCST90001391 to GCST90002121 (30). A total of 731

immunophenotypes were included in the analysis, which

comprised of absolute cell (AC) counts (n = 118), median

fluorescence intensities (MFI) representing surface antigen levels

(n = 389), morphological parameters (MP) (n = 32), and relative cell

(RC) counts (n = 192). The AC, MFI, and RC features encompassed

B cells, CDCs, mature stages of T cells, monocytes, myeloid cells,

TBNK (T cells, B cells, natural killer cells), and Treg panels. The MP

feature consisted of CDC and TBNK panels. The original GWAS on

immune traits utilized data from 3,757 European individuals, and

there were no overlapping cohorts. Approximately 22 million SNPs

were genotyped with high-density arrays and imputed using the

Sardinian sequence-based reference panel (31). Associations were

tested while adjusting for covariates such as sex, and age.
Selection of instrumental variables

Based on recent research (30), the significance level for

instrumental variables (IVs) associated with each immune trait was

set to 1 × 10-5. To ensure reliable results, a threshold for strong

linkage disequilibrium (LD) effect was applied (r2 < 0.001) (32), with

LD r2 calculated using the 10000 Genomes Project as a reference

panel. The proportion of phenotypic variation explained (PVE) and F

statistic were calculated for each IV to assess IV strength and avoid

weak instrumental bias. Furthermore, to mitigate bias introduced by

weak instruments, IVs with F statistics greater than 10 were deemed

strong instruments and retained for subsequent analysis. The

exposure and outcome SNPs were harmonized to align effect

estimates for the same effect allele. Palindromic SNPs with

intermediate effect allele frequencies (EAFs > 0.42) or SNPs with

incompatible alleles were excluded (33).
Data analysis

We conducted a range of MR analyses, encompassing MR

Egger, weighted median, inverse-variance weighted (IVW), simple

mode, weighted mode, and MR-PRESSO approaches. Among these,

the IVW method is frequently employed (34).

To evaluate the presence of variance, we performed

heterogeneity examinations utilizing both the MR Egger and IVW

techniques. The Cochrane’s Q value was employed to appraise the

variability of genetic instruments, whereby a p-value exceeding 0.05

indicates a lack of noteworthy diversity. To scrutinize the existence

of horizontal pleiotropy, we utilized the MR Egger regression

equation, where a p-value surpassing 0.05 indicates an absence of

indications of horizontal pleiotropy (35).

Additionally, in order to assess the potential impact of directional

pleiotropy, we scrutinized each SNP for potential associations with

secondary phenotypes using the GWAS Catalog (http://

www.phenoscanner.medschl.cam.ac.uk/). Subsequently, we re-
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performed the MR analyses, excluding SNPs associated with other

phenotypes. Moreover, we conducted leave-one-out sensitivity

analyses on significant findings to determine if a single SNP was

accountable for the observed causal relationship. The overall research

design is depicted in Figure 1. The MR analyses were carried out

utilizing the ‘TwoSampleMR’ package (version 0.5.7) within the R

software environment (version 4.2.1) (35, 36).
Results

Exploration of the causal effect of
immunophenotypes on PCOS

At the significance of 0.001, we detected Memory B cell AC,

CD20 on CD20- CD38-, HLA DR on CD14- CD16+ monocyte

were significantly associated with an increased risk of PCOS, while

CD39+ CD4+ %CD4+ retained a robust association with an

decreased risk of PCOS.

The OR of Memory B cell AC (B cell panel) on PCOS risk was

estimated to be 1.123 (95% CI = 1.040 to 1.213, p = 0.003) by using

the IVW method. Similar results were observed by using MR-Egger

(OR [95%]: 1.146 [1.045 to 1.258], p = 0.008). The genetically

predicted CD39+ CD4+ %CD4+ (Treg panel) exhibited a noticeable

protective effect against PCOS (IVW: OR [95%]:0.869 [0.784 to

0.963], p = 0.008). The genetically predicted CD20 on CD20- CD38-

(B cell panel) showed a positive correlation with the risk of PCOS,

as evidenced by IVWmethod (OR [95%]:1.297 [1.088 to 1.546], p =

0.004). The OR of HLA DR on CD14- CD16+ monocyte (Monocyte

panel) on PCOS risk was estimated to be 1.225 (95% CI = 1.074 to

1.397, p = 0.003) by using the IVW method. (Supplementary

Table 1, Figure 2).
Sensitivity analysis

The MR-Egger intercept test and MR-PRESSO global test results

indicated no evidence of heterogeneity or horizontal pleiotropy in the

associations between immunophenotypes and PCOS. These results

are presented in Supplementary Table 2. Furthermore, the leave-one-

out analysis demonstrated the robustness of the MR results.

Excluding any single SNP associated with immunophenotypes and

PCOS did not significantly alter the overall findings.

To account for potential directional pleiotropy, we conducted

an analysis using the GWAS Catalog to identify SNPs linked to

immunophenotypes and PCOS. Two SNPs were discovered to

exhibit associations with other traits, as detailed in Supplementary

Table 3. After excluding these pleiotropic SNPs, the associations

between immunophenotypes and PCOS remained stable, as shown

in Supplementary Table 4.
Discussion

Our study integrates large-scale individual and aggregated

GWAS datasets to systematically elucidate the role of immune
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cells in the pathogenesis of PCOS from a genetic perspective. Our

analysis provides suggestive evidence that immune cells can

influence the risk of PCOS through a comprehensive genetic

approach based on large-scale GWAS summary data. To the best

of our knowledge, this is the first MR analysis to investigate the

causal relationship between multiple immunophenotypes and

PCOS. By utilizing SNPs as instrumental variables and integrating

various two-sample MR methods, we confirmed that four immune

cells, including Memory B cell AC, CD39+ CD4+ %CD4+, CD20 on

CD20- CD38- and HLA DR on CD14- CD16+ monocyte, were

significantly associated with the risk of PCOS.

Our findings indicate that two types of B cells, namely CD20 on

CD20- CD38- and Memory B cell AC, were significantly associated

with an increased risk of PCOS. Recent studies have highlighted the

important role of B cells in the development of PCOS. B

lymphocytes are known to produce antibodies in response to self-

antigens, and the formation of antigen-antibody complexes can

contribute to inflammatory responses in the body, thereby

potentially increasing the risk of PCOS (37). CD20 is a distinct

antigen found on the surface of B lymphocytes, and it is recognized

for its significant involvement in regulating B lymphocyte

proliferation, differentiation, and signaling processes (38).

Previous studies have characterized Memory B cells as being

enriched with autoantibodies and primed for plasma cell

differentiation. They have also been associated with excessive

accumulation in chronic infections, autoimmune disorders, and
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immunodeficiencies, suggesting their involvement in the regulation

of humoral responses. Consistent with existing data demonstrating

increased B cell frequencies in PCOS, hyperandrogenic women with

PCOS showed a significant reorganization of their B cell repertoire,

leading to elevated frequencies of B memory cells (39).

Our study revealed a correlation between elevated levels of

CD39+ CD4+ %CD4+ (Treg panel) and a decreased risk of PCOS.

T cells can be categorized into three subsets: T helper cells,

Cytotoxic T cells, and Treg cells. Treg cells are crucial for

immune system regulation, homeostasis, and prevention of

autoimmunity. Previous research on Treg cell proliferation in

PCOS patients has shown a decrease in these cells (40).

Additionally, studies have indicated reduced levels of anti-

inflammatory factors like IL-10 in the bodies and ovaries of

PCOS patients, attributed to a reduction in peripheral blood Treg

cells (41). Treg cells CD39+ CD4+ %CD4+ are particularly

important for reproductive function. During a normal pregnancy,

there is an increase in the number of Treg cells CD39+ CD4+ %

CD4+, while studies suggest that a decrease in these cells among

PCOS patients could contribute to miscarriage or infertility (42).

In our study, we discovered a correlation between HLA DR on

CD14- CD16+ monocyte levels and an increased risk of PCOS.

Androgens can disrupt the ovarian immune balance in PCOS by

interacting with immune cells and cytokines. Research revealed

that monocytes entering the ovary can provoke a local

inflammatory response, leading to increased production of
FIGURE 1

Research overview and design of Mendelian randomization analysis.
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ovarian androgens in women with PCOS (43). Tumor necrosis

factor-alpha (TNF-a), released by monocytes, has been associated

with insulin resistance in PCOS (43). Monocytes and

macrophages act as immune sentinels in the innate immune

system and can be distinguished by their expression of CD14

and CD16. Monocyte subsets are classified based on phenotypic

markers: classic (CD14+CD16-), intermediate (CD14+CD16+), and

nonclassical (CD14−CD16+). Our findings have demonstrated the

involvement of non-classical monocytes in PCOS. Non-classical

monocytes secrete a significant amount of IL-1b in a TLR signaling-

dependent manner (44). Compared to classical monocytes, the

CD16+ subset exhibits a stronger ability to release pro-

inflammatory factors and, as a result, is increased in individuals

with PCOS (45, 46).

It is necessary to acknowledge that our study possesses certain

inherent limitations that cannot be overlooked. Firstly, it is

important to recognize that MR analysis cannot serve as a

substitute for clinical trials within the objective realm, as it merely

serves as a method for analyzing the causal relationship between

exposure and outcome. Therefore, further investigations are

required to corroborate the potential association between immune

cells and the risk of PCOS. Additionally, our MR analysis was

exclusively conducted within the European population due to

the limited availability of GWAS data resources. Given the
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genetic heterogeneity among various ethnic groups, results may

vary across different populations. Consequently, forthcoming

studies should undertake subgroup analyses encompassing diverse

populations in order to arrive at a more comprehensive and

encompassing conclusion.

In conclusion, our MR analysis results indicate that Memory B

cell AC, CD20 on CD20- CD38-, HLA DR on CD14- CD16+

monocyte increase the risk of PCOS, while CD39+ CD4+ %CD4+

may lead to decreased risk of PCOS. This discovery can assist in

clinical decision-making regarding disease prognosis and treatment

options, and also provides a new direction for drug development.

However, the pathogenesis of PCOS is multifaceted, and the clinical

heterogeneity of various types of immune cells involved in PCOS is

evident. Therefore, a single treatment may not always yield the

desired outcomes. Further research is needed to investigate the

interplay between innate immune cells and between innate and

adaptive immune cells in PCOS patients.
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FIGURE 2

The effect of immune cells on polycystic ovarian syndrome. Asterisk (*) represents MR analysis results after excluding SNPs associated with other
phenotypes. nsnp, number of single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.
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