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Overview of the safety,
efficiency, and potential
mechanisms of finerenone for
diabetic kidney diseases
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Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical
College, Shantou, China
Diabetic kidney disease (DKD) is a common disorder with numerous severe

clinical implications. Due to a high level of fibrosis and inflammation that

contributes to renal and cardiovascular disease (CVD), existing treatments

have not effectively mitigated residual risk for patients with DKD. Excess

activation of mineralocorticoid receptors (MRs) plays a significant role in the

progression of renal and CVD, mostly by stimulating fibrosis and

inflammation. However, the application of traditional steroidal MR

antagonists (MRAs) to DKD has been limited by adverse events. Finerenone

(FIN), a third-generation non-steroidal selective MRA, has revealed anti-

fibrotic and anti-inflammatory effects in pre-clinical studies. Current

clinical trials, such as FIDELIO-DKD and FIGARO-DKD and their combined

analysis FIDELITY, have elucidated that FIN reduces the kidney and CV

composite outcomes and risk of hyperkalemia compared to traditional

steroidal MRAs in patients with DKD. As a result, FIN should be regarded as

one of the mainstays of treatment for patients with DKD. In this review, the

safety, efficiency, and potential mechanisms of FIN treatment on the renal

system in patients with DKD is reviewed.
KEYWORDS

finerenone, chronic kidney disease, type 2 diabetes, diabetic kidney disease,
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1 Introduction

Chronic kidney disease (CKD) is a significant global public health challenge

characterized by persistent abnormalities in kidney structure or function such as

albuminuria, abnormal urinary sediment and decreased estimated glomerular filtration

rate (eGFR) for at least three months, with associated symptomology (1, 2). It is a

major contributor to morbidity and mortality on a world scale, with a reported
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prevalence of 9.1% in 2017 (3). CKD is anticipated to rank as the

fifth-leading cause of death around the world by 2040 and the

second-cause of death before the end of the century in countries

with extended life expectancies (4). Over 850 million individuals

worldwide have CKD, acute kidney injury (AKI), and are receiving

renal replacement therapy (5). The prevalence has been increasing

with serious and significant implications for public health and

society attributed to disease burden, complications leading to

cardiovascular (CV) morbidity, excess mortality, and costs

associated with managing kidney failure (3).

Among a broad range of etiologies, diabetes has emerged as the

primary cause of CKD globally, with an grown risk of disease

progression, CV events, and mortality (6, 7). About 40% of

individuals diagnosed with type 2 diabetes (T2D) are susceptible

to the development of diabetic kidney disease (DKD), a condition

that may progress to end-stage kidney disease (ESKD) and

subsequently contribute to the burden of CV disease (CVD) (8–

13). The mortality rate of DKD exceeds that of diabetes alone or

CKD without diabetes by more than two-fold (14, 15). The

coexistence of diabetes and CKD has been demonstrated to

shorten the average life expectancy by about 16 years,

representing a major challenge for society and public health

systems all over the world (14). Therefore, new strategies that not

only protect the kidney but also reduce the risk of CV events

development should be imperatively taken into account in patients

with DKD.

The development and progression of CKD in individuals with

T2D are influenced by various factors, including hemodynamic

factors, metabolic factors, and mineralocorticoid receptor (MR)

overactivation (9, 16). In the kidney, MR is expressed in the distal

tubules, collecting ducts, podocytes, fibroblasts, and mesangial cells

(17). Upregulation of MR is evident in several clinical conditions

such as hyperglycemia, CKD, albuminuria, cardiac disease, and

high salt (HS) intake (18–24). MR overarousal promotes oxidative

stress, inflammation, and fibrosis, resulting in renal alterations such

as changes in the sodium-potassium ATPase in the distal

convoluted tubule, sodium retention, elevated blood pressure

(BP), glomerular hypertrophy, glomerulosclerosis, mesangial

proliferation, and tubulointerstitial fibrosis, and ultimately

contributing to the progression of CKD and CV complication

(13, 17, 25–33). Hence, early intervention and intensive treatment

are essential to mitigate renal and CV complications in individuals

with DKD (34).

While renin-angiotensin system (RAS) blockers (e.g.,

angiotensin-converting enzyme inhibitors (ACEI), angiotensin

receptor blockers (ARB)) and sodium-glucose co-transporters-2

inhibitors (SGLT2i) have shown beneficial renal and CV effects in

DKD patients by targeting hemodynamic and metabolic drivers of

CKD progression (35–40), they inadequately address the

inflammation and fibrosis driven by MR overactivation, leading

to a persistent high residual risk of CKD progression and CV events

development, even in response to combined treatment by these two

therapies (9, 13, 37, 38, 41). Therefore, a comprehensive approach is

imperative to address the broader pathogenesis of DKD patients,

including increased fibrosis and inflammation (25, 32, 42–44).

Given this context, it is evident that MR antagonists (MRAs) play
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a pivotal role in the prevention of fibrosis and inflammation in both

the renal and CV systems.

At the renal level, MR blockage significantly reduces

albuminuria and promotes the preservation of renal function (32,

45–47). In the past years, classical steroidal MRAs like first-

generation spironolactone and second-generation eplerenone,

while potential ly beneficial for nephroprotection and

cardioprotection, are hindered by the risk of hyperkalemia and

other progestogenic and antiandrogenic adverse effects (AEs) such

as breast tenderness, gynecomastia, erectile dysfunction in men, and

menstrual irregularities in premenopausal women, particularly in

patients with DKD (48–55). The risk of hyperkalemia can escalate

up to 8-fold in patients with moderate-to-severe CKD using

steroidal MRAs (53, 56). While these AEs are not typically life-

threatening, they can undermine treatment adherence and

persistence, with roughly half of the patients discontinuing MRAs

and 10% of patients continuing at reduced dose due to

hyperkalemia (54). The conundrum of possessing effective

therapies but not employing them due to safety concerns has

prompted substantial efforts over the past two decades to develop

novel MRAs with improved safety profiles.

Now, the emergence of the nonsteroidal MRAs (NS-MRAs)

with an improved benefit-risk profile, exemplified by finerenone

(FIN), offers a new opportunity for MRAs in DKD (57). To

overcome the inherent limitations of steroidal MRAs by achieving

high MR specificity and a balanced distribution between cardiac

and renal tissues, FIN, a novel, nonsteroidal, selective, and potent

third-generation MRA with enhanced antifibrotic and anti-

inflammatory properties and a reduced incidence of hyperkalemia

compared to traditional MRAs, is currently the most studied and

has received approved for the treatment of DKD (58–61). An array

of preclinical and clinical studies has substantiated the efficacy and

safety of FIN in conferring renal and CV benefits.

On these grounds, this review aims to elucidate the molecular

mechanisms of FIN and provide insights into its efficacy and safety

across the spectrum of DKD patients, including those with and

without a history of CVD.
2 Physiological and
pathophysiological roles of MR in
the kidney

The primary physiological role of the MR, found in the epithelial

cells of the kidney and colon, is to regulate water and electrolyte

balance (62). However, MR is also present in non-epithelial cells

within the kidney and various extrarenal tissues, including the heart

and vasculature (63). Upregulation of MR in these non-epithelial cells

in the heart and kidney leads to increased transcription of profibrotic

genes such as transforming growth factor-b-1 (TGF-b1), connective
tissue growth factor, plasminogen activator inhibitor-1 (PAI-1), and

various extracellular matrix proteins including fibronectin and

collagens, all of which are associated with renal and cardiac fibrosis

(33). Additionally, there is a positive correlation between elevated

levels of serum aldosterone and an increased susceptibility to renal
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failure in both diabetic and non-diabetic individuals (64).

Accumulating evidence indicates that the activation of MR is

linked to injury in podocytes through various mechanisms. These

mechanisms include the involvement of Ras-related C3 botulinum

toxin substrate 1 (Rac1), the reduction of autophagy which is crucial

for podocyte maintenance, and an increase in NADPH oxidases

(NOX) activity resulting in oxidative stress and further leads to the

upregulation of a cascade of proinflammatory cytokines and

profibrotic proteins (65). Subsequently, development of

albuminuria, reduced renal blood flow, and AKI lead to the

progression of chronic renal interstitial inflammation and fibrosis

(65, 66). Thus, MRAs may potentially delay the progression of CKD

irrespective of its underlying cause (64). Accordingly, although

blocking MR in non-epithelial cells has a positive impact, blockade

of MR in epithelial cells increases the risk of hyperkalemia. The

contrasting roles of MR in physiological and pathobiological

processes need careful consideration of their interplay when

implementing medication.
3 Effect of FIN on renal reactive
oxygen species, inflammation
and fibrosis

3.1 Renal ROS

In the renal context, the overactivation of MR leads to an increased

presence of ROS through the upregulation of NOX (67–69). These

superoxide radicals have the potential to disrupt the normal

functioning of both the renal vasculature and tubules. Additionally,

hydrogen peroxide, another byproduct of this process, contributes to

dysfunction, particularly in the preglomerular region (67–69). Nitric

oxide (NO) bioavailability and increased oxidant damage are linked to

ischemia in renal IR injury-inducing AKI (70). The generation of

oxidative stress is decreased by the pharmacologic use of FIN or the

genetic removal of MR in smooth muscle cells (SMCs) (71). In both

mice (71) and rats (72), FIN has been demonstrated to suppress the

expression of markers of tubular injury in the kidney, such as kidney

injury molecule 1 (KIM-1) and neutrophil gelatinase-associated

lipocalin (NGAL) (Table 1). It has also been shown that after renal

IR damage, FIN normalizes pathophysiologic elevations in the

oxidative stress markers like malondialdehyde and 8-

hydroxyguanosine (Figure 1) (72).
3.2 Renal inflammation

In a murine knockout model of glomerulonephritis, it was

observed that signaling of the MR in myeloid cells contributes to

the progression of renal injury (29). One possible protective effect of

MR knockout on myeloid cells against renal damage is a reduction

in the recruitment of neutrophils and macrophages (29). The

decrease in leukocytes was associated with the downregulation of

pro-inflammatory markers’ gene expression, such as tumor necrosis

factor-a (TNF-a), matrix metalloproteinase (MMP)-12, inducible

NO synthase, and C-C motif chemokine ligand 2 (CCL-2) (29).
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Recruitment of macrophages is crucial during both the injury and

repair phases after a kidney ischemia event (74). Activation of MR

in monocytes tends to polarize macrophages toward an

“inflammatory M1” phenotype (75). The rationale for utilizing

MRAs to impede the progression from AKI to CKD is supported

by the fact that MR inhibition via FIN promotes increased

expression of interleukin (IL)-4 receptor in murine kidney IR

models, subsequently facilitating the polarization of macrophage

toward an M2 phenotype (27). This shift is accompanied by

decreased macrophage mRNA expression of the pro-

inflammatory cytokine TNF-a and the M1 macrophage marker

IL-1b (27). Additionally, there is a reduction in the inflammatory

population of CD11b+, F4/80+, and Ly6Chigh macrophages (27).

In uninephrectomized (UNX) DOCA-treated mice, the

downregulation of kidney retinoid-related orphan receptor (ROR)

gamma t-positive T-cells, along with a significant reduction in

UACR, demonstrates significant renal protection in response to

FIN treatment (76). Notably, MR antagonism by FIN can modulate

inflammation as indicated by its ability to reduce proinflammatory

cytokines like IL-6 and IL-1ß following renal ischemic damage (27).

Furthermore, FIN has been shown to lower the expression of renal

NGAL (71, 72), which is released during systemic inflammation by

neutrophils and in response to tubular injury by renal tubular cells

(71 , 72) . The pro- inflammatory cytok ine monocy te

chemoattractant protein-1 (MCP-1) is also reduced by FIN in the

DOCA-salt model of cardiorenal end-organ damage (77). Both

NGAL and MCP-1 play significant roles in the progression of

human CKD (78, 79). Renal osteopontin (OPN) expression was

also decreased in a DOCA-salt rat CKD model following FIN

treatment (77). OPN is believed to regulate various aspects of

renal fibrogenesis, including fibroblast proliferation, macrophage

activation and infiltration, cytokine secretion, and extracellular

matrix production. It is associated with CKD progression, with

elevated plasma levels detected in the early stages of CKD (80). FIN

also offers protection against podocyte damage in a murine model

of CKD progression in T2D (UNX mice with T2D fed a HS diet), as

indicated by reduced production of fibronectin and inflammatory

markers such as MCP-1 and PAI-1 in glomeruli (Figure 1) (81).
3.3 Renal fibrosis

The development of kidney fibrosis is a critical factor in the

progression of CKD and eventual renal failure, as it disrupts the

structural integrity of renal tubules and adjacent blood vessels.

Studies conducted on individuals with kidney diseases have identified

pro-fibrotic cytokines like TGF-b, MCP-1, and MMP-2 as potential

biomarkers for fibrosis development, which have been correlated with

worsening renal function (WRF) (82). Additionally, plasma levels of

PAI-1 have showed moderate correlations with fibrosis observed in

biopsies (82). To investigate the role of MR in fibrosis development and

CKD progression, as well as the effectiveness of FIN in mitigating renal

fibrosis, various preclinical models have been employed. In the DOCA-

salt rat model of CKD, FIN treatment led to a reduction in renal

mRNA expression of the pro-fibrotic marker PAI-1 and a decrease in
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renal fibrosis as evaluated through histopathology (77). The study

revealed that the administration of FIN had a dose-dependent effect in

diminishing the upregulation of mRNA expression of MMP-2, which

serves as a significant indicator of tissue remodeling (77). In a rat model

of hypertensive cardiorenal disease, FIN also attenuated renal fibrosis

and reduced the production of pro-fibrotic collagen type I a 1 chain

(COL1A1) in the kidney (83). Moreover, FIN dose-dependently

suppressed pathologic myofibroblast accumulation and collagen

deposition in a mouse model of renal fibrosis, irrespective of changes

in systemic blood pressure or inflammatory markers (84). The levels of

the fibrotic biomarkers PAI-1 and naked cuticle homolog 2 (NKD2)
Frontiers in Endocrinology 04
were concomitantly decreased in the kidneys (84), with recent reports

identifying NKD2 as a specific marker for myofibroblasts in human

renal fibrosis (85). In a chronic CKD rat model characterized by renal

dysfunction, elevated proteinuria, and extensive tubule-interstitial

fibrosis, treatment with FIN effectively limited collagen deposition

and fibrosis in the kidney, as confirmed through histopathological

assessments (72). FIN also inhibited the upregulation of the pro-fibrotic

cytokine TGF-b and collagen-I expression in the kidneys (72).

Likewise, in a mouse CKD model featuring unilateral, IR-induced

tubulo-interstitial fibrosis, FIN administration resulted in a significant

reduction in the severity of renal fibrosis (27) (Figure 1 and Table 1).
TABLE 1 Efficacy of FIN for renal protection in animal experiments.

Author,
Year

Animal
Species

Modeling Type Research Results

Kolkhof et
al.,

2014 (62)

Sprague-
Dawley rats

and
Wistar rats

A rat model of DOCA/Salt-
induced Heart and
Kidney Injury

FIN ↓: proteinuria, glomerular tubular and vascular damage, risk of electrolyte disturbances, cardiac
hypertrophy, BNP, renal expression of pro-inflammatory and pro-fibrotic markers (PAI-1, MCP-1,
OPN, and MMP-2); FIN ↑: end-organ protection, systolic and diastolic left ventricular function

Barrera-
Chimal et

al.,
2017 (65)

Male C57Bl/6
mice and
Large

White pig

Model of AKI induced by IR FIN ↓: renal injury induced by IR through effects on Rac1-mediated MR signaling; renal mRNA
levels of NGAL and Kim-1; oxidative stress production

Lattenist et
al.,

2017 (64)

Male
Wistar rats

A rat model of AKI to CKD FIN ↓: inflammatory factors; fibrogenic markers; oxidative stress markers; deposition of perinephric
macrophages and collagen; proteinuria; tubulointerstitial fibrosis; acute injury induced by IR and the

chronic and progressive deterioration of kidney function and structure

Barrera-
Chimal et

al.,
2018 (27)

Male C57Bl/
6 mice

A mice model of bilateral IR-
induced CKD

FIN ↓: inflammatory population of CD11bD, F4/80D, Ly6Chigh macrophages; proinflammatory
cytokines IL-6 and IL-1ß; subsequent chronic dysfunction and fibrosis induced by IR;

FIN ↑: M2-antiinflamatory markers, IL-4 receptor.

González-
Blázquez et

al.,
2018 (45)

Male Wistar
and

MWF rats

A genetic model of CKD FIN ↓: albuminuria, endothelial dysfunction, superoxide anion levels;
FIN ↑: NO bioavailability, SOD activity

Gil-Ortega
et al.,

2020 (46)

Male Wistar
and

MWF rats

A genetic model of CKD FIN ↓: albuminuria, plasma MMP-2 and MMP-9 activities, superoxide anion levels, intrinsic
(mesenteric) arterial stiffness;

FIN ↑: plasma pro-MMP-2 activity, NO bioavailability

Droebner
et al.,

2021 (73)

C57BL/
6J mice

2 relevant mouse kidney fibrosis
models: unilateral ureter

obstruction and sub-chronic
IR injury

FIN has direct anti-fibrotic properties resulting in reduced myofibroblast and collagen deposition
accompanied by a reduction in renal PAI-1 and NKD2 expression in mouse models of progressive

kidney fibrosis at BP-independent dosages

Hirohama
et al.,

2021 (66)

Mice Uninephrectomized T2M db/db
mice fed a HS diet (DKD with

hypertension model)

FIN ↓: Salt-induced activation of Rac1-MR pathway associated with Sgk1 upregulation and
subsequent increased expressions of cleaved a-ENaC and phosphorylated NCC in distal tubules and

glomeruli.
FIN ↓: fibronectin; inflammatory markers (MCP-1 and PAI-1)

Kolkhof et
al.,

2021 (73)

Transgenic
(mRen2)
27 rats

A rat model of hypertension-
induced end-organ damage

Combination of FIN and empagliflozin at low dosages effectively reduces cardiac and renal lesions,
proteinuria, BP, creatinine, uric acid and mortality. FIN reduced renal fibrosis and the renal

expression of pro-fibrotic COL1A1

Luettges et
al.,

2022 (63)

Male
C57BL6/
J mice

UNX DOCA-salt model FIN protects against functional and morphological renal damage and exerts antihypertensive actions.
FIN reduces renal IL-17 producing RORgt gd T cells

Lima-
Posada et

al.,
2023 (67)

ZSF1 rats A model of DN associated with
cardiac dysfunction

FIN did not impact kidney function but ↓ renal hypertrophy
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4 Renal protection of FIN in
animal models

The efficacy of FIN for renal protection in animal experiments

has been evaluated in recent years (Table 1). Kolkhof et al. (77)

found that FIN consistently protects from functional as well as

structural end-organ damage in kidneys with a reduced risk of

electrolyte disturbances in the 10-week rat deoxycorticosterone

acetate (DOCA)/salt model in a dose-dependent manner, with the

most significant effect at 10 mg/kg·d. Histological analyses indicated

that when compared at equinatriuretic doses, FIN outperformed

eplerenone in reducing proteinuria and alleviating glomerular,

tubular, and vascular damage (77). Similarly, Luettges et al. (76)

conducted experiments highlighting FIN’s protective effects against

functional and morphological renal damage and its ability to exert

antihypertensive actions in mice subjected to the DOCA-Salt

model. In a rodent model transitioning from AKI to CKD, FIN

demonstrated efficacy in preventing AKI induced by ischemia-

reperfusion (IR) and the subsequent chronic and progressive
Frontiers in Endocrinology 05
deterioration of kidney function and structure (27, 71, 72). These

long-term protective effects of FIN were also observed in a

preclinical model involving large white pigs (71). Furthermore,

prophylactic FIN administration efficiently prevented increased

plasma creatinine, urea, and proteinuria (27, 71, 72). Current

investigations have unveiled the favorable impact of FIN on both

arterial distensibility and albuminuria in the munich Wistar

frömter (MWF) CKD model (45, 46). In uninephretomized db/db

mice fed a HS diet, Hirohama et al. (81) reported that FIN

ameliorated albuminuria, associated with reduced BP and

glomerular injury. Nevertheless, in ZSF1 rats with diabetes, the

administration of FIN did not significantly affect kidney function

but did reduce renal hypertrophy (86).
5 Renal protection of FIN in clinic

The efficacy and safety profiles of FIN were evaluated in 4 phase

II trials in patients with CVD and kidney disease within the ARTS
FIGURE 1

FIN displays beneficial effects against DKD and renal IR damage by different mechanisms of action in kidney. Diabetic and ischemic environment
induce hyperactivation of MR and trigger three pathways, which can start a great variety of molecular, cellular, tissue and subsequently organ
responses. On contrast, MRA FIN blocks the binding of aldosterone and MR, then blocks and attenuates those pathophysiological progressions. First,
FIN alleviate oxidative stress by attenuating oxidative DNA damage and reducing the production of ROSs. The second major mechanism, FIN reduce
the upregulation of pro-inflammatory mediators, leading to reduced inflammation. FIN also leads to reduced fibrosis by downregulating fibrotic
biomarkers. In these ways, FIN shows renal-cardiovascular protective effect. Created by BioRender.com.
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program and 2 phase III trials in patients with DKD (Table 2)

(Figure 2) (87–92).
5.1 Clinical efficacy of FIN treatment for
patients with CKD and T2D

The Mineralocorticoid Receptor Antagonist Tolerability Study–

Diabetic Nephropathy (ARTS-DN), a pioneering multicenter, phase

II clinical trial investigating the use of FIN in combination with a

RAS inhibitor in individuals with DKD exhibited significant

reductions in albuminuria and enhancements in the urine

albumin-creatinine ratio (UACR) after 90 days of treatment with

FIN (7.5–20 mg/day) in comparison to a placebo (91). The results of

the ARTS-DN Japan trial, which included 96 Japanese patients with

DKD receiving a RAS inhibitor, support those of ARTS-DN (92).

Detailed dose–exposure–response modeling and simulation,

encompassing an analysis of both ARTS-DN and ARTS-DN

Japan, suggested that the effects of FIN were predominantly

saturated at a dosage of 20 mg, with both 10 mg and 20 mg

administered once daily proving to be safe and effective in reducing

albuminuria (93). Furthermore, there were no discernible

differences in the incidence of a 30% decrease in eGFR between

the treatment groups (91).

Certainly, the most comprehensive insights into the advantages

of FIN in individuals with DKD have been garnered through pivotal

phase III clinical trials: FIDELIO-DKD (Finerenone in Reducing

Kidney Failure and Disease Progression in Diabetic Kidney Disease)

(88); FIGARO-DKD (Finerenone in Reducing Cardiovascular

Mortality and Morbidity in Diabetic Kidney Disease) (87); and

the predefined combined analysis known as FIDELITY (Combined

FIDELIO-DKD and FIGARO-DKD Trial program analysis) (94).

FIDELIO-DKD, a multicenter, double-blind randomized

controlled trial (RCT), has furnished the initial clinical evidence

affirming that MR blockade yields improvements in kidney outcomes

for patients with DKD (88). This study included 5734 adults with DKD

who were already receiving the maximum tolerated doses of an ACEI

or ARB andmaintained a serum potassium concentration of 4.8mmol/

L (88). Eligible patients had a UACR 30–<300 mg/g, an eGFR of 25–

<60 ml/min/1.73 m2, and diabetic retinopathy, or they had a UACR of

300–5000 mg/g and an eGFR of 25–<75 ml/min/1.73 m2 (88).

Following a median follow-up of 2.6 years, the results of the

FIDELIO-DKD study exhibited a significantly lower incidence of the

primary composite outcome, encompassing kidney failure, a sustained

eGFR decline of ≥40% from baseline, or death from renal causes in the

FIN group compared to the placebo group (17.8% vs. 21.1%) (88). At

the 4-month post-treatment mark, UACR demonstrated a 31%

reduction compared to the placebo group, with this difference

persisting throughout the trial (88). A secondary model-based

analysis of FIDELIO-DKD showed that the early UACR effect of

FIN was predictive of its long-term impact on eGFR decline, and these

effects were found to be independent of the concurrent use of SGLT2i

(95). Furthermore, FIN achieved a placebo-subtracted reduction of

14% in the crucial secondary composite outcome, encompassing CV

death, nonfatal myocardial infarction (MI), nonfatal stroke, or

hospitalization for heart failure (HF) (88). In a secondary analysis of
Frontiers in Endocrinology 06
the FIDELIO-DKD trial, FIN was shown to reduce the risk of newly

diagnosed atrial fibrillation/flutter compared to placebo, irrespective of

a history of atrial arrhythmias at baseline (3.2% vs. 4.5%) (96).

Similarly, in the next major phase III FIGARO-DKD clinical trial

(87), which enrolled 7437 adults with DKD across a wider range of

CKD stages (a UACR of 30–<300 mg/g and an eGFR of 25–90 mL/

min/1.73 m2 or a UACR of 300–5000 mg/g and an eGFR of≥60 ml/

min/1.73 m2) already treated with maximum tolerated doses of an

ACEI or ARB and maintaining a serum potassium concentration less

than 4.8 mmol/L, a notable 13% reduction in the composite primary

outcome, comprising CV death, nonfatal stroke, nonfatal MI, or

hospitalization for HF, was observed after a mean follow-up of 3.4

years (87). While a lower incidence rate for the eGFR ≥40% kidney

composite endpoint was noted with FIN compared to placebo, it did

not reach statistical significance (P = 0.069). Nevertheless, a greater

treatment effect was noted on the eGFR ≥57% kidney composite

endpoint, with a 36% relative risk reduction for ESKD (P = 0.041)

(87). FIN achieved a 32% greater reduction in UACR from baseline to

4 months compared to placebo (87), and its impact on kidney

outcomes was particularly pronounced in patients with significantly

elevated albuminuria as opposed to those with moderately increased

albuminuria (97). An analysis derived from the FIGARO-DKD study

emphasizes the importance of albuminuria screening in T2D

patients, as early initiation of treatment effectively mitigated the

risk of CV events and albuminuria progression in individuals with

moderately elevated albuminuria (98).

The outcomes of the FIDELITY study, which pooled data from

FIDELIO-DKD and FIGARO-DKD involving over 13,000 patients,

revealed significant reductions associated with FIN, including a 23%

reduction in the risk of kidney composite events (renal failure, >57%

eGFR reduction, and renal disease-related death), a 20% reduction in

dialysis initiation, a 32% reduction in UACR from baseline to 4

months, a 14% reduction in the primary composite CV outcome,

and a 22% reduction in HF hospitalizations compared to placebo (94).

Moreover, it’s worth emphasizing that FIN induced amodest reduction

in mean systolic BP at 4 months (3.2mmHg vs. 0.5 mmHg increase

with placebo) in the FIDELITY pooled analysis (94). While it did not

exhibit significant differences between groups in the whole population

from both FIDELIO-DKD and FIGARO-DKD, a FIDELITY post hoc

analysis of a subgroup of patients with treatment-resistant

hypertension showed a significant differences of the least squares

mean change in office systolic BP between FIN and placebo groups

during the first 4months (−7.1 mmHg vs. −1.3 mmHg, respectively) (P

<.0001) (99). Meanwhile, the cardiorenal effects of FIN do not seem to

be primarily mediated by its antihypertensive properties, as the impact

on BP was minimal compared to spironolactone (94, 99). There is no

evidence suggesting a correlation between the antialbuminuric effects of

FIN and changes in BP.

Further analyses demonstrate that FIN provides robust renal

and CV efficacy and safety benefits across the spectrum of DKD

(100, 101). FIN consistently showed improvements in indicators of

kidney injury, as evidenced by a reduction in UACR and function,

with better preservation of eGFR in the chronic phase, compared to

placebo in patients with stage 4 CKD (101). However, the effect of

FIN on the composite kidney outcome in patients with stage 4 CKD

exhibited inconsistencies between early and late years of follow-up,
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TABLE 2 Efficacy of FIN for renal protection in clinic.

Change in
End Indicators

Safety Evaluation

s. spironolactone: equivalent
or greater reductions in
inuria and N-terminal pro-
P levels; smaller decrease

in eGFR

FIN vs. spironolactone: smaller increases
in serum potassium concentration; lower
incidences of hyperkalemia and WRF
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ndent at the 4 highest doses
IN vs. placebo; 38% UACR
ction with FIN 20 mg/ day;
a modest reduction in BP at
he highest dosage of FIN

Hyperkalemia leading to discontinuation:
not observed in the placebo and FIN 10

mg/ day groups; incidences in the FIN 7.5-
20 mg/day groups were low (1.7%–3.2%).
No differences in the incidence of an

eGFR decrease of ≥30% or in incidences of
AEs and serious AEs between the placebo

and FIN groups

vs. eplerenone: similar effects
-terminal pro-BNP levels and
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uction of composite clinical
ome of all-cause death, CV
spitalization, or emergency
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FIN vs. eplerenone: smaller increases in
serum potassium concentration; similar
incidence of hyperkalemic events
and TEAEs

UACR at day 90 relative to
line for each FIN treatment
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compared with placebo

No serious AEs or deaths were reported
and no patients experienced TEAEs

resulting in discontinuation of study drug.
Small mean increases in serum potassium

level in FIN vs. Placebo. No patients
developed hyperkalemia

primary composite outcome
ts: significantly less with FIN
s. placebo. Key secondary
mposite outcome events:
nificantly less with FIN vs.

Frequency of AEs: overall similar with FIN
vs. placebo.

Incidence of serum potassium levels >5.5
mmol/l: FIN (21.7%) vs. placebo (9.8%);
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TABLE 2 Continued

Intervention Duration Change in
End Indicators

Safety Evaluation
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with no increase in sex hormone-related
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Asian,
Other

history of diabetic
retinopathy. Second
set: UACR 300–5000
mg/g, eGFR 25 to <75
mL/ min/1.73 m2

FIGARO-
DKD,

Pitt et al.,
2021 (68)

Randomized
control study

III White,
Black/
African

American,
Asian,
Other

Multi-
center

7437 DKD receiving RAS
inhibitors. First set:

UACR 30 to <300 mg/
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Agarwal et
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with a notable loss of precision over time (101). A recent study

included nine patients with advanced DKD with an eGFR below 25

mL/min/1.73 m2 revealed that FIN caused a significantly slower

decline in eGFR in patients with advanced DKD, thus providing

initial evidence that FIN is effective across a wide range of renal

functions (102). As such, further large-scale investigation will be

necessary to confirm the efficacy and safety of FIN in DKD patients

with an eGFR below 25 mL/min/1.73 m2.

Furthermore, some FIDELITY analyses emphasize the benefits

of early treatment initiation and co-administration of potassium-

binding agents to maximize the protective effects of FIN in

individuals with DKD (100, 103). FIN improved cardiorenal

outcome in patients with DKD, regardless of baseline HbA1c (94,

104, 105), HbA1c variability (104), diabetes duration (104), baseline

insulin use (104, 105), baseline HF history (106, 107), prevalent

atherosclerotic CVD (108), and history of atrial fibrillation/flutter at

baseline (96). Additionally, it is worth noting that the

antihypertensive effect of adding FIN to a maximally tolerated

dose of ACEI or ARB was relatively modest (87, 88).

In conclusion, these results suggest that in patients with DKD,

FIN may be an effective treatment for kidney and CV protection. In

fact, FIN has been approved by the U.S. Food and Drug

Administration (FDA) in 2021 to reduce the risk of sustained

eGFR decline, ESKD, nonfatal MI, hospitalization for HF, and CV

death in adults with DKD (109). In addition, the European

Medicines Agency (EMA) authorized the marketing of FIN for

routine clinical use in patients with DKD on 16 February 2022

(110). Recently published guidelines from the American Diabetes

Association (ADA) (111–113), the American Association of

Clinical Endocrinology (AACE) (114) and the updated Kidney

Disease: Improving Global Outcomes (KDIGO) Diabetes Work

Group (112, 115) recommend the addition of the oral NS-MRAs

FIN to standard treatment in patients with DKD (Figure 2).
5.2 Clinical efficacy of FIN treatment for
patients with CVD and kidney disease

The phase IIa study known as Mineralocorticoid Receptor

Antagonist Tolerability Study (ARTS) (89) represents the

inaugural RCT of FIN. It encompassed both a double-blind

placebo group and an open-label spironolactone comparison
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group and targeted individuals with heart failure with reduced

ejection fraction (HFrEF) along with mild or moderate CKD. This

study established safe dosing of FIN and demonstrated that FIN

exhibited equivalent or greater reductions in albuminuria and N-

terminal pro-B-type natri (89) uretic peptide (pro-BNP) levels

compared to spironolactone. The study results indicated that

individuals receiving FIN (10 mg q.d.) showed a significant

smaller decrease in eGFR than those receiving spironolactone at

visit 7 (day 29 + 2) (-2.69 vs. -6.70 ml/min/1.73 m2) (P ¼ 0.0002–

0.0133) (89).

In the phase IIb ARTS-Heart Failure (ARTS-HF) study (90),

which included 1066 patients diagnosed with HFrEF and T2D and/

or CKD, there was a notable indication of benefit associated with

FIN. Specifically, there was a significant reduction in the composite

clinical outcome, which included events such as all-cause mortality,

CV hospitalization, or emergency admissions due to worsening HF,

among patients treated with FIN in comparison to those receiving

eplerenone. A recent prespecified analysis of FIGARO-DKD

indicated that FIN reduced the risk of developing HF

independent of a history of HF (107). These findings suggest that

FIN may offer valuable prospects as a treatment option for patients

with heart failure with preserved ejection fraction (HFpEF),

particularly those who also have T2D and/or CKD.
6 The safety of FIN treatment

Even though FIN has beneficial effects on renal outcomes, the

safety of FIN therapy is important and is an essential precondition

for clinical application. AEs associated with using FIN include the

risk of hyperkalemia, renal insufficiency and sex hormone-

associated AEs.

The safety profile of FIN underwent thorough investigation

within an extensive phase II clinical trial program, encompassing

over 2000 patients who had HFrEF, CKD, and/or T2D or with DKD

(Table 2) (89–91). In the ARTS study, it was evident that the mean

rise in serum potassium levels over a 28-day period was significantly

lower in all four dosage groups of FIN when compared to the

spironolactone group (0.04 to 0.30 vs. 0.45 mmol/L, respectively)

and there was lower incidence of hyperkalemia with FIN vs

spironolactone (5.3% vs 12.7%, p = 0.048) (89). In the ARTS-HF

study, the mean increase in serum potassium from baseline to Day
FIGURE 2

Summary of the milestones and main trials of finerenone. Created by BioRender.com.
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90 was greater in the eplerenone group than in the FIN groups (90).

Hyperkalemia, defined as a serum potassium elevation exceeding

5.6 mmol/L, was observed in 4.3% of patients, with the incidence of

hyperkalemic events and treatment-emergent AEs (TEAEs) being

similar in both the FIN and eplerenone groups (90). Within the

ARTS-DN trial, permanent discontinuation of the medication due

to hyperkalemia was not reported in the placebo group or the FIN

10 mg/day group. However, it occurred in 2.1%, 3.2%, and 1.7% of

patients randomized to the FIN 7.5 mg/day, 15 mg/day, and 20 mg/

day groups, respectively (91). Secondary safety outcomes, including

a decline in eGFR of ≥30% and the incidence of other serious AEs,

did not exhibit significant differences between the various treatment

groups (91). In summary, these phase II trials collectively

demonstrate that hyperkalemia does not serve as a substantial

impediment to the utilization of FIN for renal protection (89–91).

With respect to the safety profile in the FIDELIO-DKD phase

III trial (88), it is noteworthy that FIN treatment was generally well-

tolerated, and the distribution of AEs was comparable between the

FIN and placebo groups. It is worth mentioning that the incidence

of serum potassium levels exceeding 5.5 mmol/L was higher in the

FIN group compared to the placebo group (21.7% vs. 9.8%), and

hyperkalemia-related AEs occurred at a double rate in FIN-treated

patients compared to those receiving placebo (18.3% vs. 9.0%).

However, it’s important to highlight that severe hyperkalemia-

related AEs necessitating hospitalization were infrequent (1.4% vs.

0.3%), and there were no reported fatalities directly attributed to

hyperkalemia. Permanent discontinuation of the medication was

observed in 2.3% of patients in the FIN group and 0.9% in the

placebo group. A secondary model-based analysis of FIDELIO-

DKD revealed that higher FIN doses were linked to lower serum

potassium levels and reduced incidences of hyperkalemia, guided by

serum potassium-based dose adjustments (116). Additionally, FIN

exhibited a lower risk of AEs related to sex hormones (117). In the

FIGARO-DKD trial (87), the incidence of overall AEs and the risk

of serious AEs leading to discontinuation were similar between the

FIN and placebo groups. Although the occurrence of severe

hyperkalemia was slightly higher with FIN than placebo (0.7% vs.

0.1%), it is noteworthy that no fatal hyperkalemia events were

reported. The discontinuation rate due to hyperkalemia was also

higher with FIN compared to placebo (1.2% vs. 0.4%, respectively).

However, none of the hyperkalemia-related AEs resulted in

fatalities. In the FIDELITY pooled analysis (94), 18.5% of patients

who got FIN experienced treatment-related AEs, compared to

13.3% of patients who received a placebo, with AEs leading to

treatment discontinuation occurring in 6.4% vs. 5.4% of patients,

respectively. Hyperkalemia was more common with FIN than with

placebo (14% vs. 6.9%). Hospitalizations due to hyperkalemia (0.9%

and 0.2%, respectively) were minimal, and the incidence of

hyperkalemia leading to permanent treatment discontinuation

was low across study arms but occurred more frequently with

FIN (1.7%) than with placebo (0.6%). However, no hyperkalemia-

related AEs were fatal. The incidence of TEAEs was comparable

between the FIN and placebo groups, and there were no notable

increases in AEs related to sex hormones or AKI compared to the

placebo group. Regarding patients with CKD stage 4, the safety

profile of FIN in individuals with T2D remained consistent with
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that of CKD stages 1 to 3. A FIDELITY post hoc analysis showed

that FIN was related to a lower risk of hyperkalemia compared with

spironolactone with/without a potassium-binding agent (99).

In conclusion, FIN appeared safe and effective in most clinical

studies (Table 2). Nevertheless, baseline eGFR and serum potassium

levels should be evaluated before initiation of FIN, and periodic

measurement of serum potassium should still be performed during

treatment with FIN, and the dose adjusted as needed. Additionally,

implementing dietary interventions, avoiding agents that have the

potential to induce hyperkalemia (118), correcting metabolic

acidosis, and using potassium-lowering drugs (119) are effective

strategies for preventing hyperkalemia.
7 Combination treatment with ACEI/
ARB and SGLT2i/glucagon-like
peptide-1 receptor agonists

A subgroup analysis, based on various MRAs, indicates that the

relative risk of hyperkalemia when combining ACEI/ARB with FIN

is lower compared to eplerenone or spironolactone (120).

Additionally, the combination of FIN with a SGLT2i like

empagliflozin at low dose provides renal protection effect and

effectively reduces proteinuria, plasma creatinine, uric acid, BP,

cardiac and renal lesions, and mortality in a nondiabetic

hypertensive cardiorenal disease model (50). However, multiple

clinical studies, including FIDELIGO-DKD, have illustrated that

FIN alone reduces UACR independently of SGLT2i (121). In the

FIDELITY analyses, FIN outperformed placebo in terms of

cardiorenal outcomes in individuals with DKD, regardless of

SGLT2i usage (73, 94). In other words, SGLT2i did not alter the

effects of FIN on the primary endpoint. However, as for the safety,

MRAs increase serum potassium concentration and the risk of

hyperkalemia while SGLT2is reduce the risk of hyperkalemia (122,

123), which makes the combination of SGLT2i with MRAs an

attractive treatment option from a safety perspective. Analysis from

the FIDELIO-DKD trial reveals that when combined with FIN,

treatment with an SGLT2i may offer protection from hyperkalemia

events despite low number of hyperkalemia events was observed

(73, 117). Moreover, it should be pointed out that in several trials,

the SGLT2i dapagliflozin and MRA eplerenone reduce albuminuria

and the incidence of hyperkalemia was significantly less during

treatment with dapagliflozin-eplerenone compared with eplerenone

alone (124, 125). These findings offer a convincing reason for

evaluating the long-term efficacy and safety of combined SGLT2i

and MRA treatment and may make eplerenone, a second-

generation MRA, combined with SGLT2i, a second option for

patients who can’t tolerate FIN or can’t afford such an expensive

drug price of FIN.

Regarding GLP-1RAs, a post hoc exploratory analysis of the

FIDELIO-DKD and FIGARO-DKD trials found that FIN reduces

UACR in patients, irrespective of whether they were using GLP-

1RAs use at the beginning of the study. The effects on kidney and

CV outcomes remain consistent regardless of GLP-1RA usage, with

no obvious safety signals associated with the combination treatment

(126, 127).
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In summary, the results from clinical studies comparing

combination therapy to monotherapy vary. Understanding the

molecular mechanisms and potential interactions between FIN,

ACEI/ARB, and SGLT2i/GLP-1RA agents remains unclear.

Consequently, further clinical trials and in-depth mechanistic

research are essential to provide conclusive evidence.
8 Ongoing trials

So far, clinical investigation into the kidney and CV disease

outcomes associated with FIN have primarily focused on

individuals with DKD. However, it’s essential to emphasize that

the FIDELIO-DKD and FIGARO-DKD trials specifically enrolled

participants with DKD, characterized by an eGFR of ≥25 mL/min/

1.73 m2, normal serum potassium levels, and albuminuria.

Consequently, the current approval of FIN cannot be generalized

to the entire population of individuals with DKD. Hence, further

research is needed to clarify this aspect. Ongoing studies are

exploring the role of triple therapy, consisting of RAS blockade,

SGLT2i, and FIN, in individuals with DKD (CONFIDENCE study,

NCT05254002) (128). Additionally, there are investigations into the

efficacy and safety of FIN in subjects with CKD who do not have

diabetes (FIND-CKD study, NCT05047263) (129), as well as an

examination of treatment patterns in patients with DKD treated

with FIN in routine clinical practice, including safety assessments

(FINE-REAL study, NCT05348733) (130).

The CONFIDENCE trial is an ongoing phase II randomized

controlled trial designed to investigate the combination of FIN and

empagliflozin compared with each drug alone in 807 participants

with T2D, stage 2–3 CKD and UACR ranging from ≥300 to <5000

mg/g (128). This trial is estimated to be completed by 2024 and will

comprehensively evaluate the cumulative efficacy, safety, and

tolerability of dual therapy (128). The study will primarily focus

on endpoints related to UACR, change in eGFR, and the incidence

of hyperkalemia (128). However, as of this writing, no prospective

clinical trials were planned to judge the combination of FIN and

GLP-1RAs in patients with DKD.

Initiated in September 2021, the FIND-CKD trial includes non-

diabetic CKD patients with an eGFR ranging from 25–90 mL/min/

1.73 m2 and a UACR between ≥200 to ≤3500 mg/gCr (129). The

primary objective of this study is to assess the change in eGFR from

baseline to 32 months in both the placebo and FIN groups.

The ongoing FINE-REAL study (130) aims to demonstrate

treatment patterns in patients with DKD receiving FIN in routine

clinical practice and assess the safety of FIN. FINE-REAL will provide

meaningful insights into DKD patients treated with FIN, capturing

AEs, specifically hyperkalemia, and identifying how they are handled

in routine clinical care. The FINE-REAL study will aid to inform

decision-making about initiating FIN in individuals with DKD and

also shed light on the dynamics of adoption of new therapies in

different regions and health systems, providing conducive

perspectives for international guidance and implementation.
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9 Conclusion and future advancement

FIN is a third-generation, selective and potent NS-MRA that

has been illustrated in clinical trials to slow CKD progression,

reduce the risk of CV events development and hyperkalemia

compared to traditional steroidal MRAs in patients with DKD

through specific impacts on inflammatory and fibrotic pathways.

As such, FIN is a valuable addition to the treatment landscape for

managing DKD. However, more clinical trials and deep mechanism

research are needed to provide conclusive evidence for the

combination treatment of FIN with ACEI/ARB and SGLT2i/GLP-

1RAs. Additionally, further large-scale investigations are supposed

to confirm the efficacy and safety of FIN in DKD with an eGFR

below 25 mL/min/1.73 m2 and assess the clinical usage of FIN in

patients with CKD but without diabetes. Besides, few studies have

assessed whether this novel NS-MRA retain their beneficial effects

across various kidney diseases as those observed with extant

steroidal MRA, and there is no evidence for use in other settings

like resistant hypertension, ascites due to cirrhosis, or primary

hyperaldosteronism as compared to the first- and second-

generation MRAs spironolactone or eplerenone. In addition,

whether MR blockade al leviates IR injury in kidney

transplantation is an intriguing topic. To justify these usages,

comparative studies will need to be conducted for these

specific conditions.
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DKD diabetic kidney disease

CKD chronic kidney disease

T2D type 2 diabetes

CV cardiovascular

MRs mineralocorticoid receptors

MRAs MR antagonists

FIN finerenone

CVD CV disease

eGFR estimated glomerular filtration rate

AKI acute kidney injury

ESKD end-stage kidney disease

BP blood pressure

RAS renin-angiotensin system

ACEi angiotensin-converting enzyme inhibitors

ARB angiotensin receptor blockers

SGLT2i sodium-glucose co-transporters-2 inhibitors

NS-MRAs nonsteroidal MRAs

DOCA deoxycorticosterone acetate

IR ischemia-reperfusion

MWF munich Wistar frömter

HS high salt

UACR urine albumin-creatinine ratio

ARTS-DN Mineralocorticoid Receptor Antagonist Tolerability Study–
Diabetic Nephropathy

FIDELIO-
DKD

Finerenone in Reducing Kidney Failure and Disease Progression
in Diabetic Kidney Disease

FIGARO-
DKD

Finerenone in Reducing Cardiovascular Mortality and Morbidity
in Diabetic Kidney Disease

RCT randomized controlled trial

MI myocardial infarction

HF heart failure

FDA Food and Drug Administration

EMA European Medicines Agency

ADA American Diabetes Association

AACE American Association of Clinical Endocrinology

KDIGO Kidney Disease: Improving Global Outcomes

ARTS Mineralocorticoid Receptor Antagonist Tolerability Study

HFrEF heart failure with reduced ejection fraction

pro-BNP pro-B-type natriuretic peptide

WRF worsening renal function

(Continued)
F
rontiers in En
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Continued

ARTS-HF ARTS-Heart Failure

HFpEF heart failure with preserved ejection fraction

AEs adverse effects

TEAEs treatment-emergent AEs

GLP-1RAs glucagon-like peptide-1 receptor agonist

TGF-b1 transforming growth factor-b-1

PAI-1 plasminogen activator inhibitor-1

Rac1 Ras-related C3 botulinum toxin substrate 1

NOX NADPH oxidases

ROS reactive oxygen species

NO Nitric oxide

SMCs smooth muscle cells

KIM-1 kidney injury molecule 1

NGAL neutrophil gelatinase-associated lipocalin

TNF-a tumor necrosis factor-a

MMP matrix metalloproteinase

CCL-2 C-C motif chemokine ligand 2

IL interleukin

ROR retinoid-related orphan receptor

MCP-1 monocyte chemoattractant protein-1

OPN osteopontin

COL1A1 collagen type I a 1 chain

NKD2 naked cuticle homolog 2

VSMC vascular smooth muscle cell

SOD superoxide dismutase

ENaC epithelial sodium channel

NCC thiazide-sensitive sodium chloride cotransporter

UNX Uninephrectomized
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