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Background: Previous observational studies have investigated the association

between endocrine andmetabolic factors and idiopathic pulmonary fibrosis (IPF),

yet have produced inconsistent results. Therefore, it is imperative to employ the

Mendelian randomization (MR) analysis method to conduct a more

comprehensive investigation into the impact of endocrine and metabolic

factors on IPF.

Methods: The instrumental variables (IVs) for 53 endocrine andmetabolic factors

were sourced from publicly accessible genome-wide association study (GWAS)

databases, with GWAS summary statistics pertaining to IPF employed as the

dependent variables. Causal inference analysis encompassed the utilization of

three methods: inverse-variance weighted (IVW), weighted median (WM), and

MR-Egger. Sensitivity analysis incorporated the implementation of MR-PRESSO

and leave-one-out techniques to identify potential pleiotropy and outliers. The

presence of horizontal pleiotropy and heterogeneity was evaluated through the

MR-Egger intercept and Cochran’s Q statistic, respectively.

Results: The IVWmethod results reveal correlations between 11 traits and IPF. After

correcting for multiple comparisons, seven traits remain statistically significant.

These factors include: “Weight” (OR= 1.44; 95% CI: 1.16, 1.78; P=8.71×10-4), “Body

mass index (BMI)” (OR= 1.35; 95% CI: 1.13, 1.62; P=1×10-3), “Whole body fat mass”

(OR= 1.40; 95% CI: 1.14, 1.74; P=1.72×10-3), “Waist circumference (WC)” (OR= 1.54;

95% CI: 1.16, 2.05; P=3.08×10-3), “Trunk fat mass (TFM)” (OR=1.35; 95% CI:

1.10,1.65; P=3.45×10-3), “Body fat percentage (BFP)” (OR= 1.55; 95% CI: 1.15,2.08;

P=3.86×10-3), “Apoliprotein B (ApoB)” (OR= 0.78; 95% CI: 0.65,0.93; P=5.47×10-3).

Additionally, the sensitivity analysis results confirmed the reliability of the

MR results.
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Abbreviations: IPF, Idiopathic pulmonary fibrosis;

randomization; IVs, instrumental variables; GWAS, genom

study; IVW, inverse-variance weighted; WM, weighted median

index; WC, Waist circumference; TFM, Trunk fat mas

percentage; ApoB, Apoliprotein B; SNP, single nucleotid

UKBB, UK Biobank; LD, linkage disequilibrium; MAF, mino

OR, odds ratio; CI, confidence interval; FDR, false discovery

low-density lipoprotein; LDL, low-density lipoprot

Apolipoprotein-B100; ApoB-48, Apolipoprotein-B48; TGF

growth factor-b1; AECII, type II alveolar epithelial cells;

reticulum; RCTs, randomized controlled trials.
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Conclusion: The present study identified causal relationships between seven

traits and IPF. Specifically, ApoB exhibited a negative impact on IPF, while the

remaining six factors demonstrated a positive impact. These findings offer

novel insights into the underlying etiopathological mechanisms associated

with IPF.
KEYWORDS

endocrine factors, metabolic factors, idiopathic pulmonary fibrosis, Mendelian
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease

featured by lung tissue scarring, with poor prognosis (1, 2). This

condition is marked by the persistent development of scar tissue in

the lungs, resulting in decreased lung flexibility, impaired oxygen

exchange, and eventual respiratory failure and mortality (1, 3).

Recent years have witnessed a global upsurge in the prevalence,

hospitalization rate, and mortality associated with IPF, thus

imposing a substantial burden on patients (4). However, due to

the recognized unknown etiology, limited treatment options, and

uncertain prognosis, it is imperative to conduct further

investigations into the etiology and pathological mechanisms

of IPF.

IPF is commonly believed to be influenced by the interplay of

genetic and environmental factors, such as smoking, viral

infections, occupational exposures to metal and wood chips, as

well as agricultural activities (5). However, these risk factors fail to

adequately account for the progressive nature of IPF. Numerous

other factors may remain unidentified. An increasing number of

studies have identified a higher prevalence of obesity, diabetes,

cardiovascular disease in individuals with IPF (6–8). The

occurrence of these three diseases is closely linked to abnormal

endocrine and metabolic factors. However, previous studies on the

effects of endocrine and metabolic factors on IPF have

predominantly relied on observational research, yielding

conflicting conclusions. The limitations of observational research,

such as its inability to fully account for confounding factors, hinder
MR, Mendelian
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its capacity to establish causal or reverse causality relationships.

Regression models, which can only adjust for known confounders,

are ineffective when confounders remain unidentified (9).

The Mendelian randomization (MR) method employs a valid

instrumental variable (IV), including single nucleotide

polymorphisms (SNPs), to simulate the random allocation of

individual exposure and analyze the causal relationship between

exposure and outcome (10). By randomly assigning the SNP allele

during zygote formation prior to any exposure or outcome, it avoids

associations with environmental confounders while minimizing the

impact of reverse causality (9). Hence, the aim of this study is to

employ MR to investigate the existence of a causal relationship

between endocrine and metabolic factors and IPF.
Methods

Study design

The MR randomization method comprises three primary steps.

The initial step involves evaluating whether the selected IV meets the

three core assumptions. The second step encompasses conducting

MR analysis to assess the causal effect between exposure and

outcomes. Finally, the third step involves conducting sensitivity

analysis to evaluate the reliability of the MR results.
Data sources

To adhere to the fundamental principles of a two-sample MR

design, data on exposure and outcome were collected from distinct

European populations as described previously (11–13). The

genome-wide association study (GWAS) datasets for 53 different

exposures were extracted from sources such as the UK Biobank

(UKBB) and the Genetic Investigation of ANthropometric Traits

(GIANT), and can be accessed on the IEU OpenGWAS project

website (https://gwas.mrcieu.ac.uk/). Furthermore, information on

the IPF dataset was obtained from the study by Allen et al. (14).

Supplementary Table 1 provides comprehensive details on the

GWAS datasets utilized in this study.
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Selection of IVs

The three fundamental assumptions are as follows: (1) IVs

should be associated with the exposure; (2) IVs should not be

associated with confounding factors; and (3) IVs should only be

associated with the outcome through the exposure. To ensure

adherence to these assumptions, specific implementation criteria

were established. The inclusion criteria required a strong genetic

association between the IVs and the exposure of interest, as

indicated by a P-value < 5×10-8. Independent IVs with low

levels of linkage disequilibrium (LD), characterized by an R2

value below 0.001, were identified using clumping methodology

within a genomic window of 10 megabases. Following previous

research findings, only IVs with minor allele frequencies (MAF)

exceeding 0.01 were included in the analysis. Palindromic SNPs

with ambiguous strand orientation were excluded from further

analysis to ensure consistency in allele frequencies. F-statistics

were calculated as measures of IV strength, with values greater

than ten indicating minimal susceptibility to weak instrument

bias (15).
MR analysis

The primary method employed in this study is the inverse

variance-weighted (IVW) method. Following the approach outlined

in (16), the regression line intercept was constrained to cross zero.

To assess the possible presence of unbalanced horizontal pleiotropy,

we employed the weighted median (WM) and MR-Egger methods.

The WMmethod remains unbiased as long as no more than 50% of

the weight comes from invalid instruments. Unlike the IVW

method, MR-Egger does not assume that the regression line

intersects at zero. A non-zero intercept in MR-Egger indicates the

presence of unbalanced horizontal pleiotropy. The slope of the

regression line provides an estimate of the effect as explained

by (17).
Sensitivity analysis

To evaluate potential horizontal pleiotropy, we conducted an

MR-Egger intercept test. In order to account for potential outliers,

we incorporated pleiotropy-corrected data from MR-PRESSO. The

Cochrane Q value was calculated to assess heterogeneity. To

examine the influence of individual IVs on causal relationships

and validate the reliability of the results, a leave-one-out sensitivity

analysis was performed. In the MR analyses, causal effects were

assessed using regression coefficients and odds ratios (ORs), along

with their corresponding 95% confidence intervals (CIs), as the

outcome variable was dichotomous. To address multiple

comparisons, a false discovery rate (FDR) threshold of 5% was

employed. All MR analyses were conducted using the

TwoSampleMR package in R.
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Results

Assessment of the IVs

In this study, MR analysis was utilized to examine the

associations between endocrine and metabolic factors and IPF.

The IVs for the traits displayed F-statistics ranging from 28.62 to

3093.37. These F-statistics indicate strong instrument strength, as

detailed in Supplementary Table 2.
Results of the MR analysis

The IVW approach in MR analysis revealed strong associations

between genetically predicted traits and IPF. Specifically, the

following factors showed significant links with IPF: “Weight” (OR=

1.44; 95% CI: 1.16, 1.78; P=8.71×10-4), “BMI” (OR= 1.35; 95% CI:

1.13, 1.62; P=1×10-3), “Whole body fat mass” (OR= 1.40; 95% CI:

1.14, 1.74; P=1.72×10-3), “Waist circumference (WC)” (OR= 1.54;

95% CI: 1.16, 2.05; P=3.08×10-3), “Trunk fat mass (TFM)” (OR=1.35;

95% CI: 1.10, 1.65; P=3.45×10-3), “Body fat percentage (BFP)” (OR=

1.55; 95% CI: 1.15, 2.08; P=3.86×10-3), “Apoliprotein B (ApoB)”

(OR= 0.78; 95% CI: 0.65, 0.93; P=5.47×10-3). These findings,

presented in Figures 1 and 2 as well as Supplementary Table 3,

remained statistically significant even after adjusting for multiple

comparisons. Figure 3 visually represents the causal relationships

between the seven traits and IPF through a scatter plot.
Results of the sensitivity analysis

The potential heterogeneity was tested (see Figure 4 and

Supplementary Table 4). The examination of the intercept term

using the MR-Egger method did not reveal significant evidence of

horizontal pleiotropy (see Supplementary Table 5). The findings

from the MR-PRESSO analysis are consistent with the results

mentioned earlier. It is worth noting that although MR-PRESSO

identified outlier IVs, the results were not significantly altered (see

Supplementary Table 6). As shown in Supplementary Figure 1, the

leave-one-out analysis demonstrates that none of the individual

SNPs were solely responsible for the observed outcomes. This

sensitivity analysis method supports the reliability of our

MR results.

In summary, our findings indicate a positive causal association

between six traits (weight, BMI, whole body fat mass, WC, TFM,

and BFP) and IPF. Additionally, a negative causal relationship

between ApoB and IPF was also observed.
Discussion

In this study, we conducted a two-sample Mendelian

randomization analysis using summary statistics from the GWAS
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FIGURE 2

Associations between genetically predicted 7 traits and idiopathic pulmonary fibrosis examined by three MR methods. MR, Mendelian randomization;
IVW, inverse-variance weighted; WM, weighted median; OR, odds ratio; CI, confidence interval.
FIGURE 1

The P-value distribution of associations between endocrine and metabolic factors and idiopathic pulmonary fibrosis in the Mendelian randomization
analysis. The significance threshold adjusted by False Discovery Rate is illustrated by the red dashed line, while the suggestive significance threshold,
established at P = 0.05, is depicted by the blue dash-dotted line.
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database. After conducting sensitivity analysis and correcting for

multiple comparisons, we identified causal relationships between

seven traits and IPF. Based on the various measurement methods

employed, these seven traits will be discussed in the following

three groups.
The role of ApoB in IPF

The present study identified a negative causal relationship

between ApoB and IPF. Previous studies on ApoB and lung

fibrosis are limited, with most focusing on fibrosis in other organs

such as the heart, liver, and kidney.
Frontiers in Endocrinology 05
Cardiac fibrosis primarily refers to fibrotic changes in the blood

vessels of the heart, contributing to the widespread occurrence of

coronary atherosclerosis. This condition predominantly arises due

to lipid deposition within the arterial intima, leading to the

development of arterial intima fibrosis, subsequent formation of

atheromatous plaques, and consequent obstruction of the coronary

artery lumen. Low-density lipoprotein (LDL) cholesterol has long

been recognized as the important protein implicated in the

development of atherosclerosis (18). Nonetheless, emerging

evidence from a recent study indicates that ApoB surpasses LDL

cholesterol as a more effective predictor of cardiovascular risk (19).

A cohort study involving 4232 participants revealed an association

between elevated ApoB levels and the progression of atherosclerotic
FIGURE 4

Funnel plot indicating the causal associations of 7 traits on idiopathic pulmonary fibrosis. SNP, single nucleotide polymorphism; IV, instrumental
variable; SE, standard error.
FIGURE 3

Scatter plot showing the causal effects of 7 traits on idiopathic pulmonary fibrosis. SNP, single nucleotide polymorphism.
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lesions (20). Furthermore, case-control studies comprising 57973

individuals demonstrated an association between ApoB truncation

and a decreased incidence of coronary heart disease (21). ApoB

serves as the primary apolipoprotein for triglyceride-rich

lipoproteins [including milk fat particles and very low-density

lipoprotein (VLDL)], LDL, medium-density lipoprotein, total

cholesterol, and triglycerides (22). Apolipoprotein B exists

primarily in two forms: Apolipoprotein-B100 (ApoB-100) and

Apolipoprotein-B48 (ApoB-48) (23). ApoB-100 is the main

protein responsible for transporting cholesterol (including VLDL

and LDL) to tissues. Prior research has established the significant

involvement of ApoB, specifically ApoB-100, in the advancement of

atherosclerosis through its facilitation of atherogenic lipoprotein

assembly (23). Moreover, ApoB-100 has been employed as a

prognostic marker for steatosis, whereby heightened levels exhibit

a substantial correlation with high-grade hepatic steatosis (24). The

p210 vaccine, derived from the ApoB-100-related 20 amino acid

peptide antigen, exhibited renal protection and decreased

inflammation and fibrosis in CD8+ T cell-mediated apoE mice (25).

A previous study found that a decrease in ApoB in lung cancer

leads to an increase in oxidative stress (26), and an increase in ApoB

may presumably be related to a reduction in oxidative stress. IPF is a

progressive, end-stage, age-related lung fibrosis disease, and its

etiology is still unclear. Research has shown that mitochondrial

ROS from epithelial cells, fibroblasts, and alveolar macrophages are

involved in the development of IPF (27, 28). The endoplasmic

reticulum (ER) is also a crucial contributor of ROS. Abnormal

activation of ER stress response has been linked to the pathogenesis

of IPF (29). Thus, an increase in ROS (which disrupts redox signaling

and/or causes molecular damage) in mitochondria or ER contributes

to the development of IPF (30). This study found that ApoB can

decrease the risk of IPF, and it is hypothesized that the altered

oxidative stress levels may play an important role in this process.
The role of anthropometric measurements
in IPF

Weight, BMI, and WC are commonly used anthropometric

measures in clinical research (31–35). IPF consistently correlates

with nutritional status, and anthropometry serves as an initial step

in its evaluation (36). In our study, we established a positive causal

relationship between weight, BMI, WC, and IPF. It is important to

note that this relationship was specifically observed during the onset

stage of the disease. However, in later stages of IPF, higher BMI and

weight gain have been found to potentially mitigate adverse

outcomes associated with the condition (37–40). Nevertheless,

our results find support from another MR study, which

demonstrates that each standard deviation increase in BMI is

associated with a 40-70% higher risk of IPF (41). Another MR

study reveals positive associations between BMI and WC with IPF

risk. However, after correction for multiple comparisons, WC loses

significance while BMI remains significant (5).

Limited studies have been conducted to investigate the

mechanism by which anthropometric measurements impact IPF.

IPF primarily focuses on the sensitivity of type II alveolar epithelial
Frontiers in Endocrinology 06
cells (AECII) to ER stress response (42–44). Previous studies have

shown that ER stress leads to a decrease in PINK1 expression in

AECIIs (45). This decrease in PINK1 expression results in enlarged

mitochondria, decreased cellular viability, and activation of pro-

fibrotic responses (45). Additionally, mitochondrial substances can

induce the actions of cytokines in the lungs that possess

proliferative and pro-fibrotic characteristics (45). WC is a simple

measurement method that effectively determines abdominal fat

distribution (46). Previous studies have found a correlation

between increased WC, indicative of abdominal obesity, and

reduced mitochondrial metabolism in muscles (47). In addition,

significantly increased numbers of malformed and functionally

impaired mitochondria have been observed in AECIIs in the

lungs of IPF patients (45). Interestingly, our study revealed a

positive causal relationship between WC and IPF. Therefore, we

hypothesize that decreased mitochondrial metabolism in AECIIs

may interplay with the accumulation of abdominal obesity, leading

to an increase in IPF.
The role of body composition in IPF

This study uncovered a significant positive causal relationship

between whole body fat mass, TFM, BFP, and IPF. Whole body fat

mass, TFM, and BFP are widely recognized as reliable indicators of

body composition. Assessing body composition ranks as the second

most crucial factor in evaluating the physical nutritional status of

IPF patients (36). However, there is a dearth of research on the link

between body composition and IPF, with one study reporting that

each standard deviation increase in BFP level raises the risk of IPF

by approximately 40-70% (41), which aligns with our findings. The

underlying mechanism by which whole body fat mass, TFM, and

BFP contribute to IPF remains unknown and requires further

investigation in future studies.
Strengths and limitations

Our study possesses numerous strengths. Firstly, MR studies

offer various advantages compared to observational studies. By

utilizing genetic variation as an IV, this study effectively mitigates

the influence of confounding factors and reverse causality.

Secondly, we conducted a novel investigation into the causal

relationship between multiple endocrine and metabolic factors

and IPF. Additionally, we performed several sensitivity analyses

to reinforce the reliability of our findings.

Our study is subject to several limitations. Firstly, our study was

conducted exclusively on populations of European ancestry, which

limits the generalizability of our findings to other populations.

Therefore, caution should be exercised when extrapolating the

results to populations of different ancestries. Secondly, our study

can only establish causality based on adherence to linear

associations, and we cannot explicitly confirm that the

relationship between these endocrine and metabolic factors and

IPF follows strict linear causality. For example, a cohort study

conducted in the UK identified a J-shaped association between BMI
frontiersin.org
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and respiratory disease-related mortality (48). Lastly, while efforts

were made to minimize selective bias, its complete elimination may

not have been achieved. Additionally, due to the absence of certain

individual baseline data in the GWAS, we were unable to stratify the

analyses by covariates of interest, such as age and gender.
Conclusion

This study found causal associations between seven traits and

IPF. Specifically, ApoB had a negative impact on IPF, whereas the

other six factors had positive effects. These findings provide novel

insights into the underlying etiopathological mechanism of IPF.

However, the specific mechanism by which these factors affect IPF

remains unknown and warrants further investigation.
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SUPPLEMENTARY TABLE 5
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