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Combining bioinformatics and
machine learning algorithms to
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biomarkers and pathways in
COVID-19 convalescence and
diabetes mellitus
Jinru Shen1†, Yaolou Wang1†, Xijin Deng2

and Si Ri Gu Leng Sana3*

1The First Clinical Medical School, Harbin Medical University, Harbin, China, 2Department of
Anaesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,
3Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University,
Harbin, China
Background: Most patients who had coronavirus disease 2019 (COVID-19)

fully recovered, but many others experienced acute sequelae or persistent

symptoms. It is possible that acute COVID-19 recovery is just the beginning

of a chronic condition. Even after COVID-19 recovery, it may lead to the

exacerbation of hyperglycemia process or a new onset of diabetes mellitus

(DM). In this study, we used a combination of bioinformatics and machine

learning algorithms to investigate shared pathways and biomarkers in DM and

COVID-19 convalescence.

Methods: Gene transcriptome datasets of COVID-19 convalescence and

diabetes mellitus from Gene Expression Omnibus (GEO) were integrated

using bioinformatics methods and differentially expressed genes (DEGs) were

found using the R programme. These genes were also subjected to Gene

Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis to find potential pathways. The

hub DEGs genes were then identified by combining protein-protein

interaction (PPI) networks and machine learning algorithms. And

transcription factors (TFs) and miRNAs were predicted for DM after

COVID-19 convalescence. In addition, the inflammatory and immune

status of diabetes after COVID-19 convalescence was assessed by single-

sample gene set enrichment analysis (ssGSEA).

Results: In this study, we developed genetic diagnostic models for 6 core

DEGs beteen type 1 DM (T1DM) and COVID-19 convalescence and 2 core

DEGs between type 2 DM (T2DM) and COVID-19 convalescence and

demonstrated statistically significant differences (p<0.05) and diagnostic

validity in the validation set. Analysis of immune cell infiltration suggests

that a variety of immune cells may be involved in the development of DM

after COVID-19 convalescence.
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Conclusion: We identified a genetic diagnostic model for COVID-19

convalescence and DM containing 8 core DEGs and constructed a

nomogram for the diagnosis of COVID-19 convalescence DM.
KEYWORDS

COVID-19 convalescence, diabetes mellitus (DM), differentially expressed genes
(DEGs), gene ontology (GO), protein-protein interaction (PPI), hub gene,
machine learning
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), the virus responsible for coronavirus disease 2019

(COVID-19) worldwide pandemic, can cause mild to severe

respiratory disease and non-respiratory symptoms (1). This virus

can be rapidly transmitted, infection is associated with a relatively

high mortality rate, and the virus can often evade the host’s immune

response (2–4). Patient prognosis and long-term complications

have become an increasingly important issue. In particular, an

estimated 87.4% of patients who recovered from COVID-19 had at

least 1 persistent symptom, especially in the neurological and

respiratory systems (5).

Diabetes mellitus (DM) is a group of metabolic disorders

characterized by chronic hyperglycemia that have multiple

etiologies, all of which manifest as defects in insulin secretion

and/or utilization. As of 2010, the global prevalence of DM in

adults (20 to 79-years-old) was 6.4%, corresponding to 285 million

cases. This prevalence was predicted to increase to 7.7% by 2030

(corresponding to 439 million adults), with the number of affected

adults increasing by 69% in developing countries and by 20% in

developed countries (6). DM is often divided into four categories

according to its cause: Type 1 DM (T1DM), Type 2 DM (T2DM),

gestational DM (GDM), and other types of DM (7). The destruction

of pancreatic beta cells leads to the development of T1DM, and this

type of diabetes often leads to an absolute deficiency of insulin.

T2DM is characterized by insulin resistance, and decreased insulin

secretion and decreased function of pancreatic beta cells may be the

initiating factor in most cases. Although short-term hyperglycemia

has no serious effects on the body, long-term hyperglycemia can

lead to chronic changes, such as microvascular complications (e.g.,

diabetic nephropathy, diabetic retinopathy, and neuropathy) and

devastating macrovascular complications, such as cardiovascular

diseases, that can have irreversible and even fatal effects (8).

Many previous studies showed significant increases in the

prevalence, severity, and mortality of COVID-19 in patients with

DM compared to non-diabetic patients, suggesting an association of

COVID-19 severity with poor glycemic control (9, 10). Other

studies suggested that COVID-19 may predispose infected
02
individuals to hyperglycemia and promote the development of

DM (11, 12).

SARS-CoV-2 binds to angiotensin-converting enzyme 2

(ACE2), and this protein is expressed in the lungs and many

other organs, including the pancreas (13). This suggests that new-

onset hyperglycemia and DM in patients with COVID-19 may be

due to a direct attack of SARS-CoV-2 on islet b-cells in the

pancreas. Therefore, it is crucial to identify the common

biomolecules and pathways that are altered in patients with DM

and patients undergoing convalescence following COVID-19. These

shared biomolecules may have potential as biomarkers or

therapeutic targets.

In this study, we used bioinformatics and machine learning

algorithms to identify differentially expressed genes (DEGs) and

predict altered molecular regulatory networks in patients

undergoing convalescence from COVID-19, patients with T1DM,

and patients with T2DM. Our findings may provide a basis for

development of new measures that could be used for disease

prevention and treatment in these patients.
Materials and methods

Acquisition of chip data

Data from the National Center for Biotechnology Information

(NCBI) Gene Expre s s ion Omnibus (GEO) (ht tps : / /

www.ncbi.nlm.nih.gov/geo) were used to determine similarities of

gene expression in patients undergoing COVID-19 convalescence

(1, 3, and 6 months after hospital discharge), patients with T1DM,

and patients with T2DM, with the search restricted to humans

(Table 1). The GSE227116 dataset was generated by RNA

sequencing (RNA-seq) of whole blood, and contains data from 75

samples: 65 patients after COVID-19 convalescence and 10 healthy

donors. In particular, the study group was the population who had

already recovered from COVID-19 infection. This sample was

selected for follow-up analysis to investigate the long-term

alterations after COVID-19 convalescence. For analysis of T1DM,

three microarray datasets of peripheral blood mononuclear cells
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(PMBCs; GSE193273, GSE29142, and GSE55098) were selected

(Table 1). GSE193273 contains data from 20 T1DM patients and

20 healthy controls; GSE29142 contains data from 9 T1DM patients

and 10 healthy controls; and GSE55098 contains data from 12

T1DM patients and 10 healthy controls (Table 1). Similarly, for

analysis of T2DM, three microarray datasets of PMBCs

(GSE163980, GSE156993, and GSE9006) were selected; these data

consist of gene expression data from 29 T2DM patients and 35

healthy controls.
Data processing and differential
expression analysis

For the dataset of COVID-19 convalescent patients

(GSE227116), the limma package in R software(version 4.3.0) was

used to identify changes in gene expression (fold change ≥ 1.2, |log2
(FC)| ≥ 0.263) (14, 15). All P-values were adjusted using the

Benjamini-Hochberg correction, and the false discovery rate

(FDR) threshold for DEGs was 0.05. Due to factors such as

theoretical approximations, methodological difficulties, limitations

in the sensitivity and resolving power of experimental instruments,

instability of the surrounding environment, limitations in the

observer’s ability to discriminate between senses, and variability

in technical proficiency, there will always be a deviation between the

measurement results and the true value of the measurement. The

problem of measurement error is equally present in this study. For

analysis of the T1DM and T2DM datasets, the ComBat package was

first used to process the gene expression data to eliminate batch

effects (16). Then, the differentially expressed genes were obtained

using the limma package in R software, as described above, and a

heat map was generated (17).
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Gene ontology and pathway
enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) databases were used to analyze gene-related

functions. The GO database classifies gene function as cellular

component (CC), molecular function (MF), and biological process

(BP) (18), and the KEGG database provides information about the

related pathways. The Clusterprofiler package in R software was used

for subsequent analysis and identification of information about gene

function and potential pathways (19). The conditional filtering used a

P-value cutoff of 0.05, the ggplot2 package in R software was used for

visualizing BP in the GO enrichment analysis, and the graph package

in R was used for visualizing the KEGG pathway.
Protein-protein interaction
network analysis

The filtered DEGs were uploaded to the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING) database

(https://string-db.org/) (20). The minimum required interaction

score was set at 0.4 (medium confidence), and the disconnected

nodes were hidden to construct a protein-protein interaction

(PPI) network. Cytoscape software was used for network

display, layout, and query, to integrate the biological networks

and molecular information (such as gene expression and

genotype) in a visual environment, and to link these networks

with functional annotation databases (21). The resulting PPI

networks were imported into Cytoscape software version 3.9.1,

and the DEGs were ranked and filtered using the Matthews

correlation coefficient (MCC) algorithm.
TABLE 1 Training and validation datasets used for analysis.

Clinical status Accession No. Source Platform Cases : Controls

COVID-19 convalescence GSE227116 Whole blood GPL16791 65:10

Training

T1DM GSE193273 PBMCs GPL20844 20:20

T1DM GSE29142 PBMCs GPL13507 9:10

T1DM GSE55098 PBMCs GPL570 12:10

T2DM GSE156993 PBMCs GPL570 12:6

T2DM GSE163980 PBMCs GPL20115 5:5

T2DM GSE9006 PBMCs GPL96 24:12

Validation

T1DM GSE33440 PBMCs GPL6947 16:6

T2DM GSE41762 pancreatic islets GPL6244 20:57

COVID-19 GSE166253 PBMC GPL20795 6:10
PMBCs, peripheral blood mononuclear cells; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
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Transcription factors and miRNAs

To explore the potential impact of core DEGs on subsequent

molecular regulatory mechanisms, predicted transcription factors

(TFs) and miRNAs from databases were obtained from the

networkanalyst (https://www.networkanalyst.ca/). These data were

from JASPAR, an open source database of TF binding sites in the

form of position frequency matrices (PFMs) and TF flexible models

(TFFMs) that record DNA binding preference information of TFs

in six major species (22). This database identified topologically

credible TFs. The TF-gene relationships were then imported into

Cytoscape software version 3.9.1 to construct a visual

regulatory network.

The miRTarBase database is a specialized collection of

microRNA-mRNA targeting relationships (MTI, MicroRNA-

Target Interactions), and all of its data were experimentally

validated (23). This database was used to obtain DEG-associated

miRNAs. miRNAs were retained if they interacted with more than

two DEGs for construct ion of a visual miRNA-gene

interaction network.
Construction and validation of a diagnostic
DEG signature

Two machine learning algorithms were used to screen for

shared changes in biomarkers in the two pair-wise comparisons

(COVID-19 convalescence + T2DM, COVID-19 + T1DM). Elastic

Net Regressions is a regularization algorithm that combines the

features of Lasso regression and ridge regression with the

advantages of sparsity and variable selection. When multiple

features are related, Lasso regression may only randomly choose

one of them, ridge regression can choose all of the features. By

combining these two regularization methods using elastic net

regressions, we are able to bring together the strengths of both

methods (24). The shrinkage regularization parameter l, which
controls the complexity of the model, was determined by 10-fold

cross-validation of the partial likelihood deviance and the attendant

‘1 standard error rule’. The elastic net used 10-fold cross-validation

and fitted a linear model using a penalty score (a = 0.9). The elastic

net algorithm for variable reduction and selection utilized the

glmnet package in R (25); the independent variables were the

normalized expression matrix of DEGs, and the dependent

variables were the presence or absence of disease in the sample

using a 10-fold cross validation. Support vector machine-recursive

feature elimination (SVM-RFE) was used to identify the optimal

hyperplane that partitioned the training dataset and maximized the

geometric interval (26). This calculation used a 5-fold cross

validation within the e1071 package in R (27). The top-ranked

DEGs were selected from PPI network identification and the

intersection of the two machine learning algorithms. Then,

column line plots and receiver operating characteristic (ROC)

analysis with area under the curve (AUC) values were used to

assess the model. The dataset was selected from an extensive search

in the GEO database. The selection criteria for the DM validation

set were as follows: (a) The datasets are all of the type of expression
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profiling by array. (b) Both contain patients with diagnosed diabetes

and controls from healthy people. External validation datasets in

GEO were used for model validation: GSE33440 (16 T1DM and 6

healthy individuals) and GSE41762 (20 T2DM and 57 healthy

individuals). The COVID-19 convalescence validation dataset

GSE166253 (6 convalescent patients, and 10 healthy controls) was

obtained from an extensive search in GEO.
Evaluation and correlation of immune
cell infiltration

Single-sample gene set enrichment analysis (ssGSEA), a method

commonly used for analysis of immune cell infiltration, was used to

estimate the relative enrichment of a gene set in each sample by

comparing the gene expression data of a sample with a specific

immune cell gene set and to estimate the relative abundance of

different immune cell types in each sample (28).The immune cell

marker genes were from Supplementary Table S1 in the study of

Bindea et al., which provided information on 24 immune cells (29).

The immune infiltration status of each sample was then obtained

using ssGSEA for two hub DEGs (CD3G and YES1) in the T1DM

and COVID-19 convalescence datasets, and two hub DEGs (PTRF

and EHD1) in the T2DM and COVID-19 convalescence datasets.
Results

Removal of batch effects

Different datasets can have statistically significant differences in

the expression of the same genes in patients with the same disease due

to differences in experimental reagents, operators, processing time,

laboratory equipment, and other factors (30). We therefore used the

ComBat function in the sva package to remove these batch effects and

achieve a convergence in the distribution of expression values for the

different datasets (Figure 1). Principal component analysis (PCA) of

the sample distributions in the three T1DM datasets and the three

T2DM datasets before and after the elimination of the batch effect

showed that this method was successful (Figure 2A).
Similar DEGs in the different datasets

We analyzed 75 samples from the RNA-seq dataset (GSE227116)

of controls and subjects with COVID-19 convalescence using the

limma package in R software. There were 3436 DEGs, with 1724 up-

regulated genes and 1712 down-regulated genes (Figure 2B). After

removing batch effects, we used the same method for analysis of the

three T1DM datasets and the three T2DM datasets. There were 81

samples in the T1DM datasets (41 cases and 40 controls), and the

analysis identified 802 DEGs (Supplementary Figure 1A), with 432 up-

regulated genes and 370 down-regulated genes (Figure 2C). There were

64 samples in the T2DM datasets (29 cases and 35 controls), and the

analysis identified 782 DEGs (Supplementary Figure 1B), with 406

upregulated genes and 376 genes downregulated genes (Figure 2D).
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We used Venn diagrams to compare the DEGs in the COVID-19

convalescence, T1DM, and T2DM datasets (Figure 2E). T1DM and T2DM

contained 38 co-up-regulated DEGs and 21 co-down-regulated DEGs

(Supplementary Table 1). The COVID-19 convalescence and T1DM data

had 79 of the same DEGs (32 up-regulated genes and 47 down-regulated

genes). The COVID-19 convalescence and T2DM data had 61 of the same

DEGs (38 up-regulated genes and 23 down-regulated genes).
KEEG enrichment analysis

We performed GO and KEGG enrichment analysis of the DEGs to

identify the main biological processes and pathways in T2DM, T1DM,

and COVID-19 convalescence. The upregulated genes in T1DM and

COVID-19 convalescence were mainly clustered in “hemoglobin

metabolic process”, “interleukin-18 production”, “iron ion

homeostasis”, and “positive regulation of T cell differentiation”; the

downregulated genes were mainly involved in “regulation of neuron

projection development”, “steroid metabolic process”, “activation of

immune response”, and “other biological processes” (Figure 3A,

Supplementary Table 2). KEGG enrichment analysis demonstrated

enrichment in “human T-cell leukemia virus 1 infection (HTLV-1)”

and “Cholinergic synapse” pathways (Figure 4A).

The upregulated genes in T2DM and COVID-19 convalescence

included “Rho protein signal transduction”, “neutral lipid metabolic
Frontiers in Endocrinology 05
process”, and “regulation of cellular ketone metabolic process”; the

downregulated genes included “regulation of nervous system

development”, “response to alcohol”, and “regulation of GTPase activity”

(Figure 3B, Supplementary Table 2). KEGG enrichment analysis

demonstrated enrichment in “Tight junction”, “Adherens junction”,

“Rap1 signaling pathway”, and “Cell adhesion molecules” (Figure 4B).
Construction of the PPI network

We then separately entered the 79 DEGs from comparison of the

T1DM and COVID-19 convalescence datasets and the 61 DEGs from

comparison of the T2DM and COVID-19 convalescence datasets into

the STRING database to determine their relationships. The average node

degree is the average value of the interaction of proteins in the network. It

is used to measure the strength of the interaction relationship between

proteins. For the first comparison (T1DM + COVID-19 convalescence),

the PPI network contained 77 points, 21 edges, and the average node

degree was 0.545 (Figure 4A). For the second comparison (T2DM +

COVID-19 convalescence), the PPI network contained 61 nodes, 18

edges, and the average node degree was 0.59 (Figure 4B).

We then performed PPI network analysis using Cytoscape software

with the cytoHubba plugin. Comparison of the T1DM and COVID-19

convalescence datasets indicated the 11 major DEGs were CD3G,

CAMK4, PIK3R1, YES1, CD69, ALAS2, STMN1, MYO1C, NCR3,
FIGURE 1

Workflow of bioinformatics and machine learning analyses used in the present study.
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TLN1, PRKACB (Figure 5A) sorting by degree value. Comparison of

the T2DM and COVID-19 convalescence datasets indicated the 8

major DEGs were CDH1, ALAS2, KLF4, ITGA6, DYSF, PTRF, EHD1,

and FSTL1 (Figure 5B) sorting by degree value. These are considered to

be genes with a high degree of gene-gene interaction and they have a

strong association with DEGs. These results suggest that future studies

that focus on these DEGs may provide new therapeutic strategies for

disease prevention or treatment in these patients.
Determination of regulatory signatures

We then used the JASPAR database to analysis the relationships

of TFs in the different datasets (Figures 6A, B). Cytoscape identified

58 shared TFs in a comparison of the T1DM and COVID-19

convalescence datasets, and 38 shared TFs in a comparison of the

T2DM and COVID-19 convalescence datasets. Analysis of gene-

miRNA relationships using the miRTarBase database (Figures 6C,
Frontiers in Endocrinology 06
D) identified 17 shared miRNAs in a comparison of the T1DM and

COVID-19 convalescence datasets, and 6 shared miRNAs in a

comparison of the T2DM and COVID-19 convalescence datasets.

Each of these miRNAs was associated with two or more DEGs.
Construction of a prognostic model

We also used elastic net regression to analyze the DEGs from the

two comparisons. The penalty factor l for the comparison of T1DM

and COVID-19 convalescence was 0.01 (log(l) = −4.54) and the

regression identified 30 genes (Figure 7A). The penalty factor l for

the comparison of T2DM and COVID-19 convalescence was 0.06 (log

(l) = −2.81), and the regression identified 17 genes (Figure 7B). The

input of SVM algorithmwas 79 and 61 DEGs that were up-regulated or

down-regulated at the same time in COVID-19 convalescence and T1/

2DM, and other non-essential genes were not included. The results

from the SVM algorithm (Figure 7C) showed that the highest accuracy
A B

D

E

C

FIGURE 2

(A) Principal component analysis before removal of batch effects (top), and after removal of batch effects (bottom). (B) Volcano map of differentially
expressed genes in the COVID-19 convalescence and the healthy population datasets. (C) Heat maps of differentially expressed genes in the T1DM
and healthy population datasets. (D) Heat maps of differentially expressed genes in the T2DM and healthy population datasets. (E) Venn diagrams of
shared differentially expressed genes from comparison of COVID-19 convalescence + T2DM, and of COVID-19 convalescence + T1DM.
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(90.1%) was achieved at gene number 73 in the T1DM and COVID-19

convalescence datasets. The mean accuracy with standard deviation

was 86.49 ± 4.72% (Supplementary Table 3, Supplementary Figure 2).

This represents that after ranking the features and selecting the most

important features for classification, when the number of genes is 73, its

accuracy in high-dimensional space is the highest, which can effectively

separate different categories in the datasets. The highest accuracy

(85.5%) was at gene number 59 in the T2DM and COVID-19

convalescence datasets (Figure 7D). The mean accuracy with

standard deviation was 80.21 ± 4.66% (Supplementary Table 3,

Supplementary Figure 3). We then identified the intersection of

genes screened by the two machine learning algorithms with the top-

ranked genes of the MCC algorithm in the PPI network (Figure 7E).
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They are considered to be the most prominent hub DEGs affecting DM

and COVID-19 convalescence. The results indicated six hub DEGs for

comparison of T1DM and COVID-19 convalescence (CD3G, YES1,

ALAS2,MYO1C,NCR3, PRKACB) and two hub DEGs for comparison

of T2DM and COVID-19 convalescence (PTRF, EHD1).

We used the rms package to construct column lineage maps of the

signature genes from the two comparisons (Figures 8A, B), and used

ROC curves to assess the performance of the prediction model. They

are all based on combinations of training datasets. The AUC was 0.916

for prediction of T1DM based on COVID-19 convalescence data

(Figure 8C), and the AUC was 0.759 for prediction of T2DM based

on COVID-19 convalescence data (Figure 8D). We then used two

other datasets (GSE33440 for T1DM and GSE41762 for T2DM) from
A

B

FIGURE 3

GO analysis of DEGs in T1DM and COVID-19 convalescence (A) and in T2DM and COVID-19 convalescence (B), showing genes enriched in
biological processes that were upregulated (left, red) and down-regulated (right, blue).
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the GEO database to construct ROC curves and validate the model.

The AUC value in the validation analysis was 0.854 for prediction of

T1DM data (Figure 8E) and 0.734 for prediction of T2DM data

(Figure 8F). Similarly, we constructed predictive models with 6 hub

DEGs for T1DM and 2 hub DEGs for T2DM in the COVID-19

convalescence validation set, both with an AUC value of 1.0

(Supplementary Figure 4).
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Correlations of hub DEGs and immune
cell infiltration

We analyzed the relationship of immune cell infiltration with

two hub DEGs (CD3G and YES1) in the T1DM and COVID-19

convalescence data, and with two other hub DEGs (PTRF and

EHD1) in the T2DM and COVID-19 convalescence data. The
A

B

FIGURE 4

(A) KEGG pathway enrichment analysis of T1DM and COVID-19 convalescence (A) and T2DM and COVID-19 convalescence (B).
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results showed that the expression of CD3G had a positive

correlation with the infiltration of T cells (r = 0.69, p < 0.01,

Figure 9A) and the expression of YES1 had a positive correlation

with the infiltration of CD8+ T cells (r = 0.44, p < 0.01, Figure 9B).

PTRF expression had a negative correlation with cytotoxic cell

infiltration (r = −0.3, p = 0.01, Figure 9C). EHD1 expression had a

low correlation with immunocyte (r = 0.25, p = 0.05,

Supplementary Figure 5).
Discussion

COVID-19 continues to have a high worldwide prevalence, and

a growing body of evidence indicates it can lead to

pathophysiological changes in glucose metabolism. New-onset

diabetes is the most common COVID-19 comorbidity, and these

patients often experience a dramatic deterioration and poor

prognosis (31). Therefore, identification of the genes and

pathways that are altered after COVID-19 convalescence is

essential for understanding the molecular basis of DM in these

patients. In this study, we used a bioinformatics approach to

identify potential biomarkers of new-onset DM in patients after

COVID-19 convalescence.

We identified 79 of the same DEGs in whole blood samples of

patients undergoing COVID-19 convalescence and in PMBC

samples of T1DM patients, with 32 up-regulated genes and 47

down-regulated genes. We also performed KEGG enrichment

analysis of these shared DEGs. GO analysis showed that the

upregulated DEGs were mainly associated with hemoglobin

metabolic processes, production of inflammatory substances, and

homeostasis of metal ions, and the down-regulated DEGs were

mainly associated with activation of immune responses and

metabolism of in vivo substances. Previous research reported an

increased responsiveness of lymphocytes in T1DM, and disruption

of immune homeostasis is a major problem in diabetes, consistent

with our findings (32). Our KEGG analysis showed that most of

these genes were enriched in the HTLV-1 infection pathway and the

cholinergic synaptic pathway. Although genes in the HTLV-1

infection pathway had the greatest enrichment, there is no

experimental evidence that COVID-19 is significantly associated
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with HTLV-1. However, a clinical cross-sectional study reported

that HTLV-1 patients with a high proviral load were more likely to

develop DM and chronic kidney disease (33). Therefore, we

speculate COVID-19 convalescence may activate the HTLV-1

infection pathway by altering T cells, thus promoting the

development of DM. There is evidence that cholinergic synapses

are altered in patients with different in neurological disorders, and

that activation of the parasympathetic nervous system in the

pancreas increases plasma insulin levels and improves glucose

tolerance, but activation of the sympathetic nervous system in the

pancreas has the opposite effect (34). In agreement, our results

demonstrated that this pathway plays a crucial role in the

pathogenesis of DM during COVID-19 convalescence.

These results led us to construct a PPI network and use two

machine learning algorithms to identify diagnostic biomarkers that

were present in T1DM and COVID-19 convalescence: CD3G, YES1,

ALAS2, MYO1C, NCR3, and PRKACB. Among these genes, CD3G

and YES1 interacted with most of the other genes. More specifically,

these two genes were both down-regulated in COVID-19

convalescence and DM, and we identified them as the most

important hub DEGs. CD3G functions in T cell activation,

signaling, and regulation of T cell receptor (TCR) expression, and

defects in this gene result in a defective T cell response to mitogenic

signals (35). Several recent bioinformatics studies found that CD3G

is closely associated with tumors, such as cervical cancer and triple-

negative breast cancer (36, 37), and with immune system alterations

that occur during Sjögren’s disease (38). CD3G is an isoform of the

T cell transmembrane protein CD3 antigen, and occurs as a CD3G/

CD3E heterodimer, which forms a TCR-CD3 complex with the

alpha and beta chains of the TCR. Specific MHC peptide complexes

that are produced by antigen presenting cells (APC) can form

complexes with TCR-CD3 and induce activation of T cells. Down-

regulation of CD3G can lead to compromised immune function,

and may induce a variety of autoimmune diseases (39).

YES1 is a non-receptor tyrosine kinase that functions in

GLUT4-mediated glucose transport and is in the SRC family of

kinases (SFK). The SFK regulates a variety of cellular processes and

has an important role in maintaining cellular homeostasis. The

unique serine/threonine phosphorylation domain in YES1 regulates

cell cycle progression, and this gene has high expression in a variety
A B

FIGURE 5

(A) PPI network analysis of T1DM and COVID-19 convalescence (A) and T2DM and COVID-19 convalescence (B).
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of tumors, including non-small cell lung cancer (40), gastric cancer

(41), ovarian cancer (42), and breast cancer (43), and is therefore

considered a novel therapeutic target and biomarker for cancer (44).

YES1 is associated with several receptor tyrosine kinases (RTKs;

EGFR, CSF1R, and SCFR), G protein-coupled receptors (P2RY2

and AT1R), and cytokine receptors (IL11, CD95, and GM-CSF).

Previous research demonstrated that YES1 acted as a proximal

glucose-specific activator of cell division cycle control protein 42

(Cdc42) in pancreatic islet cells, and therefore affects insulin

secretion. Cdc42 is a small GTPase in the Rho family, and there

is evidence that it is the proximal glucose-specific trigger of insulin

secretion and that its activation of downstream signals ultimately

leads to mobilization of insulin granules to the plasma

membrane (45).

Forkhead-box C1 (FOXC1) is a TF that regulates the

expression of CD3G and YES1, and may therefore affect the

development of T1DM after COVID-19 convalescence. Previous

studies reported that FOXC1 increased glucose uptake and

improved insulin sensitivity and had a role in the pathogenesis

of GDM by attenuating the high-glucose (HG)-induced

trophoblast damage by upregulating the FGF19-activated AMPK
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signaling pathway (46).Our search for miRNAs that bind to CD3G

and YES1 led to the identification of hsa-mir-4459. Previous

studies suggested that this miRNA may function in the

photodynamic therapy (PDT)-induced apoptosis of glioma cells.

We suggest that FOXC1 and hsa-mir-4459 have potential as key

biomarkers or therapeutic targets for treatment of T1DM after

COVID-19 convalescence.

We used the same approach to compare T2DM and COVID-19

convalescence. The enrichment analysis demonstrated 38 shared

upregulated genes and 23 shared downregulated genes, and GO

analysis showed that the upregulated genes were mainly associated

with Rho protein signaling. Rho kinase (ROCK) is a serine/

threonine protein kinase that is activated by binding to RhoA,

and the RhoA/ROCK pathway regulates cell contraction, migration,

adhesion, proliferation, and inflammatory responses (47). There is

evidence that ROCK interacts with the insulin receptor substrate-1

(IRS-1) and impairs insulin signaling in skeletal muscle, and that

the resulting increased insulin resistance leads to the development

of T2DM (48, 49). ROCK inhibitors therefore have great potential

for treatment of diabetes and its complications (50). Our findings

are thus consistent with these previous results.
A B

DC

FIGURE 6

Interactions of DEGs with potential TFs of T1DM and COVID-19 convalescence (A) and T2DM and COVID-19 convalescence (B), based on the
JASPAR database. Interactions of DEGs with potential miRNAs of T1DM and COVID-19 convalescence (C) and T2DM and COVID-19 convalescence
(D), based on miRTarBase database.
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Down-regulated genes in T2DM and COVID-19 convalescence

were enriched in the regulation of nervous system development.

The arcuate nucleus (ARC) of the hypothalamus integrates insulin

signals and primary sensory information about circulating nutrients

(e.g., glucose) to coordinate the neuroendocrine system and
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maintain glucose homeostasis (51). Thus, imbalances in the

nervous system may disrupt glucose metabolism. The results of

our KEGG analysis showed that alterations of tight junctions were a

key pathway alteration in T2DM and COVID-19 convalescence.

The tight junctions of the intestinal mucosa have an important role
A

B

D

E

C

FIGURE 7

Diagram of the machine algorithm obtained by inputting overlapping DEGs. (A) Elastic Net Regression screening for shared diagnostic markers in T1DM and
COVID-19 convalescence (left), identification of different genes by color (middle), and coefficient values of the resulting genes(right). (B) Elastic Net
Regression screening for shared diagnostic markers in T2DM and COVID-19 convalescence (left), identification of different genes by color (right), and
coefficient values of the resulting genes(right). (C) SVM screening of biomarkers with highest accuracy for T1DM and COVID-19 convalescence. (D) SVM
screening of biomarkers with highest accuracy for T2DM and COVID-19 convalescence. (E) Venn diagrams hand over hub DEGs common to LASSO
algorithm, SVM algorithm and PPI network MCC algorithm.
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in maintaining the permeability and integrity of the intestinal

mucosa. Dysfunction of the intestinal mucosal barrier is closely

related to the development of diabetes, and some studies suggested

that maintaining the ecological balance in the intestine may be a

novel approach to overcome insulin resistance (52, 53).

The results from the PPI networks and screening by two machine

learning algorithms indicated that PTRF and EHD1 were the most

important hub DEGs. Since the T2D validation set (GSE51762) was

derived from human islets and the ratio of patients to healthy

controls was somewhat different from T2DM training, this may be

an important difference factor for the relatively low AUC values.

However, the AUC value of the ROC curve was still greater than 0.7

and the difference with the AUC value of the training model was less

than 0.1, so we believed that it still had certain accuracy. Polymerase I

and transcription release factor (PTRF), also known as cavin-1, is

associated with caveolae (“pits”) in the plasma membrane, and

functions directly in the formation and secretion of cell-derived

exosomes. Most studies of PTRF have focused on generalized

lipodystrophy (GL), and mutations in this gene are highly

associated with type 4 CGL. GL is a heterogeneous congenital

disease (CGL) or acquired disease (AGL) characterized by loss of

adipose tissue and increased insulin resistance, and an increased

predisposition to metabolic complications, such as DM,

hypertriglyceridemia, and hepatic steatosis (54). Mice with PTRF

knockout have elevated triglycerides, decreased adipose tissue mass,

glucose intolerance, and hyperinsulinism (55). Although there is no

definitive evidence of a mechanistic relationship of PTRF and T2DM,

we hypothesize that downregulation of PTRF after COVID-19

convalescence may lead to symptoms of AGL, thus increasing the

risk of T2DM. EHD1 (EH Domain Containing 1) is a protein coding
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gene. Diseases associated with EHD1 include plasmacytoid cystic

tumor of the pancreas and cerebral hypoplasia, neuropathy,

ichthyosis, and palmoplantar keratosis syndrome. Its related

pathways include Angiopoietin-like protein 8 regulatory pathway

and Response to elevated platelet cytosolic Ca2+. Insulin stimulates

the translocation of glucose transporter 4 (GLUT4) from a

perinuclear location to the plasma membrane (56). EHD1 controls

the normal perinuclear localization of GLUT4-containing

membranes and facilitates retrograde transport of GLUT4 vesicles

from early endosomes to recycling endosomes or perinuclear

compartments (57, 58). This suggests that EHD1 deficiency

disrupts the insulin-regulated GLUT4 cycle in cultured adipocytes.

Our analysis of EHD1 led to the identification of eleven TFs

(HOXA5, PPARG, STAT3, KLF5, NFKB1, RELA, MAX, USF1,

USF2, SREBF1, NFATC2) and two miRNAs (hsa-mir-34a-5p, hsa-

mir-26b-5p). The hsa-mir-34a-5p had been found to be highly

correlated with the occurrence of T2DM caused by mixed heavy

metals (59). For T2DM, hsa-mir-26b-5p was significantly down-

regulated after metformin treatment (60). These substances might

be suggestive of subsequent studies of diabetes after COVID-19

convalescence. We believe that the reason why the number of hub

genes found in T2DM is significantly less than that in T1DM is

due to the high correlation between T1DM and genetics. Studies

have shown that genetic defects are the basis of T1DM. T2DM is

mostly perennial onset, which is related to acquired factors and

may have relatively little influence on genes. Unfortunately, we

found no TFs or miRNAs related to the PTRF gene, possibly due to

the incompleteness of the databases.

We identified T-cell and CD8 T-cell infiltration in T1DM and

COVID-19 convalescence, and cytotoxic T cell infiltration in T2DM
A B

D E FC

FIGURE 8

Nomograms for prediction of T1DM after COVID-19 convalescence (A) and T2DM after COVID-19 convalescence (B). ROC curves for prediction of
T1DM after COVID-19 convalescence (C) and T2DM after COVID-19 convalescence (D) using the training datasets. ROC curves for prediction of
T1DM after COVID-19 convalescence (E) and T2DM after COVID-19 convalescence (F) using the validation datasets.
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and COVID-19 convalescence were not sufficiently correlated.

T1DM is an autoimmune disease in which T cells attack and

destroy insulin-producing beta cells in the pancreatic islets.

Effector T cells respond to pancreatic beta cell-derived peptides

presented by HLA class I and II molecules, and this leads to death of

beta cells and insulin deficiency (61, 62). Previous research showed

that CD8 T-cell-mediated autoimmune diseases are caused by

disruption of auto-reactive CD8 T-cell self-tolerance mechanisms,

and that an increase in the number of auto-reactive CD8 T cells

drives the transition from autoimmune progenitor cells to

autoimmune mediators (63). A higher percentage of cytotoxic T

cells can also occur in T2DM (64). Even so, the analysis of the

characteristics of immune cells in T2DM showed that there was

little correlation between T2DM and immune cells. It must be

mentioned that there are certain limitations in our study. The

number of public COVID-19 convalescence data sets is limited, and
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we did not find open PBMC data sets in the GEO database. The data

sets used to find differential genes and subsequent analysis are from

whole blood, which is relatively inferior in the control of variables.

This cannot exclude that other components of the blood would have

an effect on the exploration of its pathway. On the other hand, due

to the incompleteness of the TF and miRNA databases, we did not

retrieve the PTRF hub DEG that was present in T2DM and

COVID-19 convalescence. In addition, we did not examine the

relationships of multiple risk factors affecting diabetes, the extent of

glycemic control, the presence or absence of complications, and

survival rate with different molecular targets.

In summary, we used bioinformatics methods with machine

learning algorithms to identify specific shared hub DEGs,

potential TFs, and altered pathways that occur in DM and after

COVID-19 convalescence. We also constructed and validated a

diagnostic model of DM after COVID-19 convalescence. Our
A

B

C

FIGURE 9

(A) Correlations between CD3G and infiltration of different immune cells (left), and between CD3G and T cells (right). (B) Correlation between YES1
and infiltration of different immune cells (left), and between YES1 and CD8 T cells (right). (C) Correlation between PTRF and the infiltration of
different immune cells (left), and between PTRF and cytotoxic T cells (right).
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results provide a new point of reference for subsequent studies and

also provide a basis for a new approach that could be used for

prevention and management of new onset DM after COVID-

19 convalescence.
Conclusions

Our study examined biomolecules and pathways that were

related to the development of new-onset DM after COVID-19

convalescence by analysis of three PBMC datasets for T1DM,

three PBMC datasets for T2DM, and one whole blood dataset for

COVID-19 convalescence. We also used separate datasets for model

validation. The results demonstrated multiple similarities of DM

and COVID-19 convalescence in terms of DEGs, TFs, miRNAs, and

pathways. The results from two machine learning algorithms

showed that six core DEGs were shared by T1DM and COVID-

19 convalescence, and that two core DEGs were shared by T2DM

and COVID-19 convalescence. We therefore consider these genes

as reliable indicators of DM after COVID-19 convalescence. Our

finding of the importance of these several hub DEGs suggests new

directions for subsequent research, and that these molecules have

potential use as therapeutic targets for patients who develop new-

onset DM after COVID-19 convalescence.
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cross-validation (E) curve of T1DM fold5 cross-validation.
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(A) curve of T2DM fold1 cross-validation (B) curve of T2DM fold2 cross-

validation (C) curve of T2DM fold3 cross-validation (D) curve of T2DM fold4

cross-validation (E) curve of T2DM fold5 cross-validation.

SUPPLEMENTARY FIGURE 4

Nomograms for prediction of T1DM after COVID-19 convalescence (A) and
T2DM after COVID-19 convalescence (B) on COVID-19 convalescence
validation dataset. (C) ROC curves of 6 hub DEGs in the COVID-19

convalescence validation dataset. (D) ROC curves of 2 hub DEGs in the

COVID-19 convalescence validation dataset.

SUPPLEMENTARY FIGURE 5

Correlation between EHD1 and the infiltration of different immune cells (left),

and between EHD1 and immune infiltration (right).
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60. Demirsoy IḢ, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L, et al. Profiles of
circulating mirnas following metformin treatment in patients with type 2 diabetes. J
Med Biochem (2018) 37(4):499–506. doi: 10.2478/jomb-2018-0009

61. Bluestone JA, Buckner JH, Herold KC. Immunotherapy: building a bridge to a
cure for type 1 diabetes. Science (2021) 373(6554):510–6. doi: 10.1126/science.abh1654

62. James EA, Mallone R, Kent SC, DiLorenzo TP. T-cell epitopes and neo-epitopes
in type 1 diabetes: A comprehensive update and reappraisal. Diabetes (2020) 69
(7):1311–35. doi: 10.2337/dbi19-0022

63. Gearty SV, Dundar F, Zumbo P, Espinosa-Carrasco G, Shakiba M, Sanchez-
Rivera FJ, et al. An autoimmune stem-like cd8 T cell population drives type 1 diabetes.
Nature (2022) 602(7895):156–61. doi: 10.1038/s41586-021-04248-x

64. Menart-Houtermans B, Rutter R, Nowotny B, Rosenbauer J, Koliaki C, Kahl S,
et al. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated
with metabolic phenotypes: results from the German diabetes study (Gds). Diabetes
Care (2014) 37(8):2326–33. doi: 10.2337/dc14-0316
frontiersin.org

https://doi.org/10.1681/ASN.2005121375
https://doi.org/10.1016/j.cmet.2005.06.011
https://doi.org/10.1074/jbc.C900014200
https://doi.org/10.2174/138161212800672688
https://doi.org/10.2174/138161212800672688
https://doi.org/10.1210/endrev/bnab025
https://doi.org/10.4268/cjcmm20161101
https://doi.org/10.1159/000479919
https://doi.org/10.1159/000479919
https://doi.org/10.1038/nrendo.2015.123
https://doi.org/10.1038/nrendo.2015.123
https://doi.org/10.1172/JCI38660
https://doi.org/10.1074/jbc.M401918200
https://doi.org/10.1111/jdi.13912
https://doi.org/10.1210/en.2005-0850
https://doi.org/10.1007/s11356-023-28037-3
https://doi.org/10.2478/jomb-2018-0009
https://doi.org/10.1126/science.abh1654
https://doi.org/10.2337/dbi19-0022
https://doi.org/10.1038/s41586-021-04248-x
https://doi.org/10.2337/dc14-0316
https://doi.org/10.3389/fendo.2023.1306325
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Combining bioinformatics and machine learning algorithms to identify and analyze shared biomarkers and pathways in COVID-19 convalescence and diabetes mellitus
	Introduction
	Materials and methods
	Acquisition of chip data
	Data processing and differential expression analysis
	Gene ontology and pathway enrichment analysis
	Protein-protein interaction network analysis
	Transcription factors and miRNAs
	Construction and validation of a diagnostic DEG signature
	Evaluation and correlation of immune cell infiltration

	Results
	Removal of batch effects
	Similar DEGs in the different datasets
	KEEG enrichment analysis
	Construction of the PPI network
	Determination of regulatory signatures
	Construction of a prognostic model
	Correlations of hub DEGs and immune cell infiltration

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


