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Background: Despite the well-established findings of a higher incidence of

retina-related eye diseases in patients with diabetes, there is less investigation

into the causal relationship between diabetes and non-retinal eye conditions,

such as age-related cataracts and glaucoma.

Methods: We performed Mendelian randomization (MR) analysis to examine the

causal relationship between type 2 diabetes mellitus (T2DM) and 111 ocular

diseases. We employed a set of 184 single nucleotide polymorphisms (SNPs) that

reached genome-wide significance as instrumental variables (IVs). The primary

analysis utilized the inverse variance-weighted (IVW) method, with MR-Egger

and weighted median (WM) methods serving as supplementary analyses.

Results: The results revealed suggestive positive causal relationships between

T2DM and various ocular conditions, including “Senile cataract” (OR= 1.07; 95%

CI: 1.03, 1.11; P=7.77×10-4), “Glaucoma” (OR= 1.08; 95% CI: 1.02, 1.13;

P=4.81×10-3), and “Disorders of optic nerve and visual pathways” (OR= 1.10;

95% CI: 0.99, 1.23; P=7.01×10-2).

Conclusion: Our evidence supports a causal relationship between T2DM and

specific ocular disorders. This provides a basis for further research on the

importance of T2DM management and prevention strategies in maintaining

ocular health.
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type 2 diabetes, ocular diseases, diabetes complications, Mendelian randomization,
causal association
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Introduction

Type 2 diabetes mellitus (T2DM) accounts for approximately

90% of the global population of 537 million individuals with

diabetes mellitus (DM), predominantly affecting individuals over

the age of 55 (1). The prevalence of T2DM is rising due to

accelerated global aging, and it is projected that the worldwide

diabetic population will reach 783 million by 2045 (2). DM can give

rise to a range of complications, characterized by elevated disability

and mortality rates (3–8). Visual impairment stands out as a

particularly severe complication (9).

A systematic review andmeta-analysis of global population-based

eye disease surveys conducted from 1990 to 2020 established that

cataract, glaucoma, age-related macular degeneration (AMD), and

diabetic retinopathy (DR) are the primary causes of blindness.

Importantly, early detection and timely intervention can prevent

these conditions (10). It is widely recognized that there is a strong

association between DM and the development of DR, with

approximately one-third of diabetic patients affected by this

condition (11). Furthermore, DM has been linked to several other

significant visual impairments worldwide, including cataract, AMD,

and glaucoma (12). For instance, a meta-analysis indicated that DM

was associated with an increased risk of AMD (13), while two other

studies reported a 50% reduction in AMD prevalence among patients

with DM (14, 15). Moreover, there are conflicting reports regarding

the association between diabetes and glaucoma.While a meta-analysis

suggested that diabetes increased the prevalence of glaucoma (16),

another study revealed that DM conferred a protective effect against

the development of glaucomatous optic nerve damage in patients with

primary open-angle glaucoma (POAG) (17). Hence, the existing

research on DM and ocular-related diseases remains inconclusive.

The primary reason for these conflicting findings is that most studies

examining the relationship between diabetes and ocular-related

diseases are observational, making it difficult to exclude the effects

of confounding variables and reverse causality.

Mendelian Randomization (MR) analysis is an epidemiological

approach that utilizes genetic variants associated with a specific

exposure as instrumental variables (IVs). Its primary objective is to

evaluate potential causal relationships between the exposure and

outcome measures (18). The methodologies employed in MR

analysis are grounded in Mendel’s second law, which states that

alleles are randomly allocated. This characteristic, irrespective of the

individual’s illness status, helps mitigate biases induced by

confounding factors and reverse causality. The objective of this

study is to employ the MR method to examine the causal
Abbreviations: T2DM, type 2 diabetes mellitus; DM, diabetes mellitus; AMD,

age-related macular degeneration; DR, diabetic retinopathy; POAG, primary

open-angle glaucoma; MR, Mendelian randomization; IVs, instrumental

variables; GWAS, genome-wide association study; SNPs, single nucleotide

polymorphism; MAF, minor allele frequency; IVW, inverse-variance weighted;

WM, weighted median; ORs, odds ratios; CIs, confidence intervals; FDR, false

discovery rate; AGEs, advanced glycation end products; ROS, reactive oxygen

species; TLR, toll-like receptor; ECM, extracellular matrix; RR, relative risk; AR,

aldose reductase; GSH, glutathione.
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relationship between T2DM and 111 types of ocular conditions.

Furthermore, it seeks to establish a theoretical basis for the prevention

and treatment of eye diseases in individuals with diabetes.
Methods

Study design

Based on the dataset acquired from the genome-wide

association study (GWAS), we identified specific single nucleotide

polymorphisms (SNPs) that exhibited significant associations with

T2DM as the exposure variable. We utilized these SNPs as IVs and

employed a MR analysis to evaluate the causal association between

T2DM and the aforementioned ocular diseases.
Data sources

The data for the exposure variable (T2DM) (including 74,124

T2DM cases and 824,006 controls of European ancestry) was

obtained from Anubha Mahajan et al.’s study (19), while data for

the outcome variables were obtained from all 111 eye-related diseases

(detailed information can be found in Supplementary Table 1)

available in the FinnGen database, which is a comprehensive

biomedical research project conducted in Finland (20).
Selection of IVs

We implemented specific criteria for the selection of IVs in our

MR analysis. These criteria included: (1) establishing a significant

genomic-level association between the IVs and the exposure (P <

5.00×10-8), (2) ensuring the independent selection of IVs by

clumping within a 10 Mb window and minimizing linkage

disequilibrium (R2 < 0.001), and (3) setting a minimum minor

allele frequency (MAF) threshold of 0.01. We employed F-statistics

to evaluate the strength of the IVs, considering values greater than

10 as indicative of a lower probability of weak instrument bias (21).
MR analysis

Among the three MR methods employed in this study, the

inverse variance-weighted (IVW) method was the primary

approach. IVW primarily evaluates the results by aggregating the

MR effect estimates for each individual SNP. For the weighted

median (WM) method to be applicable, it is necessary for the valid

variable to constitute a minimum of 50%. Furthermore, an intercept

term is employed by MR-Egger to assess potential pleiotropy.
Sensitivity analysis

To detect and eliminate potential outliers, we employed

pleiotropy-corrected data from MR-PRESSO. We assessed
frontiersin.org
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heterogeneity using Cochrane Q-values. Furthermore, we employed

the Leave-one-out method by removing one SNP at a time and

reanalyzing whether the remaining SNPs significantly impacted the

results. Causal estimates were obtained by calculating odds ratios

(ORs) and their corresponding 95% confidence intervals (CIs). To

handle multiple comparisons, we applied a false discovery rate

(FDR) of 5%. Causal associations were considered significant if they

survived FDR correction, but suggestive associations were also

discussed in our study. The two-sample MR software package in

R was utilized for conducting all MR analyses.
Results

Assessment of the IVs

We identified 184 SNPs from T2DM as IVs, with F statistic

values ranging from 29.47 to 1393.78 (Supplementary Table 2).
Results of the MR analysis

The findings of the IVW method indicated a potential causal

association between T2DM and various ocular-related diseases,

including “Vitreous haemorrhage” (OR= 1.21; 95% CI: 1.06, 1.38;

P=3.77×10-3), “Senile cataract” (OR= 1.07; 95% CI: 1.03, 1.11;

P=7.77×10-4), “Glaucoma” (OR= 1.08; 95% CI: 1.02, 1.13;

P=4.81×10-3), and “Disorders of optic nerve and visual pathways”

(OR= 1.10; 95% CI: 0.99, 1.23; P=7.01×10-2) (Figures 1, 2;

Supplementary Table 3). Furthermore, significant associations

persisted between T2DM and diseases of the eye and adnexa,

disorders of choroid and retina, and senile cataract even after

adjusting for multiple comparisons. Using the MR-Egger and

WM approaches, the relationships between T2DM and these
Frontiers in Endocrinology 03
ocular-related diseases had the same direction (Figure 2;

Supplementary Table 3). Figure 3 displays the scatter plot

illustrating the causal relationships between T2DM and these

ocular-related diseases.
Results of the sensitivity analysis

The potential heterogeneity was evaluated (Figure 4;

Supplementary Table 4). The findings presented in Supplementary

Figure 1 indicate that most individual SNPs hadminimal impact on the

results during the leave-one-out analysis. The MR-Egger method did

not detect the presence of horizontal pleiotropy (Supplementary

Table 5). Despite the MR-PRESSO analysis identifying several

outliers in the results, it did not significantly alter the outcomes after

correction (Supplementary Table 6).
Discussion

In our MR analysis involving 111 ocular diseases, we identified

potential causal associations between T2DM and various ocular-

related diseases, such as diseases of the eye and adnexa, disorders of

choroid and retina, vitreous haemorrhage, senile cataract,

glaucoma, and disorders of optic nerve and visual pathways. After

applying multiple corrections, the causal relationship between

T2DM and diseases of the eye and adnexa, senile cataract, as well

as disorders of choroid and retina, remained statistically significant.

According to the definition provided by FinnGen, diseases of the

eye and adnexa encompass disorders of choroid and retina

(including any disease or disorder of the retina), glaucoma

(characterized by increased ocular pressure due to impaired

outflow), and disorders of optic nerve and visual pathways. Based
FIGURE 1

The P-value distribution of associations between type 2 diabetes mellitus and 111 ocular-related diseases in the Mendelian randomization analysis.
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on the preceding content and considering the actual clinical

morbidity rate, our discussion will primarily focus on four

key aspects.
Disorders of choroid and retina

Our study identified a significant causal relationship between

T2DM and disorders of choroid and retina, which is consistent with

prior research findings. Previous studies have shown a risk of DR

ranging from 50% to 60% in patients diagnosed with T2DM (22).

The underlying mechanism of T2DM causing DR may be related to

oxidative stress, resulting from the formation of advanced glycation

end products (AGEs). Prolonged hyperglycemia can result in the

non-enzymatic glycosylation of macromolecules, such as proteins

and lipids, leading to a continuous increase in the levels of AGEs

(23). Previous studies have demonstrated an association between

AGEs and the prevalence of DR across all stages (24). The

interaction between AGEs and their receptors on the cell surface

activates nicotinamide adenine dinucleotide phosphate-oxidase,

promoting the generation of intracellular reactive oxygen species

(ROS) (25). In turn, the enhanced ROS levels contribute to the

formation of AGEs, thereby exacerbating the damage caused by
Frontiers in Endocrinology 04
AGEs (26). Oxidative stress plays a pivotal role in the pathogenesis

of diabetic retinopathy. The excessive accumulation of ROS can

cause damage to the retinal endovascular and surrounding tissues,

leading to the development of diabetic retinopathy (27).
Disorders of optic nerve and visual
pathways

The present study uncovered a potential positive causal

relationship between T2DM and disorders of optic nerve and

visual pathways. This finding is consistent with prior research. A

cohort study found optic neuritis intensifies with the duration of

diabetes and increasing glucose levels (28). This finding aligns with

our research. The pathogenesis of optic nerve and visual pathway

diseases in patients with T2DM may be attributed to

hyperglycemia-induced oxidative stress. DM is characterized as

an inflammatory disease that impacts the optic nerve through the

release of inflammatory mediators resulting from oxidative stress

(29). Moreover, previous research has demonstrated that elevated

blood glucose levels induce the activation of Toll-like receptor 2

(TLR-2) and TLR-4 via reactive ROS, resulting in dysregulated

microglial activation (30).
FIGURE 3

Scatter plot showing the causal effects of type 2 diabetes mellitus on various ocular-related diseases. SNP, single nucleotide polymorphism.
FIGURE 2

Associations between genetically predicted type 2 diabetes mellitus and various ocular-related diseases examined by three MR methods. MR,
Mendelian randomization; IVW, inverse-variance weighted; WM, weighted median; CI, confidence interval.
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Glaucoma

Our study identified a potential positive causal relationship

between T2DM and glaucoma. However, a MR study conducted on

an East Asian population found no statistically significant

association between genetically predicted type 2 diabetes and

POAG risk (31). This discrepancy may be attributed to ethnic

differences. Nonetheless, a cohort study carried out in South Korea

reported a significant association between the incidence of T2DM

and open-angle glaucoma (32). Moreover, another cohort study

conducted in Korea observed that T2DM was associated with a

higher risk of glaucoma incidence (33). Furthermore, another MR

study focusing on glaucoma revealed an independent and causal

association between T2DM and glaucoma risk (34), which aligns

with our own findings. Hyperglycemia may contribute to the

increased accumulation of extracellular matrix (ECM) substances,

which could be an underlying mechanism of glaucoma in

individuals with diabetes. The abnormal accumulation of ECM

substances is a key factor contributing to elevated intraocular

pressure (35). The ECM primarily consists of fibronectin and

glycosaminoglycans. Studies have demonstrated that elevated

glucose levels can induce the synthesis of fibronectin in trabecular

meshwork cells, which plays a crucial role in regulating aqueous

outflow and intraocular pressure (36). Additionally, the stiffening of

the cornea due to saccharification in individuals with diabetes also

may compromise the flow of aqueous humor (37, 38).
Senile cataracts

Our study has identified a significant causal relationship

between T2DM and senile cataract, which is supported by

previous research. A cohort study conducted in Sweden involving

35,369 women found that diabetic women had a 43% increased risk

of cataract extraction (RR, 1.43; 95% CI, 1.10-1.86) (39). This

finding is consistent with a meta-analysis of 20,837 subjects,

which also confirmed T2DM as a risk factor for cataract (40).

Additionally, Yuan et al. reported a positive correlation between

genetic susceptibility to T2DM and senile cataract (41). Moreover, a

previous MR study demonstrated that a higher genetic

predisposition to T2DM was associated with an elevated risk of
Frontiers in Endocrinology 05
senile cataract (41). Kanishk et al. discovered that in diabetics,

insufficient blood glucose control leads to increased aldose

reductase (AR) levels and decreased glutathione (GSH) activity

(42). AR is a critical initiator of sorbitol establishment in the lens,

and abnormal sorbitol accumulation poses several risks to the lens,

including lens opacity, interruption of the primary location for

protein synthesis - the endoplasmic reticulum, ignition of apoptosis

in lens epithelial cells, and oxidative stress damage to lens fibers

(43–45). Additionally, GSH is one of the essential biochemical

factors that maintain oxidative equilibrium in the lens; unusually

low GSH levels can potentially affect lens transparency (46). Hence,

the potential mechanism by which T2DM contributes to the

development of senile cataracts may involve hyperglycemia-

induced alterations in the activity of AR and GSH, thereby

affecting lens metabolism.
Strengths and limitations

A major strength of this study lies in its systematic analysis

using MR to examine the causal relationships between T2DM and

multiple ocular-related diseases. Furthermore, our findings were

reinforced through rigorous sensitivity analyses, affirming the

reliability and stability of our causal conclusions. Finally, by

incorporating genetic variations, we minimized confounding

interference, thereby upholding the validity of our study.

The MR method itself has inherent limitations and potential

problems, such as weak instruments and pleiotropy. Despite our

efforts to address these issues through various methods, there are still

unavoidable challenges. Firstly, we need to consider the problem of

population stratification, which refers to differences in disease

incidence (or trait distribution) and allele frequencies among

populations. Secondly, there is a possibility of bias due to sample

overlap. Although we selected two distinct samples, it is important to

note that the data from these samples may not be entirely

independent, as both samples consist of European populations.

Lastly, while we did not find evidence of horizontal pleiotropy, it is

important to acknowledge the presence of residual bias since the

precise function of most SNPs remains unknown. Lastly, since our

study focused on the European population, the generalizability of our

findings to other ethnic groups may be limited.
FIGURE 4

Funnel plot indicating the causal associations of type 2 diabetes mellitus on various ocular-related diseases. SNP, single nucleotide polymorphism;
IV, instrumental variable; SE, standard error.
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Conclusion

In summary, the MR analysis results showed a significant

positive causal relationship between T2DM and various ocular-

related diseases, further demonstrating the adverse impact of

diabetes on ocular health. As a corollary, addressing the necessity

of maintaining adequate glycemic control becomes critical in

protecting the ocular health of diabetics.
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