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Osteocyte, a cell type living within the mineralized bonematrix and connected to

each other by means of numerous dendrites, appears to play a major role in body

homeostasis. Benefiting from the maturation of osteocyte extraction and culture

technique, many cross-sectional studies have been conducted as a subject of

intense research in recent years, illustrating the osteocyte–organ/tissue

communication not only mechanically but also biochemically. The present

review comprehensively evaluates the new research work on the possible

crosstalk between osteocyte and closely situated or remote vital organs/

tissues. We aim to bring together recent key advances and discuss the mutual

effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose

tissue, and tumor metastasis and elucidate the therapeutic potential

of osteocyte.
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Introduction

When the term “postmenopausal osteoporosis” was first pointed out by Fuller Albright

in the 1940s, awareness to its clinical features, pathogenesis, and pathophysiology has

gradually increased (1). Evidence from numerous studies revealed that bone was a dynamic

tissue and played a crucial role in muscle attachment and structure support together with a

mineral reservoir such as phosphate and calcium, which are critical to normal physiological

function. In 2000, a great research carried out by Ducy et al. demonstrated the brain–bone

connection through the effect of leptin on bone metabolism (2), leading to an explosion of

studies on bone and other organs’ crosstalk.

Known as progenitor cell reservoir, more than 12 types of cell lineages arising from

hematopoietic and mesenchymal stem cells existed in the skeletal system or released to

blood circulation (3). Among them, the most prevalent and longest-living terminally

differentiated cells found in bone tissue are osteocytes (4, 5). They act as mechanosensory

units, with OCY forming a network similar to the morphology and connectedness of the

neural system (6). Owing to the difficulty of obtaining cells that lay in the solid mineralized
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matrix, the understanding of OCY biology was delayed and

unilateral. Over the past few decades, growing experimental

evidence described a mature OCY extraction technique by a series

of collagenase digestions and calcium chelation, providing

opportunity to specialize osteocytic molecular biology and

function (7, 8).

Recent studies further reported that bone tissue communicated

not only with closely situated organs, for instance, bone marrow,

skeletal muscle, and fat tissue, but also with vital organs outside the

skeleton, such as the kidney, liver, and brain, indicating that the

skeletal system may be an elaborate and sophisticated organ (9). In

this review, we sought to provide the most recent evidence on the

crosstalk between bone-residing OCY and other organs/tissues,

namely, brain, kidney, vascular calcification, muscle, liver, adipose

tissue, and tumor metastasis to elucidate the therapeutic prospect of

OCY (Figure 1).
OCY in physiologic conditions

Apart from undergoing programmed cell apoptosis,

approximately 5%–20% of matrix-producing osteoblast

progressively transitioned to terminal OCY accompanied by

distinct functional and morphological changes (10). Osteoblast is

cuboid-shaped, with well-developed endoplasmic reticulum cells

mostly located on the surface of bone tissue. After being embedded

in a mineralized matrix, cells were surrounded by collagen, with cell

volume reduced by approximately 70%, and with extensive

arborization, endoplasmic reticulum and mitochondria reduction,

and dendrite extension forming a neuronal-like morphology,
Frontiers in Endocrinology 02
making OCY actively connected to each other (10). In addition,

genetic and epigenetic reprogramming such as cytosine DNA

methylation is also tightly correlated with OCY differentiation

and maturation (11). For instance, sclerostin (SOST, an osteocytic

specific glycoprotein) expression was modulated by DNA

methylation during osteoblast–osteocyte transition (12). In

postmenopausal women, increased SOST promoter methylation

resulted in lower serum SOST level and stimulated bone

formation by inhibition of Wnt signaling activity (13). During the

OCY differentiation process, H3K27me3 in the loci of osteocyte-

expressing genes decreased and H3K27me3 demethylase was

attached to those genes (14). Osteocytogenesis is also

accompanied by increased expression of dentin matrix protein 1

(DMP1), matrix metalloproteinases (MMPs), and fibroblast growth

factor 23 (FGF23), which is critical for OCY maturation, dendritic

formation, and elongation together with phosphate metabolism

(15, 16).

Acting as primary skeletal mechanosensors, OCY sense

mechanical signals by changes in interstitial fluid flow shear stress

(FFSS) travel over their dendrites to initiate bone remodeling (17).

OCY have been shown to regulate bone remodeling progress

through osteoblastic anabolic factor nitric oxide (NO),

prostaglandin E2 (PGE2), and osteoclast differentiation regulator

receptor activator of nuclear factor-k B ligand (RANKL) secretion

(4, 18–21). Furthermore, it also exhibited capability to reorganize

new mineral on the perilacunar/canalicular matrix. Disturbed

osteocyte-driven perilacunar remodeling resulted in OCY

osteolysis in pathologic conditions such as hyperparathyroidism,

hypophosphatemic rickets, and osteoporosis (22). Moreover, the

crosstalk between OCY and other organs has become a hot topic in
FIGURE 1

Communication between osteocyte and distant organs/tissues.
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the past few decades. Within much less cytoplasm and/or

organelles, OCY were considered a silent placeholder that resides

in the solid matrix. However, recent studies identified that OCY

were a major source of many potent local and soluble cytokines that

contribute to osteoblast and osteoclast differentiation and function

(23, 24). OCY-derived molecules/cytokines have proven to be

effective mediators in the communication between OCY and

other organs or tissues (Table 1).
Brain–OCY crosstalk

In the past decades, considerable evidence identified that bone is

richly innervated by nerve fibers and alters metabolic and anabolic

activities to systemic and local factors (7, 56). Histological staining

further revealed nerve distribution most often in a metabolically

active area by identifying enzymes and neuropeptides (57, 58).

Among all the cells that reside in the bone tissue, OCY is the most

special one. Similar to neurons, OCY presents a large amount of

cilia and cytoplasmic processes (≈40–100 per cell) surrounded by

mineralized bone matrix to connect with adjacent cells (27), leading

researchers to question the connection between OCY and

neuron cells.

In the regulation from brain to OCY, the hypothalamus and the

pituitary gland are the main segments that participate and release

neurohormones. Limited by the difficulty of OCY extraction and

culture technology, plenty of investigations showed that nearly all

neurohormones had an effect on osteoblasts or osteoclasts (but not

OCY) and exhibited bone anabolic or catabolic roles to regulate

skeletal integrity; thus, the central control of OCY activity is almost

blank (59–62). A recent study showed that the brain-derived

neurotrophic factor, a growth factor mostly originated from the

nervous system, plays a positive role on the proliferation of the

murine osteocytic cell line MLO-Y4 (63). Co-injection of OCY into

the brain exhibited tumor-suppressing capability through Lrp5,

IL1ra, and b-catenin upregulation in brain metastases that occur

from advanced breast cancer (25). Intracerebroventricular injection

of SOST regulated social–emotional reactions such as anxiety-like

behaviors, together with reduced social hierarchy and dendritic

complexity of pyramidal neurons in mouse hippocampus (26).

In addition to communicating via soluble molecules,

extracellular vesicles (EVs) and their specific cellular materials are

an intriguing subject matter (64). EVs are cell-derived membranous

structures containing proteins, lipids, and genetic material that

exchange biological signal from cell to cell. According to their

differing size, biogenesis, and membrane protein profile, EVs were

characterized with exosomes, microvesicles, and apoptotic bodies.

After being released from the original cell, EVs flow into the blood

system and selectively merge with a target cell to elicit biological

responses by vesicle content (65, 66). Jiang et al. isolated osteocytic

extracellular vehicles (OCY-EVs) from 2‐ or 16‐month‐old mice,

respectively. EVs isolated from young-aged mice played a protective

role in b‐amyloid peptide pathology and neuronal cell apoptosis,

and ameliorated cognitive impairment in an Alzheimer’s disease

mouse model. Proteomic quantitative analysis defined more than

310 proteins highly enriched in young mice OCY-EVs; among
Frontiers in Endocrinology 03
TABLE 1 Molecules/cytokines that participated in osteocyte and inter-
organ/tissue crosstalk.

Molecules/
cytokines

Physiological function

OCY
and
brain

Lrp5, IL1ra, and b-catenin Tumor-suppressing capability in
brain metastases (25)

SOST Reduce social hierarchy (26)

Evs contain Ab
degradation and
mitochondrial energy
metabolism factors

Ameliorate neuronal cell apoptosis
and cognitive impairment (27)

OCY
and
kidney

DMP1 Minimize the consequence of
adverse cardiovascular outcomes in
CKD (28)

FGF23 Increase renal Pi excretion and
reduce 1,25(OH)2D production (29)

NPY Renoprotective effects (30) or faster
CKD progression (31)

CTHRC1 and OPG in
hUSC-EVs

Anti-osteoporotic effect (32)

OCY
and VC

SOST Correlate with epigastric and
coronary artery calcification extent
(33), time-dependent with VC (34)

miR-483-5p and miR-2861 Exacerbate large calcium deposition
lesion areas (35)

ASHG Anti-calcification activity (36)

OCY
and
skeletal
muscle

Irisin Prevent OCY apoptosis and increase
SOST production (37, 38)

b-aminoisobutyric acid Prevent reactive oxygen species-
inducted OCY cell death (39)

Mbtps1 protease Stimulate muscle regeneration and
muscle contractility (40)

Myostatin Stimulate the expression of SOST
and RANKL (41)

Wnt 3a Promote myogenic differentiation
and enhance contractile force (42)

PGE2 Stimulate primary myoblast
proliferation (43)

miR21 Influence skeletal muscle size in a
sex-dimorphic manner (44)

Cx43 hemichannel Reinforce fast-twitch skeletal muscle
mass (45, 46)

OCY
and liver

SOST Correlate with liver dysfunction
(47, 48)

Cx43 hemichannel Cx 43-positive OCY existed in
alcoholic liver cirrhosis (49)

OCY
and
adipose
tissue

SOST OCY ablation leads to low adipose
tissue mass (50, 51)

PPARa, PPARg BMAT accumulation, adipose
browning and fat infiltration (52, 53)

NPY Stimulate adipogenic
differentiation (7)

(Continued)
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them, Ab degradation and functional factors of mitochondrial

energy metabolism mainly participated in cognitive impairment

and pathogenesis of Alzheimer’s disease, indicating a novel

mechanism in bone–brain communication (27). EVs together

with neurohormones mediated the crosstalk between brain and

OCY, which needs to be fully depicted.
OCY and kidney

Skeleton was recognized as a static organ that only provides

muscle attachment and structure support to the body movement

until the observation of FGF23, a growth factor secreted by OCY

regulating phosphate homeostasis in the kidney, leading

investigators to think of bone tissue as an endocrine gland.

Stagnant osteoblast and OCY maturation are characteristic

features of chronic kidney disease (CKD) bone (67). In clinical

work, renal patients are often observed with bone disease such as

osteoporosis and osteomalacia owing to significant derangements of

electrolyte metabolism (68, 69), suggesting the possibility that

kidney and bone communicate reciprocally.

Dendritic-shaped OCY is a major source of circulating signaling

factors such as FGF23, DMP1, neuropeptide Y (NPY), and SOST.

Recent studies suggested that OCY altered the production of several

hormones critically involved in mineral metabolism in a very early

stage during CKD, reflecting alterations in OCY metabolism (70).

In detail, DMP1 minimized the consequence of adverse

cardiovascular outcomes in CKD by preventing OCY apoptosis

and FGF23 elevation, indicating a protective role of DMP1 in CKD

patients (28). In addition, DMP1 is a negative regulator of FGF23

transcription. FGF23 acts on kidney and parathyroid glands to

increase renal Pi excretion and reduce 1,25-dihydroxyvitamin D

(1,25(OH)2D) production, resulting in phosphate waste and

hypophosphatemia. OCY ablation markedly increased intestinal

Pi absorption and stimulated renal Pi excretion (29).

Furthermore, NPY is a 36-amino-acid peptide mostly produced

by the nervous system and OCY (7). In acute kidney injury (AKI)

mouse models, NPY exhibited renoprotective effects through Y1R

by b lock ing M1 mac rophage a c t i v a t i on and rena l

necroinflammation (30). However, another cohort study pointed

out that NPY was associated with proteinuria, faster CKD

progression, and higher risk of kidney failure (31).

New research indicated that human urine-derived stem cell-

derived EVs (hUSC-EVs) play a crucial role in abnormal bone

metabolism. hUSC-EVs exerted an anti-osteoporotic effect through

stimulating bone formation and suppressing bone resorption by
Frontiers in Endocrinology 04
transferring collagen triple-helix repeat containing 1 (CTHRC1)

and osteoprotegerin (OPG) (32). Owing to imbalanced mineral

homeostasis, CKD exacerbated cortical and trabecular bone loss

and microarchitectural degradation associated with aging (71).

Thus, it is likely that OCY and kidney closely communicate with

each other despite the relatively long distances.
OCY and vascular calcification

Vascular calcification (VC) is a complex and highly regulated

process and often related to cardiovascular complications (72).

Calcium phosphate deposition, especially hydroxyl calcium

phosphate, is the main step of VC (73). VC most often co-exists

with bone disorder in the early stage of CKD patients, resulting in

increased morbidity and mortality together with poor outcome in a

prematurely aged patient population (74, 75). Though a specific

mechanism for this syndrome is yet to be revealed, OCY secretion

stimulation seems to take part in this process.

Among all the OCY-derived cytokines involved in VC progress,

SOST is the most studied one. Evaluated by coronary artery

computed tomography, circulating SOST level was positively

correlated with epigastric and coronary artery calcification extent

and may be a predictor of vascular calcification (33). Triggered by

renal malfunction, local osteocytic production of 1,25(OH)2D was

increased, protecting the organism from ectopic calcification by

increasing SOST and suppressing BMP2 production in early CKD

patients (76). Warfarin-exposed rats developed a time-dependent

VC along with a continuous increase in SOST levels; this process

was mainly achieved through inhibiting Wnt/b-catenin signaling

and inducing PPARg signaling (34).

Using a VD3-induced acute VC mouse model, Wang et al.

reported that EVs from aged bone matrix exacerbate large calcium

deposition lesion areas in abdominal aortas. Meanwhile, the same

phenotype was observed in chronic VC experiment models. Owing

to the special localization of OCY in bone matrix, together with

miRNA array analysis, they speculated that aged OCY demonstrate

a positive role on VC by transferring miR-483-5p and miR-

2861 (35).

A new study reported that fetuin A (ASHG), a circulating

glycoprotein with anti-calcification activity, was mostly produced

by OCY consistently. This production process was modulated by

FGF23 (36). ASHG-deficient mice exhibited soft tissue calcification

changes such as myocardium, lung, pancreas, kidney, and the skin,

leading to delayed growth and premature death (77). Paradoxically,

another study illustrated that circulating ASHG level has no

correlation with VC in hemodialysis patients, while age, diabetes

mellitus, and parathyroid hormone (PTH) levels were independent

predictors for these patients (78).
OCY crosstalk with skeletal muscle

Skeletal muscle and bone are the two mechanically loading

tissues in the musculoskeletal system affecting each other through

mechanical interaction and in an endocrine and paracrine manner.
TABLE 1 Continued

Molecules/
cytokines

Physiological function

IL-11 Inhibit adipogenesis (23)

OCY
and
tumor

Type I collagen Tumor shrinkage effect (54)

ATP Suppress breast cancer cell
migration (55)
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They often displayed tissue mass synchronization throughout our

whole life. Exercise maintains increased muscle mass and bone

mineral density (39). Disuse or lack of physical activity led to

muscle atrophy and eventually resulted in OCY apoptosis due to

hyposecretion of multiple hormone-like molecules (79).

Mechanical loading derived by muscle contraction plays a

pivotal role in skeletal health. Transient muscle atrophy induced

by local injection of botulinum toxin led to muscle inactivity and

immobilization, resulting in increased vascular canal porosity,

diminished OCY lacunar density, and terminal osteoporosis (80,

81). Moreover, molecular coupling of muscle and bone was

established in recent years. Specific muscle-derived factors exerted

a critical part in OCY response to loading by activating PI3K/Akt

and b-catenin signaling pathways (82). Irisin, a myokine secreted by

skeletal muscle, prevented disuse-induced OCY apoptosis and

increased both osteocytic survival and SOST production in a

direct manner (37, 38). Furthermore, exercise-induced muscle

factor b-aminoisobutyric acid played a bone-protective role under

oxidative stress by preventing reactive oxygen species-inducted

OCY cell death (39). Conditional deletion of osteocytic Mbtps1

protease stimulated muscle regeneration and reinforced muscle

contractility with age by upregulation of Pax7, Myog, Myod1,

Notch, and Myh3 gene expression (40). Myostatin, a myokine that

negatively regulates muscle growth, was found to directly affect

OCY and indirectly influence other bone cells. Myostatin markedly

stimulated the expression of SOST, DKK1, and RANKL while

inhibiting miR-218 expression in cultured osteocytic (Ocy454)

cells, and negatively regulated osteoblastic differentiation in an

indirect manner, indicating a novel mechanism in muscle–bone

crosstalk (41).

OCY secretome also accounts for various molecules and

miRNAs that affect skeletal muscle. After being secreted by OCY,

soluble factors such as Wnt 3a exhibited a positive effect on

myogenic differentiation, enhancing contractile force and calcium

release (42). OCY released large amounts of PGE2 signaling on G1-

S phase cell cycle progression to stimulate primary myoblast

proliferation (43). OCY-derived miR21 influenced skeletal muscle

size in a sex-dimorphic manner. In detail, female mice were

susceptible while male mice seemed unaffected (44). Furthermore,

partial ablation of DMP1-positive OCY caused severe sarcopenia,

osteoporosis, and degenerative kyphosis, leading to shorter lifespan

in these animals.

In addition to osteokines, a recent study showed that the

osteocytic connexin (Cx) 43 channel plays a crucial role in bone–

muscle crosstalk and PGE2 partially engaged in this process.

Deletion of Cx43 reduced fast-twitch skeletal muscle mass

together with protein synthesis and increased protein degradation

(45). In aged mice, Cx43 hemichannel impairment displayed a

protective role on bone mass while compromising skeletal muscle

function due to increased muscle collagen deposition (46).
Liver–OCY communication

Acting as a nutrient and energy metabolic center, the

communication between liver and other solid organs has been
Frontiers in Endocrinology 05
deeply recognized. However, much less study was conducted

about the relationship between liver and bone, especially OCY,

even though OCY-mediated skeletal health is tightly correlated with

liver disease (83). Clinical data identified that almost all patients

who suffered from chronic liver diseases associate with altered bone

metabolism, particularly severe osteoporosis, leading to a novel

research area named hepatic osteodystrophy (84).

Researchers reported that resident liver stem cell (RLSC)

spontaneously differentiated to OCY after cultivation in

osteogenic condition for half a month, suggesting an OCY

differentiative potentiality of RLSC (85). For cirrhotic patients,

fewer OCY existed while serum SOST level was significantly

elevated and clearly correlated with liver dysfunction markers

such as albumin (47, 48). A significant decline in OCY lacunar

feature was detected in lumbar vertebrae with female alcohol-

associated liver disease (86). A recent study further showed that

the severity of liver tissue disturbances was associated with impaired

functionality and defected signal transduction of OCY lacunar

network. In detail, fewer Cx 43-positive OCY were detected in

vertebral and femoral bone in alcoholic liver cirrhosis individuals

from 40 cadaveric men (49). Research work conducted in this field

is very limited; future studies are required to fully verify the

relationship between OCY and liver.
Osteocyte and adipose tissue

Age- and menopause-related skeletal disturbances are closely

associated with imbalanced bone remodeling characterized by

decreased bone formation, increased osteocyte apoptosis, and

bone marrow adipose tissue (BMAT) accumulation. Emerging

evidence suggests that OCY and adipose tissue mutually influence

each other in a direct and indirect manner. Sato et al. reported that

ablation of osteocyte lead to severe lymphopenia and complete loss

of white adipose tissues (87). In addition, global deletion of SOST

exhibited dramatic increases in bone mass, together with low

adipose tissue mass and impaired insulin sensitivity (50).

Subcutaneous adipose tissue SOST was reduced after sprint

interval training (51). Since SOST is almost produced by OCY,

these findings prompted researchers to think about the intricate

interaction between osteocyte and fat metabolism (87).

Peroxisome proliferator-activated receptors (PPARs) represent

a group of fatty acid-activated transcription factors that regulate

energy metabolism (52). Recent studies identified that PPARa and

PPARg were essential factors for the connection between OCY and

adipose tissue. PPARa is expressed in OCY and plays a vital role in

controlling bone marrow adiposity together with peripheral fat

metabolism. OCY-specific deletion of PPARa led to BMAT

accumulation and beginning of inguinal white adipose tissue, with

no effect on bone mass or microarchitecture (52). In addition,

PPARg deletion in OCY resulted in upregulated adipose browning

and decreased fat infiltration in skeletal muscle and liver (53). By

means of constructing an osteocyte-specific lack of NPY mouse

model, Zhang et al. revealed an osteocyte NPY‐dependent neuronal

control of bone marrow mesenchymal stem/stromal cells’

differentiation fate. In detail, OCY secrete excess NPY to
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stimulate adipogenic differentiation instead of osteogenic

differentiation through cAMP/PKA/CREB signaling during aging

and osteoporosis (7). A recent study identified interleukin-11 (IL-

11) as a mediator of bone-adipose crosstalk in a mechanical loading

process. Osteoblast/osteocyte-specific IL-11 deletion mice exhibited

blunted bone formation and increased systemic adiposity. A

mechanism study further clarified that IL-11 directly inhibited

adipogenesis to enhance Wnt signaling by suppressing Dkk1 and

2 (23). In contrast, BMAT accelerated bone deterioration through

palmitate-mediated lipotoxicity on OCY, including induced

apoptosis and reduced autophagy (88).

Because they are easily harvested and used for autologous

implantation, adipose-derived mesenchymal stromal cells (ASCs)

have become a hot topic in regenerative medicine and tissue

engineering for the treatment of cartilage and bone disorders.

ASCs are multipotent and can differentiate into various cell types

such as OCY, chondrocytes, and myocytes (89). Exosomes isolated

from ASCs effectively inhibited OCY apoptosis and OCY-mediated

osteoclastogenesis through suppressing reactive oxygen species

production and mitochondria-dependent signal activation (90).

Experimental and clinical applications are needed to further

explore the therapeutic potential of ASC in an OCY-related disease.
Tumor–OCY interaction

Primary bone tumors are relatively rare, but because of the

highly vascularized and metastatic environment (TGFb-rich
calcified matrix), bone tissue is the third most common site of

solid tumor metastasis, with up to 70% of metastatic breast and

prostate cancer patients harboring bone metastasis, leading to

shortened survival time and serious bone complications during

the remaining lifespan (91–94). Distant metastasis such as bone

tissue is considered one of the primary causes of treatment failure in

advanced breast cancer (5, 55). Among all the bone cells, OCY

seems less affected by metastasizing cancer cells because they are

further away from the actively metabolized bone marrow. However,

recent studies illustrated that OCY played an integral role in tumor

metastasis in an endocrine and non-endocrine manner.

Matrix-laden OCY and their cultured medium inhibited the

proliferation, migration, and progression of mammary tumor cells

both in vivo and in vitro. OCY coinjection further reduced tumor-

driven osteolysis and achieved tumor-suppressive activity through

an Lrp5-mediated Wnt signaling pathway (95). In return,

mechanically loaded breast cancer cells modulated cell growth,

OCY mechanosensing, and dendrite formation (96). OCY also

mediated a tumor shrinkage effect through type I collagen, the

major organic component within the bone. Furthermore, migratory

breast cancer cells were attracted by OCY through bone matrix

protein (54). Extracellular ATP released by osteocytic connexin

hemichannels suppresses breast cancer cell migration and bone

metastasis (55).

By using a prostate cancer metastasis cell line, DU145, Santen

et al. illustrated that conditioned medium extract from shear-loaded
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OCY differentially altered epithelial and mesenchymal gene

expression and decreased prostate cancer invasion while having

no effect on cell proliferation (97). Paradoxically, another study

using a co-culture, organ-chip model demonstrated inhibition of

metastatic breast and prostate tumor growth while increasing cell

invasion with mechanical stimulation of OCY (98). Other non-

metastatic bone cancers such as adenocarcinoma, ovarian cancer,

and Lewis lung carcinoma displayed increased OCY lacunar area

and OCY death, in line with empty lacunae (99).

Multiple myeloma (MM) is a malignancy of the plasma cells,

characterized by osteolytic destruction, which exhibited tumor

expansion preferentially and bone-destructive lesions (100, 101).

Triggered by activation of Notch signaling, OCY underwent

caspase-3-dependent apoptosis and increased osteocytic RANKL

and SOST expression in MM (102). Inhibition of SOST protein

significantly increased bone formation, decreased fracture

susceptibility, and thus prevented the development of bone

disease in MM patients (100). Apoptosis, together with OCY

autophagy, might also be involved in OCY–MM interaction

(103). OCY apoptosis was dramatically increased in bone areas

colonized by MM cells, and autophagic death was triggered after

being cocultured with MM cells (103, 104).
OCY as treatment targets

Bisphosphonates (BPs) have long been used to preserve bone

mass through an antiresorptive effect by inhibiting bone-resorbing

osteoclast activity (105, 106). The pharmacological effects of BPs

depend on bone mineral affinity and inhibitory effects depend on

biochemical targets to bone cells, especially farnesyl diphosphate

synthase, which plays a vital role in the bone resorption process

(107). Benefiting from the lacuna-canalicular network, BPs can

travel a certain distance and bind with OCY lacunae to exert

antiapoptotic effect on OCY strictly dependent on Cx43

expression but not gap junctions (108–110). BPs with lower

affinity seem to penetrate deeper into the canalicular network

than higher-affinity compounds for the bone mineral (110).

Denosumab is an antibody against RANKL, a cytokine mostly

produced by OCY, which exhibited potently anti-resorptive and

anti-fracture properties. However, persisting lower OCY viability

and elevated fracture risk was identified after denosumab

discontinuation (111), resulting in OCY apoptosis and multiple

vertebral osteonecrosis (112). The monoclonal antibody anti-SOST,

romosozumab, displayed a dual effect on bone metabolism by

stimulating bone formation and inhibiting resorption. In

postmenopausal osteoporosis patients, romosozumab treatment

evidently decreased vertebral fracture risk at 12 months and after

the transition to denosumab at 24 months (113). Proteasome

inhibitor treatment increased OCY viability and blunted

dexamethasone-induced OCY death through autophagy

modulation in MM patients (103). Parathyroid hormone exerted

pro-resorptive skeletal effects through activating osteocytic Notch

signals and SOST expression downregulation (114). Research on the
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therapeutic potential of OCY is far from sufficient; additional efforts

are warranted to explore potential future therapies.
Conclusion and perspectives

Embedded in the solid bone matrix, OCY was thought of as a

silenced cell, a placeholder in bone, not having contact with other

tissue. Past research mostly focused on the role of bone-formation

osteoblast and bone-resorption osteoclast; within the last decade,

considerable studies of OCY have strikingly increased, resulting in

the discovery of novel functions of OCY. Even though the crosstalk

between bone and other organ has been widely studied, the

relationship between OCY and neighbor or distant tissues is not

yet fully elucidated.

Because the world population’s life expectancy continues to

increase, aging-related diseases such as brain dysfunction and bone

loss represent a major public health problem. Over the past decades,

researchers have described many aspects of osteoporosis and

neurodegenerative disease, which is strongly correlated with

clinical epidemiology, but there remain many unanswered

questions. The interplay between brain and OCY under normal

and pathological conditions needs to be fully elucidated.

In this review, we summarized new insights into the mutual

influence of OCY and other organs, presenting the therapeutic

potential of OCY, which has become a target of intervention in

related diseases. Further study in this field is needed to achieve a

better understanding of the underlying mechanisms of

manifestations in the bone, and vice versa, and provide new

pathways for research on body homeostasis.
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