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Primary cilia (PC) are non-motile andmicrotube-based organelles protruding

from the surface of almost all thyroid follicle cells. Theymaintain homeostasis

in thyrocytes and loss of PC can result in diverse thyroid diseases. The

dysfunction of structure and function of PC are found in many patients

with common thyroid diseases. The alterations are associated with the cause,

development, and recovery of the diseases and are regulated by PC-

mediated signals. Restoring normal PC structure and function in thyrocytes

is a promising therapeutic strategy to treat thyroid diseases. This review

explores the function of PC in normal thyroid glands. It summarizes the

pathology caused by PC alterations in thyroid cancer (TC), autoimmune

thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide

comprehensive references for further study.
KEYWORDS

primary cilia, thyroid diseases, thyroid cancer, graves’ disease, Hashimoto’s
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1 Introduction

Primary cilia (PC) are immobile, rod-shaped micro-organelles that extend as a

solitary unit from the basal body in most cell types of vertebrates (1–3). Initially,

follicular cells with PC were discovered in some embryos and mature vertebrate species

(4). PC are the signal center of multiple signaling transmission pathways. Specific lipids

and receptors on PC enable them to sense various extracellular chemical and

mechanical signals and transmit them to the intracellular level, invoking responses

that regulate varying cellular developmental and physiological processes (1, 5). The PC

structure consists of a basal body, a transition zone, and an axoneme (6). The basal

body defines cell polarity and initiates ciliogenesis. Dysfunctions in ciliogenesis can

lead to a variety of ciliopathies (7), which may display clinical phenotypes of congenital

hypothyroidism (8). The transition zone connects the basal body and axoneme

backbone and acts as a docking medium for intraflagellar transport (IFT) particles,

which are responsible for transporting all proteins into and along the ciliary

compartment (9). Proteins are transported along PC from the base to the tip by
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anterograde IFT, which is catalyzed by cytoplasmic dynein 2/1b

motor, and from the tip to the base of PC by IFT catalyzed by

kinesin-2 motor (10). Alpha and beta tubulin form the axoneme, a

microtubule structure modified post-translationally to avoid

depolymerization. PC length ranges from 5.0 mm to 10.7 mm

and has a mean length of 7.3 ± 1.2 mm (4). PC length is associated

with cilia-mediated signaling function and altered by agonists for

receptors (11), transcriptional regulation of IFT genes, and actin

depolymerization (12). Defects in PC length and morphology can

lead to dysregulation of signaling transduction and cellular

functionality, which contribute to developing diseases termed

ciliopathies (13). An experiment showed that the frequency of PC

in normal human thyroid follicles is 67.53 ± 3.62% (5). Considering

the potential of concentrating signal cascade proteins within ciliary

lumens and membranes, PC are an ideal mediator for regulating

endocrine pathways (14).

The mammalian thyroid gland regulates the synthesis and

secretion of thyroid hormone (TH). TH plays a crucial role in

normal development, growth, neural differentiation, and metabolic

regulation in mammals (15–17). Furthermore, it can regulate adult

hippocampal neurogenesis, which is responsible for learning,

memory, and mood by acting through thyroid hormone

receptora (TRa) (18, 19). As the basic unit of the thyroid gland,

globular-shaped, vascular, encircled, and colloid-filled follicles are

essential for its functional integrity. The colloid-facing membrane

of follicular epithelial cells functions as an active exchange interface

in hormone production (5), and follicular cells are a prerequisite for

TH synthesis (20). Thyroid cancer (TC), Graves’ disease (GD),

Hashimoto’s thyroiditis (HT), hypothyroidism, and thyroid

nodules (TN) are common thyroid diseases worldwide. Studies

show that thyroid illnesses emerge due to oncogenic mutations and

abnormal changes in some intracellular downstream signaling

pathways and cytokines (21–23). Previous research revealed that

as a key mediator, PC influences the pathogenesis of thyroid

abnormalities in function and structure (6). However, there are

no inductive studies that describe the systematic role of PC in

thyroid diseases.

The purpose of this article is to reveal the role that PC in

follicular epithelial play in thyroid diseases and provide novel ideas

for further research.
2 Primary cilia and thyroid cancer

Thyroid cancer is one of the endocrine cancers with the highest

morbidity and a rapidly and steadily rising incidence (24).

In patients with TC, the length and frequency of PC change

when responding to extracellular and intracellular stimuli (6).

However, there are differences in the length and frequency

changes in PC among different TC phenotypes. A previous study

found that compared to individuals with normal thyroid glands,

patients with follicular thyroid cancer (FTC) and papillary thyroid

cancer (PTC) display PC with significantly increased length and

invariable frequency, and oncocytic PTC variants exhibit PC with

decreased length and frequency (25). PC frequency is observably

lower in anaplastic thyroid carcinoma (ATC) (5) and is associated
Frontiers in Endocrinology 02
with TC tumorigenesis and TC progression (26). Researchers

believe that the absence of PC in PTCs leads to increased

apoptosis and is associated with reduced tumor aggressiveness

and malignant potential (16).

A mouse model with PC loss mediated by intraflagellar

transport 88 (IFT88) showed an irregularly dilated thyroid gland

with destroyed follicles, malignant properties, and progressively

differentiated thyroid cancer (PDTC) (5), which reflected the

pathogenicity of PC mutations in the thyroid gland. As

mentioned in the literature review, these findings confirm that

abnormal changes in PC structure are closely related to TC

tumorigenesis and progression. Thus, maintaining normal

ciliogenesis is probably a therapeutic target for TC.

As the mediator of signaling pathways, PC play an essential role

in regulating the development of various subtypes of TC.

Communication and interflow between tumor microenvironments

and TC cells are affected by alterations in PC and influence the

prognosis and therapeutic effect on TC (27–30).

IFT88 plays a critical role in anterograde transport in ciliary

proteins (31, 32), which maintains bidirectional motility along the

axonemes and is indispensable for ciliogenesis and functional

proficiency (33). Therefore, dysfunctional mutations of IFT88

lead to severe defects in ciliogenesis (26). Many studies have

examined IFT88 function and demonstrated PC loss in many

types of cancer (34–37) associated with higher cancer

aggressiveness (5, 38, 39). A previous experiment showed that

thyroid-specific IFT88-deficient mice developed TC without

additional activation of thyroid oncogenic kinases. Clinical studies

have provided evidence that IFT88/PC dysfunction causes

abnormalities in cellular metabolism, such as oxidative

phosphorylation (OxPhos), decreased mitochondrial membrane

potential, reduced ATP synthesis, and increased aerobic glycolysis

with increased fatty acid synthesis, loss of mitochondrial function,

and even mitochondrial fragmentation in rare cases (26). The

mechanism of TC resulting from loss of function (LOF) of IFT88/

PC is inconsistent in different studies. LOF of IFT88 prevents the

PC-mediated Hedgehog pathway from being used to promote

carcinogenesis caused by SmoM2. Nevertheless, lesions

resembling basal cell carcinoma can be accelerated by LOF of

IFT88 through a tumorigenic pathway independent of the PC

(34). Therefore, the specific role of LOF of IFT88/PC in TC needs

further exploration.

The Hedgehog (Hh) pathway is crucial for vertebrate

embryonic development, and misregulation is responsible for

many cancers (40). Studies have reported abnormal Hedgehog

(Hh) pathways activated by PC (41). Sonic Hh (Shh) (one of the

secreted proteins) belongs to the Hedgehog family (42).

Immunolocalization tests demonstrate that scores of core

components of Sonic hedgehog (Shh) signal transformation

localize on PC, and PC is fundamentally important for canonical

Shh signaling in vertebrates (29). Shh ligand stimulates Gli

(including Gli1, Gli2, and Gli3) transport from PC to the nucleus,

where they activate Hh target genes (41). Hh pathway is considered

a bona fide ciliary pathway presently (1). PC mediate the interaction

between stroma and cancer cells, the defects of which may interfere

with the interaction that mediates the aberrant activation of Hh
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pathways. This finding proves that the Hh pathways mediated by

PC are likely to affect TC tumorigenesis (6). In the early stage of TC

development, PC-mediated growth factor binding to RTKs triggers

the activation of the MAPK and PI3K-AKT cascades, which

regulate TC cell proliferation. Increased RTK activity promotes

RET/RAS/BRAF mutations (43, 44), which influence Hh pathway

activation without ligands in tumor cells (45), implying that PC

carry the signaling proteins above. Hh and RTK signaling crosstalk

are integrated by PC, which coordinate the synthesis and

development of TH. Therefore, PC mutations can influence

pathways related to tumorigenesis and the development of

TC directly.

NIMA-related kinases (Nek), LKB1, Aurora kinase A

(AURKA), and polo-like kinase (Plk1) are PC-related proteins

identified as crucial for PC regulation.

Situated in PC and centrosomes, Nek may help to coordinate

cell cycle progression and ciliogenesis (46). Studies have shown that

cells lacking NIMA or some NIMA-related kinases suffer from

chromosome segregation and mitotic errors and then undergo

apoptosis (47), manifesting as bizarre and heterogeneous PC (48).

In both the classical and follicular variants of PTC, overexpression

of Nek1 is frequently associated with aggressiveness, which is highly

specific and sensitive. Therefore, Nek 1 may affect the identification

of malignant features during TC diagnosis (49).

The LKB1, a tumor suppressor kinase located in PC on

epithelial cells, is known to inhibit mTOR activation by inhibiting

AMPK signaling, which represses tumor cell polarization and

metastasis (47, 50). Therefore, LKB1 expression negatively

correlates with increased tumor aggressiveness and is assumed as

a prospective therapeutic target for TC (51, 52).

AURKA is located in the basal body, centrosome, and radial

microtubules of PC, participates in cellular responsiveness to

growth factors, and regulates ciliary disassembly (53, 54). AURKA

gene amplification or overexpression is linked to malignancies, such

as colon, liver, pancreatic, breast, and gastric cancers (39, 55).

Previous studies suggested that AURKA could physiologically

cause lung cancer and breast cancer through weakening LKB1/

AMPK signaling pathways and mediating resistance to autophagic

cell death, respectively (56, 57). Research reveals that the genes

encoding the Aurora kinases induce malignant transformation of

thyrocytes, and some TC-derived cell lines and tissues exhibit the

detection of their overexpression, implying a poor prognosis (6).

Although the evidence that AURKA influences TC is insufficient, it

can be inferred from the mechanism of diverse cancers. Thus, it is

probably a novel and valuable therapeutic target of TC at present

(58–60). In preclinical research and clinical trials, MLN8237, a

conformation-changing AURKA inhibitor, demonstrated

exceptional anticancer activity by inhibiting AURKA (61).

Considered a cellular proliferation marker, Plk1 is localized in

the PC transition zone in epithelial cells (62). The small-molecule

inhibitor of Plk1 activity can limit the first two phases of ciliary

disassembly, while induced PC disassembly can evoke the activity of

Plk1 kinase (63). Therefore, this interrelationship between Plk1 and

ciliary disassembly can serve as one of the arguments that Plk1 is a

PC-related protein critical for PC regulation (6). The findings of

several studies show that PLK1 is unlikely to contribute directly to
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the mitosis of papillary carcinoma cells. One of the explanations is

that PLK1 plays an oncogenic role and is constitutively required in

papillary carcinoma during the early phase, while it is less necessary

for the development of this carcinoma during the advanced stage

(64–66). Plk1 is only expressed occasionally in normal thyrocytes

while overexpressed in the bulk of microcarcinomas, smaller PTC,

ATCs, and incidental carcinomas, which may support the

assumption (67) that Plk1 makes a constitutive effect on PTC in

the early stage. Furthermore, several tests related to PLK1 inhibitors

show promising results in preclinical settings (68–71). Yet, clinical

investigations reveal that hematologic toxicity (neutropenia)

frequently causes therapeutic action to occur at or beyond the

maximum tolerated dosage (72–74).

Cysteine cathepsins are a group of proteases that are

proteolytically active to different extents (75). Secreted from

Nthy-ori 3-1 cells in vitro (76) and from human thyrocytes in situ

(77), cysteine cathepsins contribute to tissue homeostasis in the

thyroid gland (78). Cysteine cathepsins B, K, L, and S are involved

in the proteolytic processing and degradation of thyroglobulin (Tg)

in the follicular lumen for initial TH liberation (77, 79). The

production of prohormone Tg and its proteolytic processing are

essential for thyroid function. A previous study by Alara Gaye

Doğru et al. discovered the presence of cysteine cathepsins B and L

at the PC of Fisher rat thyroid (FRT) cells, indicating their

localization, and showed that inhibiting these cysteine cathepsins

leads to the elimination of the PC (80). An interesting possibility is

that different substrates of truncated cathepsin B and V variants are

present in the nuclei of thyroid carcinoma cells (75). Several studies

implicate the involvement of cysteine cathepsins in malignancies

and cancer progression due to an increased expression and activity

in cancer cells and tumor-associated tissue. As deduced from co-

localization studies and in vitro degradation assays, a study

suggested that nuclear variants of cathepsins are involved in the

development of thyroid malignancies (75).

Thyroid-stimulating hormone (TSH) receptor activation

increases cytosolic calcium levels, stimulating the release of

cysteine cathepsins. These cysteine cathepsins then enzymatically

break down Tg to release TH. The ultimate result of Tg processing is

the production of Tg fragments that function as thyropins,

which effectively suppress the activity of cysteine cathepsins (81).

This process affects thyroid autoregulation and contributes to

thyroid diseases.

Although the mechanisms of PC loss in TC cells remain

uncertain, the survival of TC cells is determined by proper

regulation of PC proteins between ciliogenesis and the cell cycle

(82). Considering these PC proteins as targets for treating TC is a

relatively new idea.

Studies on the drug effects on PC in human cells are limited.

Notably, specific drugs, for example, U0126 and ganetespib (83, 84),

affect disassembling PC, restoring ciliogenesis, shortening PC,

preventing Smo accumulation in PC, and inhibiting the

proliferation of TC cells in different histological types (6, 85, 86).

Many drugs are shown to be effective in TC treatment. For example,

docetaxel lowers PC levels in olfactory cells, paclitaxel produces PC

elongation in the quail oviduct, doxorubicin increases PC synthesis

in breast fibroblasts (87), and carboplatin causes PC disassembly in
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sensory cells (88). Several RTK inhibitors, such as sorafenib,

lenvatinib, vandetanib, and cabozantinib, were approved for

clinical practice for treating differentiated thyroid cancer (DTC),

PDTC, and metastatic thyroid cancer (MTC) (89). However, there

is no information on the effects of RTK inhibitors on PC. They have

been evaluated in preclinical and clinical investigations in TC, and

taking these aspects into account will help develop logical therapy

methods for TC. Therefore, restoring PC in TC may be a promising

therapeutic strategy (90). Thus, there is a broad scientific prospect

of developing drugs with PC as a target for thyroid cancer therapy.
3 Primary cilia and autoimmune
thyroid disease

As the most common autoimmune disease, autoimmune

thyroid disease (AITD) is prevalent in approximately 5% of the

population (91, 92). GD and HT are two main clinical presentations

of AITD, both characterized by lymphocytic infiltration of the

thyroid parenchyma (93). The pathological process of GD is

influenced by a defective Taar1 located in the PC. The shedding

of PC on kidney epithelial cells indicates that oxidative stress may

damage PC in thyroid epithelial cells, while the pathological process

of HT is regulated by PC, which mediate apoptosis and affect the

normal expression of miRNA. A summary of past research confirms

that PC play an essential role in AITD, especially GD and HT.
3.1 Primary cilia and Graves’ disease

Thyrotoxicosis is an autoimmune response characterized by the

presence of autoantibodies targeting the TSH receptor (TSHR-Ab),

resulting in goiter and hyperthyroidism (93, 94). GD is one of the

most common causes of thyrotoxicosis. Moreover, the thyroid

gland of GD is infiltrated by autoreactive lymphocytes and

circulating thyroid antibodies (23).

Although the precise pathogenic mechanisms remain unknown,

researchers have revealed a close correlation between morbidity and

sex and susceptibility genes (95, 96). Most current research shows

an increase in the length and frequency of PC, whereas studies

exploring the mechanisms underlying the influence of PC on GD

are rare. Therefore, the central links (Taar1, oxidative stress) that

may be related to PC in GD pathogenesis are summarized here to

fill the gap in this field.

Recent research shows that GD results from structural and

functional defects in PC, also known as ciliopathies (9, 97, 98).

Defects in ciliogenesis should appear in GD, characterized by

follicle integrity changes, deregulation of hormone synthesis, and

altered proliferation rate (99). Until now, the role of PC has not

been demonstrated directly in the thyroid, while it can be inferred

from existing work. In previous experiments, GD follicular cells

were characterized by a convex surface adorned with microvilli, and

small cilia that resembled microvilli were infrequently seen near the

cell core (23). In follicular cells of GD, PC length and frequency
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decreased significantly compared to the normal group, and the

absence of PC intensified the alterable presence of follicles in

apoptosis (99). The findings proved that ciliogenesis plays a key

role in sustaining the normal physical condition of follicular cells

and directly impacts the functional abnormalities of the thyroid

gland (6, 99). Moreover, GD thyroid samples with shorter axonemal

and lower ciliary frequencies had a worse response to antithyroid

medication therapy (99). Therefore, the therapeutic effect may be

enhanced by maintaining the normal length and frequency of the

PC, providing a novel idea in clinical research and treatment.

The hypothalamic–pituitary–thyroid (HPT) axis is a vital

regulatory pathway of the thyroid gland, in which low

concentrations of TH trigger negative feedback, resulting in the

release of thyrotropin-releasing hormone (TRH) from the

hypothalamus and TSH from the pituitary gland (100–102).

Evidence suggests that Taar1, a putative receptor of thyronamines

localized at PC (103), is vital to maintaining canonical regulation of

the HPT axis (100) and might contribute to hyperthyroidism

through its effect on the HPT axis. An experiment revealed that

the serum of male mice with Taar1 knocked out showed mild TSH

receptor resistance and elevated TSH concentrations (100).

Inversely, serum TSH concentrations revealed a decline in serum

TSH concentrations in Taar1 knockout male mice with older age,

while the increase in serum TSH concentrations was significant

when comparing young adult Taar1 knockout male mice (100).

These varying results might be attributable to the heterogeneity of

the thyroid tissue. That is , Taar1-deficient mice are

hyperthyrotropinemic, which is the characteristic of GD.

Therefore, there is a high probability that the defect of Taar1

caused by alterations in PC structure and function is related to

the pathogenesis of GD.

Moreover, there is evidence that oxidative processes play a role

in GD pathogenesis (104). Abalovich et al. (105) found that

hyperthyroid and GD patients showed an increase in oxidative

stress markers and a decrease in markers of the antioxidant system.

Previous studies have also revealed that hyperthyroid patients

demonstrate elevated levels of oxidative stress markers in plasma

and other tissues (106–108). Presently, there is insufficient evidence

on the effect of oxidative stress on PC, hence eventually causing GD.

Studies on ischemia/reperfusion injury have shown that, to some

degree, excessive ROS production and oxidative stress lead to the

shedding of PC on kidney epithelial cells (67), implying that

oxidative stress may damage PC in thyroid epithelial cells as well

and contribute to thyroid disease pathogenesis accordingly.
3.2 Primary cilia and
Hashimoto’s thyroiditis

Autoimmune thyroiditis, or HT, is a chronic inflammatory

autoimmune illness that uses the thyroid tissue as an antigen. The

incidence has increased considerably in recent years (109, 110).

Autoimmune thyroiditis is a cellular autoimmune illness with

apparent inflammatory infiltration that destroys the thyroid gland
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(23). In children and teenagers, it is the most prevalent cause of

goiter and acquired hypothyroidism.

Researchers proved that the frequency and length of PC

decreased significantly in experimental specimens compared to

controls. Follicular cells in HT exhibited a variety of forms and

uneven borders, which occasionally created difficulty in

distinguishing between different cells. Each cell core was invaded

by hypomorphic cilia, which occasionally resembled “volcano-like”

formations (23).

The loss of thyroid epithelial cells is a hallmark of HT. An

experiment revealed that the percentage of in situ apoptotic

thyrocytes increases in HT; thus, the apoptosis of thyroid

follicular cells plays a vital role in the pathogenesis of HT (111).

Apoptosis can be initiated in various ways and affects several

cellular processes (112). Junguee Lee et al. believed that HT is

usually associated with mitochondrial dysfunction (25). As crucial

regulators of cell death, mitochondria act by an intrinsic process

called the mitochondria-dependent pathway of apoptosis. The

intrinsic apoptotic route is normally mediated by mitochondrial

outer membrane permeabilization (MOMP), which includes the

voltage-dependent anion channel (VDAC). Moreover, VDACs

concentrate in the basal body of PC, among which VDAC1 and

VDAC3 regulate ciliogenesis negatively (113). A study found that

mice lacking PC in thyroid follicular cells showed apoptotic cell

death, resulting in altered follicular structure. Furthermore,

inhibiting ciliogenesis in thyroid cancer cell lines resulted in

VDAC1 oligomerization following VDAC1 overexpression,

leading ultimately to apoptosis. Consequently, the LOF of PC is

probably one of the potentia l factors that st imulate

apoptogenesis (114).

To summarize, HT samples showed loss of thyroid epithelial

cells caused by mitochondrial dysfunction. Furthermore, defects in

the structure and function of PC affect mitochondrial dysfunction

and apoptosis accordingly. PC, a core link in the entire process, is

closely related to HT. Although no relevant reports show that HT

may be affected by apoptosis caused by PC abnormality, it is a likely

potential mechanism that needs investigation.

As the microenvironment of AITD is clearly pro-inflammatory,

cytokines and chemokines are considered important in its

pathogenesis (109, 115). As a marker of AITD, thyroid peroxidase

antibodies (ATPO) are present in nearly all HT patients (115),

which may trigger the synthesis of autoantibodies by MHC

expression on thyrocytes and lymphocyte infiltration (116).

Especially in HT, cytokines stimulated by T and B lymphocytes

enhance the inflammatory response and production of antibodies,

which results in thyroid tissue damage by apoptosis (117).

Experiments reveal that pro-inflammatory cytokines IFN-g and

TNF-a increase the expression of the genes mentioned above

while decreasing the number of PC (23). Previous studies have

shown that IL-1 causes cilia to elongate through a mechanism

dependent on protein kinase A, indicating the significance of

inflammation in controlling PC shape and function (118). Studies

validated a decrease in miR-141 expression and associated this

decrease with the transforming growth factor beta 1 (TGF-b1)
Frontiers in Endocrinology 05
signaling pathway in HT (119); furthermore, they showed that

decreased expression of miR146b, miR-221, and miR-222 could

play a role in the development of papillary thyroid carcinoma (120).

A proposed model of the mechanisms underlying ciliary defects in

AITD showed abnormal antigen presentation in the thyroid and

breakdown of tolerance to self-antigens, leading to complex and

interrelated intrathyroidal immune processes. A combination of a

pro-inflammatory environment and increased miRNA expression

may repress the expression of ciliary-related genes, leading to

impaired ciliogenesis (23). Moreover, miRNA transfection affects

ciliary growth in thyrocytes. More critically, studies show that

aberrant miRNA expression is the foundation of immune cell

differentiation and activation (121), and the regulation between

cytokine activities and miRNA expression is bidirectional (122,

123). Moreover, the potential utilization of this pathway as a novel

therapeutic approach to treat these disorders arises from the

involvement of pro-inflammatory cytokines and miRNA targeting

in the formation of PC in thyroid cells (23).

Epithelial–mesenchymal transition (EMT) is a process that

occurs under both physiological and pathological conditions. It is

characterized by the loss of epithelial characteristics and the

acquisition of mesenchymal features by epithelial cells (124).

Recent research shows that PC deficiency triggers EMT under

resting conditions and exacerbates it under the influence of

fibrotic signals such as TGF-b (125, 126). Research data indicate

an increase in the acquisition of mesenchymal markers by thyroid

follicle cells in AITD that may contribute to the pathogenesis of

these diseases. Furthermore, EMT induction by TGF-b in thyroid

cells suggests the potential usefulness of this pathway as a novel

therapeutic strategy to treat AITD (22).
4 Primary cilia and hypothyroidism

Hypothyroidism, which may be acquired or congenital, is

related to elevated serum TSH levels and low serum free T4 and/

or free T3 levels (127). The prevalence of hypothyroidism rises with

age and is higher in women, patients with other autoimmune

diseases, and those with Down syndrome and Turner

syndrome (128). As an essential micro-organelle mediating

signaling pathways and maintaining thyroid homeostasis, PC are

speculated to be related to the pathological mechanisms underlying

hypothyroidism. However, the association has not received the

attention of researchers. The probable mechanism by which PC

influence hypothyroidism via protein and hormone levels is

discussed below.

Recent research indicates that PC play a significant role in

regulating the processing and Gli protein function (129). Presently,

the Hh pathway is considered a bona fide ciliary pathway, and PC

mediate the interaction between stroma and cancer cells, the defects

of which may interfere with the interaction that mediates the

aberrant activation of Hh pathways. Gli3 is stimulated by the Shh

ligand for transport from PC to the nucleus, where Hh target genes

are activated. Therefore, Glis3 may be part of the signal
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transduction pathway mediated by PC, which requires activation

before translocation to the cytoplasm and nucleus (130). Known as

an anterograde IFT motor, KIF3a is necessary for Gli3 activator

formation and proteolysis (131). Glis3 expression is restricted to

thyroid follicular cells. A previous study clarified that TH

biosynthesis depends on the expression of a specific group of

genes directly regulated by Glis3, particularly the two iodide

transporter genes, NIS and PDS (132). In Glis3 mutant mice,

TSH were found increased, while TH were observed decreased

(133), and nkx2.4b and pax2a expression, which are important

transcription factors regulating thyroid development, exhibited a

decrease in Glis3-deficient zebrafish (134). Humans and mice with

loss of Glis3 develop congenital or neonatal hypothyroidism and

have a reduced life span (8, 135, 136). Recent studies have identified

a link between Glis3 missense mutations and thyroid dysgenesis, as

well as the association between the Glis3 variation, rs1571583, and

thyroid malfunction regulation (133). Several findings revealed that

thyroid dyshormonogenesis, rather than thyroid dysgenesis, was

responsible for hypothyroidism in animals lacking Glis3 (137).

Although the present research on the mechanism underlying the

defects in PC that influence thyroid function and cause

hypothyroidism is limited, it can be inferred that PC interact with

Glis3 via the signaling pathway and result in thyroid dysfunction.

The ciliary pocket located on PC is an invagination of cytoplasm,

where the receptor-mediated endocytosis takes place (138). Tg

endocytosis, which has a critical effect on TH release, is primarily

mediated by low-density lipoprotein receptor protein 2 (LRP2)/

megalin situated at PC and regulated by TSH (139–141). Tg uptake

triggered by TSH is a key factor of TH and Tg release into the blood
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circulation (142–144). Hypothyroidism in megalin knockout mice is

accompanied by reduced free T4 (fT4) and serum Tg levels and

noticeably higher serum TSH levels (145). A study showed that

defective PC cause a significant loss of LRP2/megalin with high TSH

levels and colloid Tg depletion (5). Consequently, damaged PC may

affect the normal function of LRP2/megalin and result in Tg

abnormality, causing hypothyroidism.

There has been no research on the length and frequency

alterations in PC. Thus, restoring normal PC formation and

shape is probably a promising treatment strategy for

hypothyroidism, which requires further study.
5 Primary cilia and thyroid nodule

TN is a common clinical disease with one or more structurally

abnormal masses in the thyroid gland. It is usually benign (146), with

palpable nodules in 5% of the population, especially older patients

(147, 148); 5%–15% is proved malignant (149, 150), while the data

increase to 35% by positron emission tomography scanning (151).

Thyroid follicular cells are the primary source of TN (152). The

follicles in nodular hyperplastic thyroid tissue are highly

heterogeneous in size and morphology, ranging from small

follicles with little colloid and high columnar thyrocyte linings to

very large follicles with abundant colloid and flat epithelium, which

probably is a typical pattern of nodular hyperplasia (153, 154).

Fernández-Santos elucidated that trace amine-associated receptor

1 (Taar1), the putative receptor of thyronamines, is located in PC on

thyroid follicles and might play a role in regulating cathepsin-
FIGURE 1

The mechanisms of PC mutations that cause thyroid diseases. PC play an essential role in mediating signaling pathways and sustaining thyrocyte
homeostasis in various thyroid diseases. Impaired function and structure of PC affect pathways and proteins associated with TC aggressiveness, and
it mediates GD by impairing Taar1 and HT by disrupting apoptosis and affecting normal miRNA expression. Defective PC also result in abnormal
secretion of TSH and TH, causing hypothyroidism. Further studies are necessary due to insufficient experimental and clinical evidence on the
relationship between TN and PC.
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mediated proteolysis of Tg and, consequently, TH synthesis (100).

They found that, in TN cells, the average PC length and frequency in

follicular cells decreased considerably. Although follicles had

noticeable size disparities, there was no relation between follicular

size and PC mutations (99).

The varied follicular patterns also showed differences in

ciliogenesis, with a decreased PC frequency in areas with changed

follicles compared to those with predominant normal-appearance

follicles. In murine thyroid follicles, LOF of PC causes aberrant and

irregular follicles that finally give rise to papillary and solid

proliferative nodules (5).

We acknowledge the various discussions on the relationship

and interactions between PC and TN; however, researchers have

still not verified this hypothesis due to insufficient experimental and

clinical evidence to support the conjecture at present. Therefore, the

relationship between TN and PC needs further investigation.
6 Conclusions and prospect

Based on the exposition described above, PC play an essential role

in mediating signaling pathways and sustaining thyrocyte

homeostasis in various thyroid diseases. Impaired function and

structure of PC affect pathways and proteins associated with TC

aggressiveness. Furthermore, it mediates GD by impairing Taar1 and

HT by disrupting apoptosis and affecting normal miRNA expression.

Defective PC also result in abnormal secretion of TSH and TH,

causing hypothyroidism. Further studies are necessary due to

insufficient experimental and clinical evidence on the relationship

between TN and PC. Thus, there is a strong possibility that PC is a

potential target in thyroid diseases, and studies on the probable effects

of impaired functionality and structure of PC on proteins, signaling

pathways, and genes may reveal the mechanisms underlying thyroid

disease pathogenesis in the future (Figure 1). Restoring PC is

probably a promising therapeutic strategy in clinical settings. To

assess the role of PC in the incidence and progression of thyroid

disorders, preclinical and clinical research is necessary. Thus, further

studies are required to explore the pathological mechanism
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underlying impaired function and structure of PC, provide new

research directions for thyroid disease treatment, and develop a

broad idea for other diseases related to PC.
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104. Zarković M. The role of oxidative stress on the pathogenesis of graves' Disease.
J Thyroid Res (2012) 2012:302537. doi: 10.1155/2012/302537

105. Abalovich M, Llesuy S, Gutierrez S, Repetto M. Peripheral parameters of
oxidative stress in graves' Disease: the effects of methimazole and 131 iodine treatments.
Clin Endocrinol (Oxf) (2003) 59(3):321–7. doi: 10.1046/j.1365-2265.2003.01850.x

106. Komosinska-Vassev K, Olczyk K, Kucharz EJ, Marcisz C, Winsz-Szczotka K,
Kotulska A. Free radical activity and antioxidant defense mechanisms in patients with
hyperthyroidism due to graves' Disease during therapy. Clin Chim Acta (2000) 300(1-
2):107–17. doi: 10.1016/s0009-8981(00)00306-5

107. Bianchi G, Solaroli E, Zaccheroni V, Grossi G, Bargossi AM, Melchionda N,
et al. Oxidative stress and anti-oxidant metabolites in patients with hyperthyroidism:
effect of treatment. Horm Metab Res (1999) 31(11):620–4. doi: 10.1055/s-2007-978808

108. Mezosi E, Szabo J, Nagy EV, Borbely A, Varga E, Paragh G, et al. Nongenomic
effect of thyroid hormone on free-radical production in human polymorphonuclear
leukocytes. J Endocrinol (2005) 185(1):121–9. doi: 10.1677/joe.1.05968
frontiersin.org

https://doi.org/10.1371/journal.pone.0038838
https://doi.org/10.1038/sj.bjc.6601540
https://doi.org/10.1158/0008-5472.Can-07-1887
https://doi.org/10.3892/etm.2012.729
https://doi.org/10.1016/j.bbadis.2017.05.004
https://doi.org/10.1016/j.bbadis.2017.05.004
https://doi.org/10.1158/1535-7163.Mct-10-0095
https://doi.org/10.1158/1535-7163.Mct-11-0762
https://doi.org/10.1016/j.cub.2006.12.037
https://doi.org/10.1089/105072503321669875
https://doi.org/10.1158/1078-0432.Ccr-10-0318
https://doi.org/10.1158/1078-0432.Ccr-10-0318
https://doi.org/10.1097/JTO.0b013e3181d95dd4
https://doi.org/10.1158/1078-0432.Ccr-10-2946
https://doi.org/10.1515/bc.2010.109
https://doi.org/10.1016/j.bbamcr.2020.118846
https://doi.org/10.1186/1471-2091-10-23
https://doi.org/10.1186/1471-2091-10-23
https://doi.org/10.1055/a-1080-2969
https://doi.org/10.1172/jci15990
https://doi.org/10.1016/j.biochi.2019.07.010
https://doi.org/10.1016/j.biochi.2019.07.010
https://doi.org/10.3390/ijms24119292
https://doi.org/10.1534/g3.113.006338
https://doi.org/10.1534/g3.113.006338
https://doi.org/10.1152/ajprenal.00427.2012
https://doi.org/10.1096/fj.201700909R
https://doi.org/10.21873/invivo.11760
https://doi.org/10.18632/oncotarget.17180
https://doi.org/10.1016/j.tice.2014.04.005
https://doi.org/10.3109/00016489509121871
https://doi.org/10.1530/erc-15-0555
https://doi.org/10.1016/j.bcp.2020.113906
https://doi.org/10.3803/EnM.2018.33.2.175
https://doi.org/10.1038/s41586-020-2436-0
https://doi.org/10.1038/s41586-020-2436-0
https://doi.org/10.1080/08916930410001705394
https://doi.org/10.1016/j.endonu.2016.04.003
https://doi.org/10.1016/j.endonu.2016.04.003
https://doi.org/10.1210/jc.2006-1402
https://doi.org/10.1210/jc.2006-1402
https://doi.org/10.1111/j.1365-2265.1995.tb01894.x
https://doi.org/10.1111/j.1365-2265.1995.tb01894.x
https://doi.org/10.1073/pnas.1323292111
https://doi.org/10.1056/NEJMra1010172
https://doi.org/10.1089/thy.2018.0401
https://doi.org/10.3389/fphar.2018.00221
https://doi.org/10.3389/fphar.2018.00221
https://doi.org/10.1210/er.2013-1087
https://doi.org/10.1002/cphy.c150027
https://doi.org/10.1159/000434717
https://doi.org/10.1155/2012/302537
https://doi.org/10.1046/j.1365-2265.2003.01850.x
https://doi.org/10.1016/s0009-8981(00)00306-5
https://doi.org/10.1055/s-2007-978808
https://doi.org/10.1677/joe.1.05968
https://doi.org/10.3389/fendo.2023.1306550
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tian et al. 10.3389/fendo.2023.1306550
109. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P.
Autoimmune thyroid disorders. Autoimmun Rev (2015) 14(2):174–80. doi: 10.1016/
j.autrev.2014.10.016

110. Leese GP, Flynn RV, Jung RT, Macdonald TM, Murphy MJ, Morris AD.
Increasing prevalence and incidence of thyroid disease in tayside, scotland: the thyroid
epidemiology audit and research study (Tears). Clin Endocrinol (Oxf) (2008) 68
(2):311–6. doi: 10.1111/j.1365-2265.2007.03051.x

111. Lin JD. The role of apoptosis in autoimmune thyroid disorders and thyroid
cancer. Bmj (2001) 322(7301):1525–7. doi: 10.1136/bmj.322.7301.1525

112. Arscott PL, Baker JR Jr. Apoptosis and thyroiditis. Clin Immunol
Immunopathol (1998) 87(3):207–17. doi: 10.1006/clin.1998.4526

113. Majumder S, Cash A, Fisk HA. Non-overlapping distributions and functions of
the vdac family in ciliogenesis. Cells (2015) 4(3):331–53. doi: 10.3390/cells4030331

114. Lee J, Park KC, Sul HJ, Hong HJ, Kim KH, Kero J, et al. Loss of primary cilia
promotes mitochondria-dependent apoptosis in thyroid cancer. Sci Rep (2021) 11
(1):4181. doi: 10.1038/s41598-021-83418-3
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