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The impact of 17b-estradiol on
the estrogen-deficient female
brain: from mechanisms to
therapy with hot flushes as
target symptoms
Katalin Prokai-Tatrai* and Laszlo Prokai

Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort
Worth, TX, United States
Sex steroids are essential for whole body development and functions. Among

these steroids, 17b-estradiol (E2) has been known as the principal “female”

hormone. However, E2’s actions are not restricted to reproduction, as it plays

a myriad of important roles throughout the body including the brain. In fact, this

hormone also has profound effects on the female brain throughout the life span.

The brain receives this gonadal hormone from the circulation, and local

formation of E2 from testosterone via aromatase has been shown. Therefore,

the brain appears to be not only a target but also a producer of this steroid. The

beneficial broad actions of the hormone in the brain are the end result of well-

orchestrated delayed genomic and rapid non-genomic responses. A drastic and

steady decline in circulating E2 in a female occurs naturally over an extended

period of time starting with the perimenopausal transition, as ovarian functions

are gradually declining until the complete cessation of the menstrual cycle. The

waning of endogenous E2 in the blood leads to an estrogen-deficient brain. This

adversely impacts neural and behavioral functions and may lead to a

constellation of maladies such as vasomotor symptoms with varying severity

among women and, also, over time within an individual. Vasomotor symptoms

triggered apparently by estrogen deficiency are related to abnormal changes in

the hypothalamus particularly involving its preoptic and anterior areas. However,

conventional hormone therapies to “re-estrogenize” the brain carry risks due to

multiple confounding factors including unwanted hormonal exposure of the

periphery. In this review, we focus on hot flushes as the archetypic manifestation

of estrogen deprivation in the brain. Beyond our current mechanistic

understanding of the symptoms, we highlight the arduous process and various

obstacles of developing effective and safe therapies for hot flushes using E2. We

discuss our preclinical efforts to constrain E2’s beneficial actions to the brain by

the DHED prodrug our laboratory developed to treat maladies associated with

the hypoestrogenic brain.
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1 Introduction

The brain abundantly expresses receptors to many hormones,

including steroids hormones (1–3). One of the common elements of

these hormones is that all of them are synthesized from cholesterol

with the aid of an enzymemachinery through a multistep biosynthetic

pathway called steroidogenesis (4, 5). Therefore, these hormones carry

a 17-carbon skeleton built from four rings that are characteristically

fused together as in cyclopentanoperhydrophenanthrene.

Among steroid hormones, estrogens, androgens, and

progestogens are also called sex hormones owing to their critical

contributions to reproduction, sexual differentiation, and

development. Beyond these characteristic roles, these distinct

hormones also have a myriad of effects and functions throughout

the entire body in both sexes, although in a sexually dimorphic

manner (2, 6–10). Androgens such as testosterone (T) have also

been called “male hormones” due to their masculinizing effects (11).

On the other hand, estrogens such as E2 (Figure 1) are commonly

known as “female hormones.” Progesterone (P4) is the other main

“female” sex hormone associated with fertility and pregnancy. It is

an endogenous progestogen, whereas progestins are synthetic

progestogens commonly used in birth control pills and hormone

replacement therapies by women with intact uterus (12, 13).

Peripheral organs, primarily the adrenal glands and the gonads,

secret sex steroid hormones in both sexes, and these lipophilic

“neuroactive” hormones reach the brain from the circulation

because they are capable of diffusing through the blood-brain

barrier (7, 14–16). Additionally, they are also synthesized locally

irrespective of sex, for example, in the brain (and in the central

nervous system in general)—either from blood-borne precursors or

de novo from cholesterol (5, 6). Therefore, the brain is not only a

target for but also a maker of these steroids. The centrally formed

hormones are distinguished with the term “neurosteroids” (17, 18).
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Sex hormones’ diverse regulatory roles within the nervous

system are governed by genomic and non-genomic effects (6, 19–

21). The classical genomic pathway involves full transcriptional

activities through the involvements of their respective nuclear

receptors—the progesterone, estrogen, and androgen receptors.

These receptors exhibit a common modular domain structure

that consists of the C-terminal ligand-binding and N-terminal

domains, as well as the central DNA-binding domain (22). These

receptors are abundantly yet unevenly distributed in the brain. For

example, a large density of sex steroid receptors is localized in the

hippocampus (10). Additionally, and importantly, rapid extra-

nuclear, non-genomic cellular responses are also exerted by these

steroids without gene transcription. In these scenarios, regulations

of gene expressions could occur via signaling cascades through

interactions with various membrane-bound receptors and putative

receptors, as well as through the regulation of ion channels among

others (23–25). These two distinct mechanisms can also influence

each other to regulate associated physiological responses (26).

Extensive research during the last several decades has revealed

that sex hormones control brain and behavioral trajectories across

the life span (2, 27–29). Sex differences in the developing and adult

brain have been recognized (30–34). These differences are

attributed, at least in part, to exposure to sex steroids during the

embryonic state and throughout development, which results in

regional brain organization differences, ultimately leading to

different behavioral, cognitive, emotional, and adoptive outcomes

between the sexes, as well as among age groups within the same sex

(10, 35–37).

The “female” sex hormones E2 and progesterone are essential

for brain health and well-being across women’s life spans. Here, we

specifically focus on E2’s impacts on the hypoestrogenic or

estrogen-deficient female brain using hot flushes as typical

vasomotor symptoms (VMS). The latter affect most women at
FIGURE 1

The chemical structure of human estrogens: estrone (E1), 17b-estradiol (E2), estriol (E3) and estetrol (E4).
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midlife and can last up to 10 years and longer, often adversely

impacting the health-related quality of life (38–40).
2 A brief overview of
human estrogens

The term “estrogen” is derived from oistros and oestrus (Greek

and Latin for gadfly) as a reference to estrus (mating) stimulatory

effect of this type of compounds (41). Very frequently, the term

“estrogen” is used for the most well-known human estrogen, E2

(Figure 1). It should be noted that there are three additional

estrogens produced in females at various stages of their life spans:

these are estrone (E1), estriol (E3) and estetrol (E4), whose chemical

structures are also shown in Figure 1. While E2 is the most

prominent estrogen in females prior to menopause, E1 becomes

the principal estrogen in postmenopausal women (42). E1 can also

be reversibly metabolized to E2 by 17b-hydroxysteroid
dehydrogenase. E3 and E4 are fetal estrogens that are present

only during gestation (43). E4 also is the estrogenic constituent of

a recently approved combination oral contraceptive marketed as

Nextstellis® (44).

These estrogens and other vertebrate estrogens such as 17a-
estradiol, as well as a diverse class of estrogenic compounds bind to

their cognate nuclear estrogen receptors (ERs) ERa and ERb with

various affinities (45). E2 is the most potent estrogen in vertebrates;

therefore, it is our ER-ligand of choice highlighted in this review.

ERs are richly expressed throughout the body including the brain

where they are prominently present, for example, in the

hippocampus, prefrontal cortex and hypothalamus (46, 47).

Therefore, it is not surprising that E2’s effects on the brain

involves the classical genomic mechanisms (48). Briefly, like other

members of the nuclear receptor superfamily of proteins (22), ERs

produce their genomic effect through gene transcription driven by

E2’s ligation to ERa and ERb. After E2 is distributed into a cell and

reached the nucleus, it binds to ERs. Then, ligated ERs assemble to

homo- or heterodimers that bind to the estrogen-response element

(ERE) of the nuclear DNA (49). Gene transcription is enabled by

the amino-terminal transactivation domain and the carboxy-

terminal ligand-binding domain of the ERs (50). The assembly of

ERs with co-regulators/co-repressors is highly dependent on

posttranslational modifications and epigenetic regulation. On the

other hand, ERE-independent mechanisms of estrogen action have

also been shown (51). In addition, several isoforms of ERa and ERb
arise through alternative splicing, many of which alter estrogen-

mediated gene expression (49). Combined with the dependence on

the receptor isoform, ligand, promoter, cell type, and intricate

epigenetic regulation of the genomics pathways (49, 52), our

understanding of the hormone’s action in the brain by genomic

mechanisms is nevertheless incomplete, especially in the context of

VMS. However, effective treatment of hot flushes is achieved

primarily through activation of ERa with estrogens but is also

associated with increased risk for breast and uterine cancer (53).

Extranuclear ERs are also present as membrane-associated homo-

or heterodimers at the cell membrane and in the cytoplasm (49, 54).
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In addition, a G protein-coupled ER (GPER) is found in

intracellular membranes, and its activation results in intracellular

Ca2+-mobilization and synthesis of phosphatidylinositol 3,4,5-

triphosphate in the cell’s nucleus (55). This signaling mechanism

can also regulate gene transcriptions. For example, the mitogen-

activated protein kinase cascade and the cyclic-AMP-responsive

element-binding protein signaling pathway respond rapidly to E2

and have been implicated in the hormone’s effects in the brain (56,

57). The estrogen-ER complex was also shown to signal in the

cytoplasm (58).

Estrogens’ chemical structures are distinct among sex steroids,

because they are the only steroids that possess a phenolic A-ring

(Figure 1, red ring). During E2’s sequential formation from

cholesterol, T (or androstenedione for E1) produced in the

penultimate step undergoes a three-step oxidation of the

methylcyclohexenone (moiety in magenta) to the phenolic A-ring

(Figure 2). These reactions are catalyzed by aromatase also known

as estrogen synthase (48, 59). This enzyme is found in many

gonadal and extragonadal sites throughout the body and

regardless of sex (5, 60–62). In females, the ovary is the principle

gonadal source of circulating E2 before menopause. After

menopause, the expression of aromatase in adipose tissues is

significantly increased (42).

The phenolic A-ring also permits estrogens to act as powerful

direct free-radical scavenging antioxidants, which is critical to

tackle oxidative stress implicated in the initiation and progression

of neurodegeneration (63). Although it is beyond the scope of this

review to address neuroprotection per se, the potent broad-

spectrum neuroprotective action of E2 should be recognized. This

is owing to the well-orchestrated genomic and non-genomic actions

by the hormone, which allows to collectively thwart both the

initiation and progression of neuronal cell death (48).
3 E2 and the aging female brain

The brain also is an important extragonadal site of aromatase

expression; hence, this organ is capable of producing E2—most

prominently in the hypothalamus, as well as in the hippocampus,

cerebral cortex, cerebellum, and brainstem (64). It should be noted

that most information in this regard are coming from animal

studies. An interesting and perhaps unexpected notion in this

regard is that the locally formed E2 causes masculinization in the

embryonic rodent brain (65, 66). However, hormone-mediated

differences observed during development and involving aromatase

are transient, and functional consequences of feminized versus

masculinized traits on the adult brain are not yet known (67).

Moreover, androgens (i.e., not estrogens) appear to be the principal

masculinizing hormones in non-human primates and humans (66).

Nevertheless, the abundant central distribution of this enzyme

implies a pleiotropic, yet perhaps on demand only role of the

locally synthesized E2 in the brain. On cellular level, brain

aromatase is mainly expressed in neurons. However, animal

studies have revealed the expression of this enzyme in astrocytes

and glia, especially following excitotoxic injury or trauma (68, 69).
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Multiple lines of evidence show that E2 directly affects structural

and, with this, functional and behavioral trajectories in the brain

throughout the lifetime of a female (9, 27, 70–72). However, the

available endogenous circulating E2 supply is not steady across the

lifespan but varies not only with chronologic age but also within the

reproductive period, as it fluctuates with the menstrual cycle,

significantly increases during pregnancy, and then drops

postpartum (73–75). Moreover, a substantial portion of the

reproductive-age population uses oral contraceptives, which also

exposes them to exogenous estrogen (76). This further complicates

the already complex situation owing to multiple confounding factors

acting in concert (e.g., genetic variations, age, diet, comorbidity

status) to delineate the direct impact of E2 on the female brain.

A drastic and steady decline in circulating E2 occurs naturally

over an extended period of time starting with the perimenopausal

transition, as ovarian functions are gradually declining until the

complete cessation of the menstrual cycle due to anovulation (38,

72). During the transition period to full menopause and geripause,

the body including the circuits of the brain must somehow adjust to

the changing estrogenic milieu and eventually compensate for or

adapt to hypoestrogenemia. It has become evident that a continual

E2-deficient state recognized as post-menopause broadly and

adversely impacts neural and behavioral functions especially those

associated with the prefrontal cortex, hippocampus, and

hypothalamus (9, 19, 27, 70–72). This may lead to or exacerbate a

constellation of symptoms such as cognitive frailty, mood and sleep

disturbances, vasomotor symptoms (VMS), as well as susceptibility

to develop age-related neurodegenerative diseases, among them

Alzheimer ’s disease—just to mention a few unpleasant

consequences of the hypoestrogenic or estrogen-deficient aging

female brain (39, 40, 74, 77, 78).
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It remains unclear, however, how the local de novo synthesis of

E2 is operating at this stage in the female human brain. Apparently,

the locally synthesized E2 (at least in certain brain regions) is not

enough to preserve an “estrogenic” brain and, thus, to ameliorate

menopause-associated symptoms, although genetic factors may be

very important in this regard. A recent study reported that an active

aromatization process takes place in post-menopausal women after

an acute ischemic stroke (79). However, this finding pertains to the

periphery only and does not provide evidence on brain aromatase

activity in an injured brain. In all cases, many additional studies will

be needed to understand the role and function of the aromatase, as

well as ERs’ functions in the aging female brain.

Alongside, the adverse consequences of age-associated decline

of circulating E2 strongly implies that the hormone per se also is a

therapeutic molecule (although with some limitations) to “re-

estrogenize” the brain and lessen menopause-/age-associated

functional declines and maladies (59). In this regard, the

controversial Women's Health Initiative (WHI) studies should be

noted, which perpetuated, regrettably, the “all estrogens are created

equal” dogma. Conjugated equine estrogens (CEE) extracted from

pregnant mare urine alone (Premarin®) or together with the

synthetic progestin medroxyprogesterone acetate (Prempro®)

were used in this large-scale yet abruptly halted trial instead of

“hormone replacement” that would have required the use of human

hormones depleted with aging (80–82). A greater risk of developing

invasive breast cancer and thromboembolic stroke was observed in

WHI trials, in part due to the significant peripheral exposure to

CEE, prompting many women to stop taking this type of

medications yet leaving them frustrated because of a dearth of

effective treatment options to preserve a high quality of life

involving their mental health and well-being.
FIGURE 2

The three-step oxidation of testosterone (T) to 17b-estradiol (E2), catalyzed by aromatase.
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Decline of many brain functions is prevalent upon aging and

menopause, which is believed to be closely related to the waning of

endogenous E2. Therefore, estrogen therapy (ET) should be

beneficial in this regard. However, conventional ET carries risks,

including but not limited to cardiovascular liabilities as well as

enhanced chances for the development of breast and uterine

cancers, especially if it is used around geripause (80–83). Timing

of ET is one of the critical factors. In fact, a recent review (84)

analyzing over 3500 publications in the field concluded that the

“critical age window period” was one of the most addressed topics

in ET-related publications in the last 10 years focusing on cognition,

one of the most studied higher-order brain functions in the

present context.

Various neuroimaging techniques can reveal important

information on how the female brain structure and connectivity

change with aging and respond to exogenous E2, for example, in the

context of hippocampal functions. These state-of-the-art

approaches are not widely accessible to the scientific community

for a variety of reasons, including but not limited to ethical and

financial considerations (8, 85, 86). Therefore, animal studies

especially involving affordable rodent models are invaluable,

although they are not without limitations (87). Yet, these

paradigms allow for untangling how E2 deprivation affects under

a controlled endocrine environment and, in turn, how E2 treatment

modulates various brain regions with consequential functional and

behavioral outcomes. Classical example for this is using

ovariectomized rodents to eliminate estrus cycle-related

confounds and, thus, to simulate ovarian failure in females.

Additionally, 4-vinylcyclohexene diepoxide treatment has been

shown to lead to ovarian follicle loss over time, mimicking

thereby more accurately the progressive human menopausal

transitions (88).

Below we focus on VMS as archetypic manifestation of E2

deficiency of the aging brain and discuss current mechanistic

understanding of this symptom. We also examine proven and

promising recent therapeutic remedies for hot flushes that

negatively impact the mental well-being of menopausal women.

In this context, we highlight a preclinical effort our laboratory has

championed to concentrate the therapeutic E2 only to the brain for

a potential development of an inherently safe and efficacious ET to

tackle VMS.
4 E2 and VMS (hot flushes)

In the next 20–25 years, an estimated 1 billion women

worldwide will be older than 50 years and, therefore, experience

perimenopausal or menopausal symptoms (38, 72, 89). VMS are

commonly accompanying these periods manifesting hot flushes

and/or night sweats with varying severity among women and, also,

over time within an individual. It is estimated that around three-

fourths of women experience midlife hot flushes now considered

the hallmark symptom of menopause (39, 40, 90, 91). Women with

frequent VMS also experience higher rates of depression, anxiety,

and sleep disturbances lowering their quality of life. Therefore,

efficacious, and safe pharmacological interventions are critical,
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although the therapeutic regimen (medication of choice, dose,

dosage form, route of administration, time, and duration of

treatment) should be individualized.
4.1 Mechanism of VMS

The physiology of VMS is not completely understood, although

our understanding in this regard is continuously “heating up.” VMS

appears to be related to abnormal changes in the thermoregulatory

center of the body; viz., the hypothalamus particularly involving its

preoptic and anterior areas. This leads to altered vasodilatory

response to even slight elevations of core body temperature (92–

94). Hot flushes start with the gradual decline or unpredictable

fluctuation in circulating E2 during perimenopause. Past

menopause, the body apparently adapts to the hypoestrogenic

state, as hot flushes fade away in most women. Accordingly,

perhaps there is a critical “window of opportunity” in this regard

for the better understanding of the process leading to hot flushes.

Because of the strong association between VMS and declining E2,

systemic hormone therapy seems to be the most effective treatment

against moderate-to-intense hot flushes (93, 94). Deficiency of E2,

however, may not be the sole reason for developing hot flushes,

although it is most probably the trigger event.

Neurotransmitters, particularly serotonin and norepinephrine, as

well as the neuropeptide neurokinin B (NKB) have also been

indicated as causative factors in hot flushes (95–97). Perhaps it is

not surprising, because E2 modulates the synthesis and release of

these neurotransmitters, as well as the expressions of their receptors,

which in turn affect comprehensive thermoregulatory responses.

Pharmacological activation of the receptors of NKB in neurons of

the medial preoptic area of hypothalamus also elicits a robust

decrease in core temperature and alters skin vasomotion (97).

Additionally, kisspeptin, NKB and dynorphin neurons project

to hypothalamic structures and modulate the heat-defense pathway

through NKB signaling (98). This recognition by the Rance group

culminated in the very recent development and US Food and Drug

Administration (FDA) approval of a neurokinin-3 receptor

antagonist (Veozah™, fezolinetant) as a non-hormonal treatment

against hot flushes. Interestingly though, one of the side-effects of

this medication listed is hot flushes (99). Some of the heat-sensitive

neurons in the preoptic area are GABAergic (g-aminobutyric-acid-

releasing) and their excitation in rats results in tail skin

vasodilatation through projections that inhibit tonic activation of

sympathetic (vasoconstrictor) preganglionic neurons in the

ventromedial medulla (100). Therefore, activation of these

GABAergic neurons by NKB has been linked to reduced

vasomotor tone.
4.2 E2 and hot flushes

Although the neurotransmitters discussed above may be useful

to target for a potential non-hormonal management of VMS (i.e.,

without involving estrogens), none of these approaches has been

efficacious enough and/or without side effects thus far (95, 96, 101).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1310432
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Prokai-Tatrai and Prokai 10.3389/fendo.2023.1310432
ET remains the most effective against VMS probably due to the

pleiotropic action of the hormone on warm-sensitive neurons to

maintain in their synapses a neurotransmitter/neuromodulator

composition that results in basal activity without triggering heat

dissipation (40, 101). In the absence of E2 or an estrogen, the

“abnormal” balance in neurotransmitters/neuromodulators of the

synapses will cause activation of the descending heat dissipating

pathways, accompanied by sweating, vasodilation, and subsequent

heat loss manifesting as hot flushes. ET could prevent debilitating

VMS by restoring a “healthy” balance of these neurotransmitters/

neuromodulators in the neural circuits that maintain temperature

homeostasis (102).

Notwithstanding, current ET carries contraindications due to

the already mentioned risks for deep vein thrombosis and

subsequent pulmonary embolism, estrogen-sensitive cancers, and

additional adverse effects (40, 80, 82, 83). This is, in large part, due

to the significant peripheral exposure to the hormone and, thus, a

significant increase in circulating estrogen(s) even when E2 is used

for intervention instead of CEE. Therefore, safe ET must be

selectively and specifically confine E2’s beneficial actions into the

brain when the therapeutic objective is to alleviate symptoms of

central origin. Previous preclinical attempts in this regard brought

about modest results without translational value (103).

Our laboratory, however, was able to develop a unique prodrug

approach to target E2 into the brain while sparing the rest of the

body from unwanted off-target E2 exposure (59, 104). As shown in

Figure 3, our bioprecursor prodrug 10b,17b-dihydroxyestra-1,4-
dien-3-one (DHED) selectively converts to E2 after systemic

administration but remains inert in the rest of the body.

Therefore, DHED treatments efficiently alleviate symptoms that

originate from the hypoestrogenic brain in numerous preclinical

animal models of centrally regulated and estrogen-responsive

maladies without peripheral hormonal liability (59). Specifically,

circulating E2 levels measured by a validated bioassay using liquid

chromatography–tandem mass spectrometry (105) showed no

increase after DHED treatments compared to those of the

untreated control animals. Additionally, lack of weight gain by

estrogen-sensitive peripheral organs, such as the uterus and the

anterior pituitary, as well as lack of MCF-7a breast cancer cell

xenografts’ proliferation used as surrogate biomarkers have
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unequivocally shown the distinguishing feature of the DHED

approach in terms of targeting E2 to the brain without its

peripheral formation from the inert prodrug (59, 104).

In the present context, we showed that oral administration of

DHED produced a significant E2 concentration in the

hypothalamus (Figure 4A). This subsequently elicited a significant

reduction of tail skin temperature (TST) rise representing hot

flushes in the morphine-dependent model of this VMS after

surgical menopause (ovariectomy) in rats (Figure 4B) and

resulted in the restoration of estrogen deprivation-induced loss of

diurnal rhythm in TST (106). In our experiments, the clinically used

synthetic estrogen ethinyl estradiol (EE) was applied as positive

control instead of E2 due to the poor oral bioavailability of the

latter. It should be noted that VMS also affect prostate cancer

patients undergoing androgen deprivation therapy (107). As seen in

Figure 2, E2 is also formed in men from T; therefore, androgen

deprivation robs the E2 source in men and results in the same

hypoestrogenic brain as in women after menopause. However,

conventional ET produces feminization (most prominently

gynecomastia) in men, which erodes patients’ compliance because

of physical and psychological discomfort arising from this effect

(11). Therefore, confining E2 into the brain also is critical for these

patients. Using orchiectomized rats in the same model of

morphine-dependent hot flushes as for the female animals, we

have also shown the beneficial TST lowering effect of the DHED-

derived E2 (Figure 3) in male animals lacking gonadal E2

source (108).

Altogether, we believe DHED may have the potential to be the

first efficacious brain-selective estrogen therapy with inherent safety

(i.e., no significant liabilities in the periphery) to alleviate hot flushes

and, thus, to improve health-related quality of life for millions

suffering from VMS. Constraining E2’s action to the brain would

also eliminate the need of a progestin for women with intact uterus.

Observational and animal studies have revealed risks associated

with progestins (109, 110). An additional benefit of our DHED

approach is that for the first time E2’s central effects can be isolated

from peripheral hormonal interference. This should ultimately lead

to enhancing our understanding of E2’s central versus peripheral

actions, as well as their contributions to the observed overall

estrogenic effects on the body including the brain.
FIGURE 3

The bioprecursor prodrug 10b,17b-dihydroxyestra-1,4-dien-3-one (DHED) converts to 17b-estradiol (E2) in the brain by reduction catalyzed by a
short-chain dehydrogenase/reductase (SDR) and relying on (NADPH) as a cosubstrate.
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5 Conclusion

E2 is a master regulator hormone in the brain and its decline

due to chronological or pathological aging in a female brings about

a set of unpleasant symptoms, often negatively affecting the quality

of life. Chiefly among them are hot flushes, the hallmark of (peri)

menopause that most midlife women experience with various

intensity and duration. While the physiology of hot flushes or

that of VMS is not completely understood, it appears to be related to

abnormal changes in the hypothalamus, particularly in its preoptic

and anterior areas. Hot flushes start with the gradual decline in

circulating E2 during perimenopause and may continue beyond.

The hypoestrogenic brain also brings about anomalous changes in,

among others, signaling linked to certain neurotransmitters/

neuromodulators. Specifically, knowledge on NKB signaling has

been shown recently as a translational target for alleviation of hot

flushes without involving estrogens. Because of the close

relationship between the offset of hot flushes and the waning

circulating E2, systemic ET nevertheless seems to be the most

effective treatment against moderate-to-intense hot flushes to “re-

estrogenize” the brain. Current ETs however carry significant risks

and contraindications owing to multiple factors acting in concert.

One of the major caveats with current ETs is the unwanted systemic

hormonal exposure with adverse consequences in a large set of

patients, even if E2 is used instead of CEE. On the other hand,
Frontiers in Endocrinology 07
confining E2’s beneficial impact to the site of action to make the

brain “estrogenic” again would eliminate this burden. In this regard,

our non-invasive DHED prodrug approach may offer for the first

time a realistic translational value in terms of defining a therapeutic

landscape to remedy the E2-deficient brain safely and efficaciously,

including the alleviation or prevention of VMS.
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