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The incidence of diabetes and related mortality rate increase yearly in modern

cities. Additionally, elevated glucose levels can result in an increase of reactive

oxygen species (ROS), ferroptosis, and the disruption of protective pathways in

the heart. These factors collectively heighten the vulnerability of diabetic

individuals to myocardial ischemia. Reperfusion therapies have been effectively

used in clinical practice. There are limitations to the current clinical methods

used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-

treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are

underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen)

has been used for centuries in ancient China to treat cardiovascular diseases

(CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic

compound with potent antioxidant properties and has the greatest hydrophilic

property in Danshen. It has recently been discovered that salvianolic acids A (SAA)

and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway

and the NF-kB pathway, respectively. This review delves into the most recent

discoveries regarding the therapeutic and cardioprotective benefits of salvianolic

acid for individuals with diabetes. Salvianolic acid shows great potential in

myocardial protection in diabetes mellitus. A thorough understanding of the

protective mechanism of salvianolic acid could expand its potential uses in

developing medicines for treating diabetes mellitus related myocardial

ischemia-reperfusion.
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1 Introduction

Myocardial ischemia is one of the most common types of

cardiovascular disease that increases morbidity and mortality

worldwide (1). Effective limitation of infarct size through timely

restoration of blood flow to ischemic myocardium is the standard

treatment to rescue ischemic myocardium and thus to improve the

patient outcomes. Paradoxically, reperfusion itself causes cardiac

injury, which is known as myocardial ischemia/reperfusion injury

(MI/RI). Moreover, patients with diabetes are more vulnerable to

MI/RI than those without diabetes (2), yet the underlying

mechanism is incompletely understood. The complicities of the

MI/RI which includes oxidative stress, calcium overload,

inflammatory response , energy metabol ism disorder ,

mitochondrial dysfunction, and apoptosis were shown in many

studies (3, 4). Oxidative stress is known as an essential factor in

myocardial ischemia reperfusion (I/R) (5, 6), and oxidative stress

levels in the myocardium of diabetic patients were found to be

significantly higher than that in non-diabetes. This could be one of

the mechanisms attributable to the increased myocardial

vulnerability to MI/RI in diabetes. In addition to increases in

reactive oxygen species (ROS) and oxidative stress, increases in

inflammation, reduction in cardiac Akt and STAT3 all occur in the

myocardium of diabetes (7). These elements play important roles in

diabetics complicated by MI/RI and may be attributed to the

increased myocardial sensitivity to MI/RI (8, 9).

Danshen (Salvia miltiorrhiza Bunge), a traditional Chinese

medicine that has been widely prescribed to patients with angina

pectoris and hyperlipidemia was found to have a preventive effect in

type 2 diabetic patients and in type 2 diabetic rats with nephropathy

(10, 11). The chemical constituents of Danshen can be classified

into two categories: water-soluble (hydrophilic) phenolic

compounds and nonpolar (lipophilic) diterpenoidal compounds.

Salvianolic acids are the major hydrophilic constituents amongst all.

Among salvianolic acids, salvianolic acid A (SAA), salvianolic acid

B (SAB), rosmarinus acid, danshensu, caffeic acid, and lithospermic

acid are the main phenolic acids. SAA and SAB, in particular, are

polyphenolic compounds known to have powerful antioxidant

capacities (12).

Recent studies have demonstrated that SAA can exert anti-

diabetic effects, preventing diabetic complications by reducing

inflammatory response and improving lipid disorders (13),

revealing the possible therapeutic effect of SAA on DM (14).

Diabetes with MI/RI are not sensitive to pre-, post-conditioning

cardioprotective interventions that are otherwise effective in non-

diabetic subjects, while the related mechanisms are unclear. SAA

can alleviate diabetes complications like vascular disease (14), but

few studies support SAA can reduce MI/RI in DM and the

mechanism has not been explored.

This review aims to provide a collective understanding of the

potential effect of salvianolic acids in protecting against diabetes and

myocardial ischemia-reperfusion in recent years and to explore

whether salvianolic acid has the potential protective effects in

Diabetes that are complicated by MI/RI. It is hopeful that such a

collective understanding will help develop new therapeutic
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interventions for the clinical treatment of diabetic myocardial

ischemia-reperfusion.
2 The pathogenesis and mechanism
of MIRI

In 1960, Jennings et al. first reported MIRI, which is a condition

that occurs when there is a temporary interruption of blood flow to

the heart (ischemia) followed by the restoration of blood flow

(reperfusion) (15). Restoring blood flow, such as percutaneous

coronary intervention (PCI) or coronary artery bypass grafting

(CABG) is the most effective method to improve patient outcome

(16). However, reperfusion itself causes damage to the myocardium,

leading to exacerbation of the initial ischemic injury, and as such,

even effective restoration of blood flow does not attenuate MIRI (4).

Reperfusion triggers a series of tissue responses that contribute to

the injury. This includes the production of oxygen free radical and

mitochondrial damage, release of inflammatory factors,

endoplasmic reticulum stress, and amplification of tissue damage

(17). MIRI results from complex pathophysiological mechanisms,

including oxidative stress, inflammatory response, endothelial cell

dysfunction, mitochondrial dysfunction, calcium overload,

apoptosis and autophagy (18).
2.1 Oxidative stress

Reactive oxygen species (ROS) are small reactive molecules that

play a significant role in various cellular functions and biological

processes, including cell signaling and homeostasis, in almost all

eukaryotic cells. Some examples of ROS include superoxide anion

radical, hydrogen peroxide (H2O2), hydroxyl radical (OH
-), ozone

(O3), and singlet oxygen (O2). (19). Under physiological conditions,

ROS production is tightly regulated and plays a beneficial role in cell

proliferation and metabolism (20). However, when ROS levels

becomes excessively high, they can cause oxidative stress, which is

a state of imbalance between the production of ROS and the ability

of cells to detoxify them or repair the resulting damage (21).

Overexpre s s ion o f ROS and hypox ia in the t i s sue

microenvironment can disrupt normal tissue repair and

regeneration. This disruption can contribute to the development

of fibrosis, dysfunction, and severity of cardiovascular diseases.

The accumulation of ROS during I/R injury is a major cause of

oxidative damage. This phenomenon is also observed in diabetic

myocardial injury (22). A study by Liu et al. revealed that I/R-

induced apoptosis is mainly a consequence of excessive oxidative

stress. Persistent cellular injury including necrosis and apoptosis of

cardiomyocytes are the result of intense oxidative stress, which in

turn trigger mitochondrial production of ROS in the early stages of

ischemia in response to many mildly harmful stimuli to modulate

stimulus-induced tolerance to ischemia. During reperfusion, the

electron transport chain dysfunction, specifically the dysfunction in

complex I (NADH dehydrogenase) and III (coenzyme Q-

cytochrome c reductase), leads to excessive release of ROS. This
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results in the production of superoxide anions (O2-·), which are

converted to hydrogen peroxide (H2O2) by the action of superoxide

dismutase. In the presence of Fe2+ and Cu+, H2O2 is catalyzed to

produce highly reactive hydroxyl radicals (OH), which can cause

indiscriminate damage to nucleic acids, proteins, biofilms, and lipid

peroxidation. This leads to mitochondrial depolarization, swelling,

apoptosis, and cell death (17). Damaged and necrotic cells can

activate Toll-like receptor 4 (TLR4) through damage-related

molecular pattern (DAMP) activation. This leads to the

aggregation of immune cells, which in turn express NADPH

oxidase to promote the production of reactive oxygen species and

further exacerbate myocardial damage (23). Overall, the

overproduction ROS during I/R injury, along with the activation

of TLR4 and NADPH oxidase, creates a vicious cycle that intensifies

the damage to the myocardium.
2.2 Endothelial dysfunction

Endothelium regulates vascular tone, cell adhesion,

thromboresistance, smooth muscle cell proliferation, and vascular

wall inflammation by producing and releasing vasoactive molecules.

This produces and releases vasoactive molecules such as

prostaglandins, nitric oxide (NO), endothelium-dependent

hyperpolarizing factors, and endothelium-derived contracting

factors (24), which impact vascular tone, cell adhesion,

thromboresistance, smooth muscle cell proliferation, and vascular

wall inflammation. These molecules help to regulate the degree of

vasodilation/contraction, tissue oxygen consumption balance, long-

term organ perfusions, vascular structure remodeling, and

metabolism (25). The integrity of the endothelial barrier depends

on the intercellular junction complex located between adjacent

endothelial cells (26). Endothelial dysfunction, characterized by

impaired endothelial function, is primarily driven by oxidative

stress and inflammation (27). Evidence has shown that

endothelial injury is a key mediator of myocardial ischemia/

reperfusion injury (26, 28). Additionally, I/R injury itself can lead

to endothelial dysfunction, manifested by decreased nitric oxide

production, vascular dystonia due to endothelial injury, and

prolonged vasoconstriction.

During myocardial I/R, there is disruption of endothelial

integrity and decreased microvascular permeability of cardiac

myocardium after myocardial I/R (29), which increases the

permeability of the endothelial barrier by destroying endothelial

barrier function and aggravating the inflammation (30, 31). No

reflux phenomenon of myocardium is also seen after I/R, leading to

vascular leakage and neutrophil infiltration, and eventually

apoptosis of cardiomyocytes and damage to myocardial function

(30, 31).
2.3 Mitochondrial dysfunction

Mitochondria play a crucial role in oxidative stress and cell

metabolism, and they are involved in various physiological

functions such as endothelial mobilization, aging, proliferation,
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and growth (32). In cardiomyocytes, mitochondria are

responsible for synthesizing about 90% of ATP, which is essential

for normal heart functioning or cardiac functional recovery after

various injuries (33, 34). Many studies have identified

mitochondrial dysfunction as an important prominent

mechanism for the progression of myocardial ischemia-

reperfusion injury (34, 35). Abnormal mitochondrial fission,

decreased mitophagy, and excessive mitochondrial oxidative stress

can lead to endothelial dysfunction or death during cardiac

reperfusion episodes (36). Mitochondrial dysfunction can lead to

cell death through calcium imbalance, overproduction of

mitochondrial ROS (mROS), disruption of cellular energy

metabolism, impaired ATP production, and the opening of a

structure called the mitochondrial permeability transition pore

(MPTP), which can ultimately lead to cell death (34, 37). To

counteract the effects of ROS and oxidative stress, mitochondria

have a complex network of clearance systems (38). Studies have

shown that abnormal mitochondrial fission can be an early

indicator of mitochondrial dysfunction, and an imbalance

between mitochondrial fission and fusion can lead to

mitochondrial dysfunction, which in turn can aggravate MIRI

damage (28, 34). Another factor contributing to injury is the

accumulation of mitochondrial succinate, a metabolite that

increases during hypoxia (39). This accumulated succinate is

oxidized during reperfusion, resulting in the generation of ROS

through a process called reverse electron transport (39). This

excessive ROS production further contributes to oxidative stress

and tissue damage. During myocardial ischemia, prolonged

ischemia induces an increase in mitochondrial fission (40–42).

When reperfusion occurs, the uncontrolled production of ROS

triggers mitochondrial fission (34, 43, 44). This increased

mitochondrial fission reduces mitochondrial membrane potential

(MMP), making the MPTP more sensitive and leading to further

ROS production. This disruption of the antioxidant balance within

the mitochondria can result in the releasing of Cytochrome C (Cyt

C) during cardiac microvascular I/R damage, activating caspases

and initiating apoptosis through mitochondria-dependent

pathways (45–48).
2.4 Calcium overload

Calcium plays an important role as the second messenger in

various cellular processes, including cell proliferation, division, and

energy metabolism. However, excessive calcium levels, known as

calcium overload, can lead to detrimental effects in cellular function,

as proposed by Zimmerman and Hulsmann in 1966 (49). In a stable

internal environment, calcium inflow and outflow are dynamically

balanced under the regulation of protein channels (50). Maintaining

intracellular calcium homeostasis is crucial for the normal function

and growth of cardiomyocytes . Calc ium overload in

cardiomyocytes can exacerbate ischemic damage, which occurs

when blood supply to the heart is compromised (51). When

calcium overload occurs, Ca2+ dependent protease can promote

the conversion of xanthine dehydrogenase to xanthine oxidase,

promote the production of reactive oxygen species, and the high
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concentration of Ca2+ in the cytoplasm increases mitochondrial

uptake of Ca2+, which in turn forms calcium phosphate deposition

in the mitochondria, and subsequently adversely affects ATP

synthesis. Calcium homeostasis cannot be maintained during

myocardial ischemia-reperfusion and intracellular calcium

overload is a common pathway for irreversible damage of cells

subjected to myocardial ischemia-reperfusion (52). During

myocardial ischemia, adenosine triphosphate (ATP) production

decreases, leading to intracellular acidosis and the activation of

Na+/H+ exchange causing a large influx of sodium ions. This

sodium influx, coupled with the high calcium concentration,

contributes to calcium overload during reperfusion (53).

Reperfusion also disrupts mitochondrial membrane potential and

accelerates energy expenditure, resulting in mitochondrial calcium

overload and excessive production of ROS. The accumulation of

calcium ions in cells inhibits mitochondrial ATP synthesis, leading

to instability in mitochondrial membrane potential and subsequent

damage, such as contraction disorders and apoptosis (54),

exacerbating post-hypoxic or post-ischemic cardiomyocytes

injuries (40, 55, 56).
2.5 Endoplasmic reticulum stress

The endoplasmic reticulum (ER) regulates the synthesis, folding,

and transport of a significant portion of proteins in eukaryotic cells

(57). High-quality protein folding can determine cell survival and

function as well as normal physiological function. Endoplasmic

reticulum homeostasis involves the binding of three ER

transmembrane proteins: protein kinase R-like ER kinase (PERK),

activated transcription factor 6 (ATF6), and enzyme 1 (IRE1) (58).
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Such a binding keeps them inactive, and their activation requires

specific conditions such as the presence of inositol (58). During

environmental injury or disease state, the disruption of endoplasmic

reticulum homeostasis can lead to protein misfolding and

accumulation of unfolded proteins. This triggers a response called

endoplasmic reticulum stress, which activates the unfolded protein

response (UPR). The UPR is a cellular mechanism aimed at reducing

the burden and damage caused by the ER stress. It helps to restore

protein homeostasis within the ER and rebuild the endoplasmic

reticulum balance. However, if the endoplasmic reticulum stress

becomes chronic or severe, it can promote cell death. Myocardial

ischemia is an example that induces ER stress response (59).

Activation of the endoplasmic reticulum stress-related pathway

induces downstream activation of the apoptotic pathway, thereby

promoting the progression of ischemia/reperfusion injury in

myocardial tissue (60). Cardiomyocytes express high levels of

endoplasmic reticulum stress-related signaling proteins, including

transcription factor 6 (ATF6), C/EBP homologous protein (CHOP),

glucose regulatory protein 78 (GRP78), etc. Treatments that Inhibit

the signaling of endoplasmic reticulum stress can effectively reduce

the rate of cell death in conditions like myocardial ischemia-

reperfusion injury (61–64). Key cellular events in the pathogenesis

of MIRI are summarized in Figure 1.
2.6 Current therapeutic interventions
against MIRI and the pro-survival cardiac
protective signaling pathways

Ischemic heart disease (IHD) is one of the most common

diseases that affects the human lifespan. Percutaneous coronary
FIGURE 1

Key cellular events in the pathogenesis of MIRI. Oxidative stress, endothelial dysfunction, mitochondrial dysfunction, calcium overload, and
reperfusion injury contribution to myocardial cell damage and cardiac dysfunction. These processes promote inflammation, necrotic apoptosis,
apoptosis, and other mechanisms, ultimately exacerbating myocardial ischemia/reperfusion injury.
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angioplasty, coronary artery bypass grafting, and other reperfusion

methods such as thrombolysis treatment are the most effective

treatment methods for myocardial ischemic injury up to date.

However, post-ischemic reperfusion itself can cause new heart

damage called “ischemia/reperfusion injury”. Although a variety

of reperfusion therapies have matured, the development of

therapies to reduce ischemia/reperfusion injury has been slow.
Frontiers in Endocrinology 05
Modern medical treatment has solved the technical problems of

myocardial ischemia injury and blood flow recovery, but a series of

complex processes of intracellular environmental changes that are

caused by reperfusion after blood flow recovery have not been

solved. The endogenous adaptive mechanism that occurs in

cardiomyocytes in the face of ischemia-reperfusion or other types

of metabolic stress challenges is called the pro-survival
FIGURE 2

Possible mechanism of hyperglycemia in promoting myocardial ischemia-reperfusion injury. In a high-glycemic environment, there is an increased
vulnerability to myocardial ischemia/reperfusion injury, which can be attributed to several mechanisms. These mechanisms include the
overproduction of reactive oxygen species (ROS), an excessive burden of oxidative stress, abnormal alterations in mitochondria resulting in cell death
due to iron overload, and dysfunction of endothelial nitric oxide synthase (eNOS). Furthermore, impaired protection against such injury is often
linked to inadequate activation of pro-survival signaling pathways, including Akt, AMPK, JAK/STAT3, and PI3K/Akt.
FIGURE 3

Chemical structures of salvianolic acid (A) and salvianolic acid (B).
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cardioprotective mechanism (65). The SAFE pathway, also known

as the Survivor Activating Factor Enhancement pathway, is a

signaling pathway that plays a crucial role in I/RI. This pathway

is initially identified in studies investigating the cardioprotective

effects of erythropoietin (EPO) against I/R injury (66, 67). It has

been found that EPO activates the Janus Kinase (JAK) and signal

transducer and activator of transcription (STAT) signaling

pathway, particularly the JAK2/STAT3 pathway, to confer

cardioprotection (68). In addition to EPO, other factors and

pathways have also been implicated in activating the SAFE

pathway. These include cytokines (such as interleukin-6 and

interleukin-10), growth factors, and pharmacological agents (such

as statins and opioids) (69). These factors can activate JAK/STAT

signaling and trigger the downstream protective effects mediated by

the SAFE pathway. The Reperfusion Injury Salvage Kinase (RISK)

pathway is another signaling pathway that has a cardioprotective

effect against I/R injury. It was first identified in studies

investigating the cardioprotective effects of Ischemic

Preconditioning (IPC), a phenomenon in which brief episodes of

ischemia followed by reperfusion protect the heart against

subsequent sustained I/R injury. Another cardioprotection

mechanism that is re levant to this review is ca l led

postconditioning, which involves applying brief episodes of

ischemia and reperfusion at the onset of reperfusion after a

prolonged period of ischemia. This technique interrupts the initial

reperfusion phase to protect the heart against I/R injury. The RISK

pathway involves the activation of multiple protein kinases,

including phosphatidylinositol 3-kinase (PI3K), protein kinase B

(Akt), and extracellular signal-regulated kinase (ERK) (69–71).

Activation of these kinases leads to the phosphorylation and

activation of various downstream targets that confer

cardioprotection. In addition to the aforementioned pro-survival

protective signalings, intracellular signaling molecules are also

involved in cardioprotective signaling pathways, such as protein

kinase C (PKC), protein kinase A (PKA), protein kinase G (PKG), 5’

amp activated protein kinase (AMPK), p38 mitogen-activated

protein kinase (MAPK), extracellular signaling regulatory kinase

1/2 (ERK1/2) (65, 72, 73). However, the interaction between them

has not been fully determined (65, 72, 73).
3 Increased myocardial susceptibility
to MIRI in diabetes

Diabetes is a major risk factor for IHD. Diabetes not only

increases the incidence of acute myocardial infarction and

myocardial sensitivity to ischemia-reperfusion injury but also

alters or diminishes the myocardial response to cardioprotective

interventions such as ischemic conditioning that are otherwise

effective in subjects without diabetes. In animal models, ischemia

preconditioning has been shown to be cardioprotective and reduce

myocardial I/R damage. A recent study conducted in the db/db

mouse model of type 2 diabetes shows that diabetes disturbs

functional adaptation of the non-ischemic remote myocardium

after ischemia/reperfusion (74). However, the effects of
Frontiers in Endocrinology 06
pretreatment-mediated cardioprotective in diabetic animal models

are still controversial and inconclusive. In the study of Tatsumi

et al., diabetic myocardial pretreatment stimulation produces a

more substantial protective effect compared to regular myocardial

pretreatment stimulation (75), while other studies have shown that

diabetes attenuates or inhibits pretreatment-mediated

cardioprotective effects (76). Diabetes can trigger various

histological, biochemical, and physiological changes that

contribute to the aggravation of oxidative stress, apoptosis,

inflammation, and other pathways by increasing inflammatory

factors, which leads to cardiac dysfunction, and exacerbating

myocardial ischemia-reperfusion phenomenon (77).
3.1 High glucose induced increase in ROS
in the heart

Figure 2 studies conducted in diabetic rodents indicate that high

glucose enhance superoxide generation and mitochondrial

structural changes that increase the vulnerability of the

myocardium to IR injury (78), and treatments that have anti-

oxidant property attenuate myocardial IRI through improving

mitochondrial homeostasis (28). Thus, excessive oxidative stress

and impaired mitochondrial biogenesis in diabetic conditions

rendered the diabetic heart more vulnerable to ischemic insults

(56, 79). Mechanistically, Nrf2 nuclear translocation triggers Sirt3

upregulation and MnSOD activation, which subsequently reduces

mitochondrial levels of ROS (mtROS). However, high glucose levels

cause a downregulation of Nrf2 levels in the nucleus, resulting in

Sirt3 downregulation and the acetylation of manganese superoxide

dismutase (MnSOD), and thus facilitating the production of ROS

(80). Energetic stress and mitochondrial ROS formation play

critical roles in the pathogenesis of diabetic cardiomyopathy and

MIRI (81, 82). AMPK, an important kinase involved in regulating

energy homeostasis, plays a role in various metabolic process such

as protein metabolism, lipid metabolism, carbohydrate metabolism,

autophagy, and mitochondrial homeostasis. It is known that AMPK

can sense cellular metabolic conditions and promote mitochondrial

biogenesis. In the absence of glucose and ATP, AMPK is activated.

Activation of AMPK has been shown to reduce the production of

ROS and protect mitochondrial biogenesis. In the presence of high

glucose, there is a dual inhibitory effect on AMPK. High glucose

reduces the protein level and kinase activity of AMPKa, the catalytic
subunit of AMPK. Researchers discovered that high glucose

stimulation did not cause an increase in ATP levels, but it did cause

an increase in the ratio of AMP/ATP and ADP/ATP (83). This

suggests that ATP is not the cause of high glucose inhibition of AMPK

signaling. Instead, high glucose promotes the production of ROS in

cells (83). Under conditions of persistent hyperglycemia, elevated ROS

levels are a causative factor in cell death (84). Under normal

physiological conditions, cells have an antioxidant system to remove

excess ROS. However, in diabetes, there is a decrease in antioxidant

system activity and an increase in ROS production. This impairment

between oxidant and antioxidant systems lead to oxidative stress, and

results in various forms of damage to cells and tissue (84).
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3.2 High glucose induced ferroptosis

Iron death, also known as ferroptosis, is a process in which iron-

dependent cell death occurs due to increased lipid peroxidation. It is

involved in various pathological processes such as cancer drug

resistance, neurodegenerative diseases, IR/I and more (85). Several

factors and markers are associated with iron death, including lactate

dehydrogenase (LDH) activity, lipid peroxidation by reactive

oxygen species (ROS), iron (Fe2+) levels, glutathione (GSH)

levels, and malondialdehyde (MDA) levels. Studies have shown

that high glucose (HG) conditions can increase ROS production

with subsequently increased production of the lipid peroxidation

product MDA, which in the presences of increased Fe2+ levels but

decreased GSH and GPX4 levels, jointly lead to the induction of

iron death (86). HG intake also leads to increased production

of ROS, exacerbating oxidative stress increasing the production of

GSSG, and reducing GSH content (87). This can result in

mitochondrial abnormalities, such as decreased size, loss of

mitochondrial ridges, and damage to the outer mitochondrial

membrane. Glutathione peroxidase 4 (GPX4) is a key regulator of

iron death, and its protein levels are significantly reduced under HG

condition. The reduction in GPX4 leads to increased lipid ROS

formation, lipid peroxidation, and ultimately cell iron death (86).

Studies have found that adding ferroptosis cell death inhibitor can

reduce cell death in HG environments, indicating the potential

therapeutic importance of targeting this pathway (85). Overall, the

process of ferroptosis and the proteins associated with it are strongly

linked to glucose and lipid metabolism disorders (88). Herb extracts

that antioxidant and anti-inflammatory properties such as

Astragaloside IV has been shown to attenuate diabetic heart

dysfunction in rats via inhibiting ferroptosis (89). However,

studies regarding the relative role of ferroptosis in the diabetic

myocardial IRI are rare and not definitive (77, 90, 91).
3.3 Impaired signaling such as eNOS,
STAT3, PI3K/Akt in diabetes

Endothelial nitric oxide synthase (eNOS) is an enzyme that

produces nitric oxide (NO) in the endothelial cells of blood vessels.

NO is the key regulator of vascular function and homeostasis, and it

plays a crucial role in maintaining the health of the cardiovascular

system. Dysfunction of eNOS has been found to be associated with the

development of diabetes (92). Studies have shown that eNOS

dysfunction is closely linked to a high glucose environment, which

is characteristic of diabetes. Restoring normal eNOS function is

essential for improving vascular health in individuals with diabetes

(93). In fact, upregulation of eNOS expression has been found to have

a protective effect in diabetic patients (94). It has been discovered that

eNOS uncoupling, which is the loss of balance between NO

production and ROS generation, is a significant source of increased

ROS production in diabetes. Increased oxidative stress further

exacerbates eNOS uncoupling and endothelial dysfunction,

contributing to cardiovascular damage (95). The PI3K/Akt/eNOS

signaling pathway is also affected/impaired by diabetes (96, 97). This
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pathway involves phosphatidylinositol 3-kinase (PI3K) and AKT/

protein kinase B (PKB/AKT), which respond to external signals and

regulate various cellular processes, including metabolism,

proliferation, cell survival, growth, and angiogenesis (98).

Impairment in this pathway can lead to both cardiovascular

damages in diabetes (79, 99). The activation of the PI3K-AKT

pathway has been shown to play a crucial role in protecting the

heart from myocardial IR/I. Cardiac protective interventions such as

Ischemic preconditioning, a process that exposes the tissue to brief

periods of ischemia before a more prolonged ischemic event, can

activate the PI3K-AKT pathway and provide protection to the heart

(73, 100). Additionally, the Akt and JAK/STAT3 signaling pathways

have been found to be involved in reducing diabetic heart I/R damage

(101). However, both the PI3K-AKT pathway and the JAK/STAT3

signaling pathway are impaired in the myocardium of diabetic subjects

(102, 103), rendering the diabetic hearts more vulnerable to ischemia

reperfusion injury and less or not sensitive to therapeutic interventions

that are otherwise effective in non-diabetic subjects (104–106).
4 Cardioprotective effects of
salvianolic acid A and salvianolic acid
B against MIRI

Salvianolic acid is a compound found in the herb salvia, and it has

been found to have several beneficial properties, including

antioxidant, anti-inflammatory, and antiplatelet properties (107). In

the context of myocardial IR/I, salvianolic acid has shown potential

cardioprotective effect. Studies have indicated that salvianolic acids,

specifically SAA and SAB, can help reduce damage to cardiomyocytes

during MIRI in a rat model of ischemia-reperfusion injury (108).

However, the exact mechanism by which salvianolic acid exerts its

protective effects on MIRI is still not fully understood.
4.1 Salvianolic acid A

SAA possesses a polyphenolic acid chemical structure (Figure

3), exhibiting strong antioxidant capacity. It has also been found to

have antioxidant, anticancer, antifibrotic, anti-inflammatory and

antiplatelet aggregation properties (109). In vitro studies have

shown that SAA exhibits potent free radical scavenging ability

assessed by the methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH)

radical scavenging assay and 2,2-azino-bis-(3-ethylbenzothiazoline-

6-sulfonic acid (ABTS(+)) radical cation decolorization assay (110).

SAA has been shown to attenuate myocardial functional

impairment and cell death caused by oxidative stress and

attenuate hydrogen peroxide-induced oxidative stress damage to

cells both in vivo in rodent models and in vitro in cultured H9c2

cardiomycytes (111, 112). Experimental evidence has demonstrated

that SAA pretreatment upregulates the anti-apoptotic protein Bcl-2

and inhibits pro-apoptotic proteins Bak and Bax, thereby inhibiting

apoptosis (113). Additionally, SAA has been found to significantly

ameliorate mitochondrial dysfunction caused by myocardial

ischemia in an isoprenaline-induced myocardial ischemia a rat
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model (114). The contractile function of cardiomyocytes, as

reflected by their shortening, was dose-dependently improved by

SAA after myocardial ischemia-reperfusion (115). Furthermore,

SAA pretreatment has been shown to reduce lactate

dehydrogenase (LDH) leakage in ischemic myocardium, decrease

LDH release from the ex vivo heart, and significantly improve cell

viability. SAA also downregulates the expression of cleaved caspase-

3 protein, thereby inhibiting apoptosis in cardiomyocytes. These

findings suggest that SAA pretreatment before ischemia-

reperfusion inhibits cardiomyocytes necrosis and apoptosis,

thereby reducing ischemia-reperfusion-induced cardiomyocyte

damage (115, 116).
4.2 Salvianolic acid B

SAB has been shown to effectively attenuate cardiovascular

injuries by reducing the expression of related inflammatory factors,

inhibiting apoptosis, and reducing oxidative stress in experimental

settings (117). Numerous studies have demonstrated the

cardiomyocyte protective effects of SAB during myocardial

ischemia-reperfusion injury (MIRI) and its ability to reduce

oxidative stress-induced damage (118). Similar to SAA, SAB also

reduces post-ischemic LDH leakage (119). Experiments investigating

the cardioprotective effect of SAB on myocardial ischemia-

reperfusion injury, based on cell viability and LDH leakage, have

shown that SAB inhibit autophagy, enhances cell viability, reduce

LDH leakage, and increases the survival rate of cardiomyocytes after

I/R (120). There is evidence showing that the cardioprotective effect

of SAB on MIRI is dose-dependent, and both high and low doses of

SAB have been found to reduce the size of myocardial infarction after

treatment. Moreover, SAB effectively reduces cardiomyocyte

apoptosis by significantly increasing the ratio of Bcl-2 expression to

Bcl-2/Bax and reducing Bax expression (121). During ischemia-

reperfusion, a large amount of ROS is released, accompanied with

increased lipid peroxidation product malondialdehyde (MDA) (122)

and other specific indicators of ROS-induced lipid peroxidation such

as 15-F2t-Isoprostane (123, 124). Studies have demonstrated that

SAB treatment can reduce high levels of malondialdehyde measured

in rat models of testicular ischemia-reperfusion and myocardial

ischemia-reperfusion, with no significant side effects observed

throughout the treatment (108, 125). Recent research has also

shown that SBB attenuates post-ischemic myocardial apoptosis,

inhibits ROS production, decreases MDA levels, and enhances

superoxide dismutase (SOD) activity through a mechanism that

involves the regulation of the TRIM8/GPX1 axis in vivo, making it

a potential candidate for the prevention or treatment of MIRI in

cultured AC16 cardiomyocytes (118).
4.3 Impacts of salvianolic acid A and
salvianolic acid B on the signaling
pathways affecting MIRI

In rat models of myocardial IRI, Salvianolic Acid A (SAA)

pretreatment has been shown to significantly reduce post-ischemic
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myocardial infarction concomitant with reduced plasma levels of

cTnT, CK-MB, TNF-a and IL-1b compared with untreated I/R group

(126). Platelets play a critical role in I/R injury, as activated platelets

produce various factors that promote blood clot formation. It has been

found that SAA treatment can resist ADP and collagen-induced human

blood platelet aggregation and thrombosis by inhibiting the abnormal

increase of the phosphorylation of Akt and also inhibits PI3K, and these

effects of SAA was comparable to that of the PI3K inhibitor LY294002

both in vitro and in vivo in a mouse model of arterial thrombosis (127).

NO is known to play a central role in maintaining cardiovascular

homeostasis, and SAA treatment increases rat left ventricle NO

content after myocardial I/R (126). Studies have found that SAA can

also exerts cardioprotective effects through the ERK1/2 pathway, and this

effect is inhibited by the ERK2/098059 inhibitor PD600125 (PD),

suggesting that the protective effect of SAA on I/R cardiomyocytes

may also depend on the inhibition of the JNK pathway (128). SAA has

also been found to inhibit I/R-induced cardiomyocyte apoptosis through

the PI3K/Akt, JNK, and ERK1/2 pathways. Among these pathways,

ERK1/2 and JNK are regulated by upstream kinases (MAPK kinases),

which activate each other in a stepwise manner. Experimental results

have shown that inhibition of the p38MAPK signaling pathway and the

JNK signaling pathway can effectively protect and improve MIRI (128).

Additionally, Salvianolic Acid B (SAB) has been shown to regulate the

PI3K/Akt pathway, and to inhibit apoptosis by downregulating JNK

phosphorylation, BCL2-associated X (Bax)/B-cell lymphoma-2 (Bcl-2),

and caspase-3 expression (121) In addition, a recent study demonstrated

that ubiquitin-proteasome degradation of GPX4 occurs in both MIRI

models in rats and in in vitro models of cardiomyocyte hypoxia/

reoxygenation, while SAB can reduce this degradation and inhibit

ferroptosis and apoptosis of cardiomyocytes during MIRI and H/R

and protect the cardiovascular system by the GPX4/ROS/JNK-mediated

crosstalk mechanism (129). SAA and SAB have respectively been

demonstrated to regulate the Jak/STAT3 signaling pathway in the liver

(130) and in the intervertebral discs in rats (130). However, the potential

impacts of SAA and SAB on the Jak/STAT3 signaling in the heart

especially in the context of MIRI have not been explored thus far, which

merits in depth future study given the critical role Jak/STAT3 signaling

pathway plays during MIRI (45, 131, 132). The current understandings

regarding the impacts of SAA and SAB on the signaling pathways that

affect MIRI are summarized respectively in Figure 4.
5 Cardioprotective potential of
salvianolic acid A and salvianolic acid
B against MIRI in diabetes

In this study, we provide a systematic summary of the

cardioprotective mechanism of salvianolic acid in diabetic myocardial

ischemia-reperfusion injury, as well as various signaling molecules and

mechanisms associated with myocardial I/R injury. Both salvianolic

acid A and B have the potential to exert cardioprotective effects, either

through similar or different mechanisms (Table 1). The relevant

signaling pathways involved in myocardial ischemia-reperfusion

injury include phosphatidylinositol-3 kinase/Akt (PI3K/Akt),

mitogen-activated protein kinases (MAPKs), JANUS kinase/signal
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transduction and transcriptional activators (JAK/STAT), nuclear

factor-kB (NF-kB), and others (96). Studies have revealed that

diabetes can further impair the phosphatidylinositol 3-kinase/Akt/

eNOS (PI3K/Akt/eNOS) pathway and activate JAK/STAT3 signaling,

thereby exacerbating myocardial ischemia-reperfusion injury in

diabetic rats which can be attenuated by treatment with SAA (96).
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5.1 Salvianolic acid A and/or salvianolic
acid B can reduce diabetic myocardial
ischemia-reperfusion injury

As mentioned earlier, SAA pretreatment has been shown to

have a protective effect on the myocardium during I/R in non-
FIGURE 4

The molecular mechanism of salvianolic acid A and salvianolic acid B on myocardial ischemia/reperfusion injury. Salvianolic acid A and salvianolic
acid B have the ability to regulate various molecular pathways including nuclear factor kB (NF-kB), stress-activated protein kinase (Bax, Caspase 3,
malondialdehyde (MDA), heme oxygenase-1 (HO-1), bcl2, phosphatidylinositol 3-kinase (PI3K), nitric oxide (NO), antioxidant reaction element (ARE),
tumor necrosis factor (TNalpha), protein kinase B (PKB/Akt), interleukin-6 (IL-6), and others. By inhibiting the production of reactive oxygen species,
these compounds effectively improve inflammation, apoptosis, autophagy, microcirculation disorders, cell growth, and metabolism.
TABLE 1 Salvianolic Acid potential cardiomyocytes in diabetic myocardial ischemia/reperfusion injury.

Cell
Line

Animal Mechanism Effect Factors Reference Year

Salvianolic
acid A

H9C2 Mouse TRL4↓、MyD8↓
p-JNK↓、p-ERK1/2↓

anti-inflammatory mitochondrial dysfunction↑ (133) 2021

– Rat Bcl-2↑、Bax↓
JNK / PI3K / Akt

anti-apoptosis LDH leakage↓ infarct size↓ (96) 2016

– – PI3K↓Rap 1↓
late PI3K-dependent
Akt phosphorylation↓

platelet adhesio↓ platelet activati↓ (127) 2010

HK-2 Rat MDA↓、HUVECs↓ VCAM-1↓、
HO-1↑ Nrf2↑

oxidative stress↓ inflammation↓ (134) 2016

HepG2 Mouse
Rat

ATP↑ MMP↓
CaMKKb / AMPK↑

myocardial dysfunction↑ (135) 2015

– Rat NF-kB ↓ anti-inflammatory anti-apoptosis (109) 2022

– Rat AST↓、CK↓ LDH↓ anti-inflammatory (114) 2009

(Continued)
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diabetic rats. Further studies have found that Sal A pretreatment

significantly improved cardiac hemodynamic and reduced LDH

activity after I/R in diabetic rats, with concomitant reduction in

post-ischemic myocardial infarction apoptosis (96). Similarly, SAB

has been found to significantly reduce intracellular reactive oxygen

species and malondialdehyde (MDA) levels, effectively reduce

oxidative stress induced by high glucose rat insulinoma cell line

INS-1 cells (140). Clinical studies have observed that patients with

antiplatelet therapy appears to have similar effects in patients with

diabetic coronary artery disease compared to patients with non-

diabetic myocardial ischemia-reperfusion injury (143). Sal B has

been shown to inhibit platelet aggregation and platelet adhesion by

interacting with collagen receptors (141). In subsequent studies,

SAA has also been found to significantly inhibit agonist-induced

platelet activation by inhibiting PI3K (127). The nuclear factor E2

related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling

pathway is involved in the regulation of MIRI damage (144). Pro-

inflammatory cytokines also play a significant role in diabetic

vascular damage. VCAM-1, a pro-inflammatory cytokine, is

known to be inhibited by Nrf2-mediated upregulation of HO-1 in

vascular diseases. SAA has been found to reduce VCAM-1

expression by mediating the Nrf2/HO-1 signaling pathway (134).
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5.2 Signaling pathway for possible cardiac
protection of salvianolic acid A and
salvianolic acid B in diabetic MIRI

Studies have demonstrated that insulin has cardioprotective effects

mediated by the Akt signaling pathway, leading to the activation of

eNOS through PI3K/Akt activation (145). The impairment of the

PI3K/Akt signaling pathway is involved in myocardial I/R damage in

diabetic rats, and high glucose further inhibits the PI3K/Akt pathway.

Experimental evidence supports the significant increase in SERCA2

activity through JNK/PI3K/Akt signaling, resulting in anti-apoptotic

effects and improvement in cardiac contraction and diastolic function

in diabetic rats. Chen et al. found that SAA pretreatment significantly

increased the level of the anti-apoptotic protein Bcl-2 in diabetic rats

through the JNK/Akt signaling pathway, while reducing the levels of

pro-apoptotic proteins Bax and cleaved-caspase-3, ultimately

increasing the Bcl-2/Bax ratio and protecting against myocardial I/R

damage in diabetic rats (96). Similarly, Sal B has been shown to reduce

the expression of insulin-like growth factor binding protein 3 (IGFBP3)

induced by high glucose, leading to the phosphorylation of extracellular

signal-regulating protein kinase and protein kinase B (AKT) activity in

rat models of diabetic cardiomyopathy and in cultured HUVECs under
TABLE 1 Continued

Cell
Line

Animal Mechanism Effect Factors Reference Year

– Rat Bcl-2↑、Bax↓ Bcl-2/Bax↑
Caspase-3↓

anti-apoptosis anti-necrosis (115) 2011

H9C2 Rat SOD↑、Bcl2↑
H2O2-↓、p-Erk1/2↓

infarct size↓ anti-apoptosis (136) 2011

– Rat TNF-a↓、IL-1b↓ NO↑ anti-inflammatory myocardial dysfunction↑ platelet
aggregation↓ anti-platelet

(126) 2017

Salvianolic
acid B

H9C2 – NF-kB ↓、IL-6↓ IL-1b↓、
TNF-a↓

anti-inflammatory anti-apoptosis (137) 2016

ESC – HIF1a↓ 、BNIP3↓
cleavage caspase 3 ↓

anti-apoptosis (138) 2015

H9C2 – DYm↑、caspase-3↓ LC3-II↓ Anti-mitochondrial auto-phagy (139) 2020

– Rat P-Akt↑、HMGB1↓
TLR4↓

infarct size↓ anti-apoptosis (121) 2019

INS-1 – caspase-9↓ caspase-3↓
MDA↓

anti-apoptosis (140) 2017

– – – inhibits platelet adhesion (141) 2008

HUVEC Rat VEGFR2↑、VEGFA↑
IGFBP3↓、p-Akt↑

ameliorated left ventricular dysfunction and remodeling
cell proliferation↑

(142) 2020

– Rat SIRT1↑、Bcl-2↑
Ac-FOXO1↓、Bax↓

anti-inflammatory anti-apoptosis (117) 2015

AC16 Rat TRIM8/GPX1 oxidative stress↓ anti-apoptosis (118) 2022

primary
myocardial
cells

– miR-30a↑、LDH↓
PI3K / Akt anti-autophagy (120) 2016

– Rat P-Akt↑ HMGB1↓ infarct size↓ anti-inflammatory myocardial dysfunction↑
anti-apoptosis

(121) 2019
frontie
“-” means no mention.
“↑” means increased or enhanced.
“↓” means decreased or reduced.
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hypoxia (142). SAB is also considered a potent inhibitor of the Akt/

mTOR pathway, reducing the phosphorylation of Akt and its

downstream target mTOR (146, 147). Furthermore, Sal A can

regulate glucose metabolism by increasing ATP production with

concurrent reduction of mitochondrial membrane potential (MMP),

and improving mitochondrial function through Ca2+/calmodulin-

dependent protein kinase kinase-b (CaMKKb)/AMPK signaling

pathway in both type 1 and type 2 diabetic mice (135). NF-kB,
which induces inflammatory factors involved in cardiomyocyte

apoptosis, is also a downstream target of STAT3. Inhibition of NF-

kB activity can prevent H9C2 cardiomyocyte apoptosis (148). Studies

have found that SAB can inhibit the activation of the MAPK/NF-kB
pathway induced by ox-LDL (149). SAB pretreatment has also been

reported to reduce NF-kB levels (150), but whether SAB directly targets

NF-kB or acts through its upstream pathway Akt/JAK or STAT3

remains unclear (113).
6 Conclusion

This review highlights the evidence and possible mechanisms by

which salvianolic acid may reduce diabetic myocardial I/R damage.

Possible mechanisms include modulation of oxidative stress,

inflammatory response, mitochondrial dysfunction, ferroptosis

and apoptosis through pathways such as PI3K/Akt, JAK/STAT,

and NF-kB. A recent study has found that aldehyde dehydrogenase

2 (ALDH2) can activate the PI3K/AKT/mTOR pathway to alleviate

ischemia and reperfusion injury in diabetic cardiomyopathy (44).

However, it should be noted that studies have shown that Sal B can

inhibit the Akt/mTOR pathway (147). There is currently no

research showing that Sal B can exert cardioprotective effects by

mediating the Akt/mTOR pathway. Although salvianolic acid has

been studied in various clinical studies as an active ingredient in

salvia, its research on diabetic myocardial I/R damage is relatively

limited. Further understanding of the mechanisms underlying

salvianolic acid-related myocardial protection will contribute to

the development of new protective strategies and discovery of more
Frontiers in Endocrinology 11
effective therapies against diabetic myocardial I/R damage in

the future.
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