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Background: According to a recent report by the WHO, approximately 17.5\%

(about one-sixth) of the global adult population is affected by infertility.

Consequently, researchers worldwide have proposed various machine learning

models to improve the prediction of clinical pregnancy outcomes during IVF

cycles. The objective of this study is to develop a machine learning(ML) model

that predicts the outcomes of pregnancies following in vitro fertilization (IVF) and

assists in clinical treatment.

Methods: This study conducted a retrospective analysis on provincial

reproductive centers in China from March 2020 to March 2021, utilizing 13

selected features. The algorithms used included XGBoost, LightGBM, KNN, Naïve

Bayes, Random Forest, and Decision Tree. The results were evaluated using

performance metrics such as precision, recall, F1-score, accuracy and AUC,

employing five-fold cross-validation repeated five times.

Results: Among the models, LightGBM achieved the best performance, with an

accuracy of 92.31%, recall of 87.80%, F1-score of 90.00\%, and an AUC of

90.41%. The model identified the estrogen concentration at the HCG injection

(etwo), endometrium thickness (mm) on HCG day(EM TNK), years of infertility

(Years), and body mass index(BMI) as the most important features.

Conclusion: This study successfully demonstrates the LightGBM model has the

best predictive effect on pregnancy outcomes during IVF cycles. Additionally,

etwo was found to be the most significant predictor for successful IVF compared

to other variables. This machine learning approach has the potential to assist

fertility specialists in providing counseling and adjusting treatment strategies

for patients.
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1 Introduction

The World Health Organization defines infertility as the

situation where a married couple is unable to achieve pregnancy

after one year or more of regular, unprotected sexual intercourse

(1). Infertility is a global life crisis that impacts individuals

worldwide (2). According to reports, the prevalence of infertility

among couples of reproductive age worldwide is estimated to range

from 10-25%, affecting an estimated 48 to 180 million couples (3).

Since the inception of in vitro fertilization (IVF) - the

groundbreaking assisted reproductive technology (ART)

procedure with the birth of the world’s first human baby in the

UK in 1978, over nine million IVF babies have been born worldwide

(4). Globally, the number of children conceived using ART

surpasses 8 million, comprising 2-6% of the total birth population

across European nations and 1.743% of China’s total birth

population (5–7). ART techniques primarily comprise controlled

ovarian hyperstimulation (COH), in vitro fertilization and embryo

transfer (IVF-ET), intracytoplasmic sperm injection (ICSI),

preimplantation genetic diagnosis (PGD), frozen embryo transfer

(FET), and in vitro maturation (IVM) of oocytes. Although

advances in clinical and laboratory techniques over the past

decades have substantially improved pregnancy rates in assisted

reproductive technology (ART) (8), the live birth rate per cycle

remains below 29.1% (9). Following several cycles, a significant

number of patients encounter failure, with a remaining rate of 38%

to 49% of couples not attaining success (10). The treatment process

imposes various burdens on patients, including mortality, adverse

drug reactions, psychological distress, social challenges, and

economic difficulties. Additionally, ART encompasses multiple

intricate stages that require significant time and financial

investment (11, 12). Therefore, it is imperative for infertile

couples to possess a thorough comprehension of the potential

success rate of ART. Moreover, they should meticulously consider

the consequent risks, including 42 financial and physical

implications, prior to determining whether ART is a viable option

for procreation (10, 11).

Machine learning is an artificial intelligence (AI) technology

that utilizes data analysis to enable computers to learn patterns and

models. This empowers computers with the capacity to make

independent decisions and predictions. Particularly in clinical

prediction, machine learning plays a significant role owing to its

strong decision-making capability and its proficiency in analyzing

high-dimensional data (13–15). Machine learning, an advanced

approach to computer modeling, has the potential to greatly

enhance predictive capability when compared to traditional

methods. It can take into account variable interactionsand

continuously integrate new data to update algorithms (16).

Machine learning has demonstrated promising applications and

potential in the field of reproductive medicine, specifically in the

domains of embryo grading and predicting embryo implantation

rates (17). Multiple studies have investigated the use of machine

learning to predict success rates in in vitro fertilization (IVF). These

studies have identified several factors that impact the success rate,

including age (18–20), causes of infertility (21), embryo quality (22),
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and dosage of follicle stimulating hormone (FSH) (19), among

others. It is worth noting that the extent to which these factors

influence each patient can vary across different IVF cycles. As a

result, accurately predicting the outcomes of assisted reproductive

technology (ART) poses a considerable challenge for future research

on machine learning in this domain (23).

This study employs individual characteristics, clinical

indicators, and laboratory indicators as variables to predict the

clinical pregnancy rate following embryo implantation through the

use of machine learning techniques. It assesses and compares the

predictive capabilities of six classification algorithms with regards to

the success rate.
2 Materials and methods

2.1 Patients

IVF patients who underwent fresh embryo transfers at

Children’s Hospital of Shanxi and Shanxi Women’s Health

Center between March 2020 and March 2021 were enrolled in

our study. Exclusion criteria included patients with (1) oocyte

donation cycles, (2) cryopreserved and warmed oocytes, and (3)

combined cryopreserved and warmed embryo transfers. A total of

840 patients were included as the training set for building

our model.
2.2 Controlled ovarian hyperstimulation,
embryo culture, and pregnancy ascertain

The patient received ovulation induction treatment. Follicle

growth and development were monitored using B-ultrasound.

When the follicles reached a diameter greater than 18 mm, the

patient received a muscle injection of 10,000 IU of human chorionic

gonadotropin. After 36 hours, the follicle aspiration was performed

via transvaginal puncture under B-ultrasound guidance. The

retrieved eggs were fertilized through IVF or ICSI procedures in

the laboratory. On the 3rd to 5th day after fertilization, high-quality

embryos were selected for transfer. Luteal phase support was

subsequently provided. Biochemical pregnancy was confirmed 10

days after the transfer by measuring HCG levels in the blood.

Approximately 30 days after the transfer, a gestational sac indicative

of clinical pregnancy was observed through B-ultrasound.
2.3 Model construction and
feature selection

Figure 1 shows the machine learning framework for predicting

clinical pregnancy outcomes after in vitro fertilization.

2.3.1 Data pre-processing
In data analysis in the medical field, having a good awareness of

data is crucial because the quality of the data will directly affect the
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predictive performance of machine learning models. In this article,

we use statistical parameters (i.e., median) to impute missing values

for corresponding attributes and utilize Mahalanobis Distance(MD)

for outlier detection. Additionally, to ensure that clinical features in

the test dataset are treated equally across different scales, we employ

the min-max scaling method which guarantees their equal

contribution to model fitting.

DScaled =
D − Dmin(axis = 0)

D _max(axis = 0) − Dmin(axis = 0)
(1)

Here D represents the instances to be scaled. Dmax(axis = 0)

represents the maximum values of feature vectors in the training

instances, while Dmin(axis = 0) represents the minimum values of

feature vectors in the training instances.
2.3.2 Feature selection
Principal Component Analysis(PCA) is a commonly used data

dimensionality reduction algorithm, which aims to reduce the

dimensions of a dataset and extract the most important features.

Its main objective is to transform the original high-dimensional

features into new orthogonal features while preserving as much

important information from the original data as possible. The

matrix Z is composed of data collected.

Z = (

z11 z12 ⋯ z1m

⋮ ⋮ ⋮

zn1 zn2 ⋯ znm

) (2)
Fron
• Calculate the covariance matrix between features, denoted

as C = (ZTZ)m×m. The covariance matrix is a m×m

symmetric matrix that relates the covariances and

variances of multiple variables. We can decompose any

matrix into three distinct matrices based on singular value

decomposition (SVD).

• Perform an eigenvalue decomposition on the covariance

matrix to obtain eigenvalues and eigenvectors.
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• Sort the eigenvalues in descending order and select the

eigenvectors corresponding to the k largest eigenvalues.

• Project the original data onto the subspace formed by

selected feature vectors to obtain the reduced-dimensional

dataset.
2.3.3 LightGBM
LightGBM (24) is an algorithm based on gradient boosting

trees, aiming to enhance prediction accuracy by stacking weak

classifiers. Compared to standard gradient boosting tree

algorithms, LightGBM uses histogram optimization to segment

continuous features, saving memory and speeding up

computation. The decision trees are grown using a leafwise

strategy and limited depth to prevent overfitting, effectively

improving the accuracy and robustness of model predictions. To

address overfitting caused by complex trees, regularization terms

are introduced in the loss function, which can be represented by the

following formula.

f kobj =o
n

i=1

Loss(ŷ k
i , yi) +o

k

i=1

w(fi) =o
n

i=1

Loss(ŷ k−1
i + fk(xi), yi) +o

k

i=1

w(fi)

(3)

Where, yi represents the actual value of the label, w(fi) is the
regularization term, and ŷ k−1

i is the current computed value of

the model. By using a second-order Taylor expansion to expand the

objective function, we obtain equation (4).

f (x + Dx) = f (x) + f 0(x) ·D x +
1
2
f 00(x) ·D x

2 (4)

The second-order Taylor expansion of the loss function is

shown as follows.

o
n

i=1

Loss(ŷ k−1
i + fk(xi), yi) =o

n

i=1

½
Loss(ŷ k−1

i , yi) + Los0(ŷ k−1
i , yi) · fk(xi)

+ 1
2 Loss

00(ŷ k−1
i , yi) · f

2
k (xi)

�

(5)
FIGURE 1

The process of the proposed framework.
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Replacing the first-order derivative of the Loss function for the

i-th data with u, and replacing the second-order derivative of the

Loss function for the j-th data with v, then the objective function

can be simplified as:

f kobj =o
n

i=1

½Loss(ŷ k−1
i , yi) + uifk(xi) +

1
2
nif

2
k (xi)� +o

k

i=1

w(fi) (6)

When using LightGBM in practice, its core parameters such as

maximum tree depth, learning rate, and threshold value will affect

the accuracy of model recognition. In particular, the selection of the

threshold value is crucial for accurate prediction of clinical

pregnancy. Therefore, obtaining the optimal parameters for

LightGBM is a key step in improving model prediction accuracy.

Gray Wolf Optimization(GWO) (25) is a swarm intelligence

optimization algorithm designed based on the simulation of grey

wolf hunting behavior. This algorithm has advantages such as

simplicity, speed, and ease of implementation. In GWO, the

social hierarchy of grey wolf individuals is divided in order of a,
b, g, and d. Where a represents the highest fitness solution, b, g, and
d represent the second-best solution, third-best solution, and other

solutions respectively. The remaining individuals are directed by the

top three best solutions (a, b and g) to update their positions using

the following formula.

W1(t + 1) = Wa (t) − X1 Y1Wa (t) −W(t)j j
W2(t + 1) = Wb (t) − X2 Y2Wb (t) −W(t)

�� ��
W3(t + 1) = Wg (t) − X3 Y3Wg (t) −W(t)

�� ��

8>><
>>:

(7)

In the standard GWO, X and Y are used as coefficients, where

W(t) represents the current position of an individual and W(t + 1)

represents the updated position of a grey wolf. However, during the

initialization phase, the population positions are randomly

generated. This random search strategy may cause the initial

positions of individuals to concentrate around certain extreme

points, leading to missing crucial information and affecting the

convergence speed and accuracy of the model. Therefore, in order

to ensure that the population is uniformly distributed with diversity

during the initialization phase, Halton sequence is adopted here for

population initialization. Halton sequence is a type of sequence that

can generate uniformly distributed random numbers within a

search space with low discrepancy. The following formula can be

used to obtain Halton sequence H(n) with base k(k ≥ 2):

s =o
N

n=0

rnk
n (8)

Where, rn∈{0,1,…, k-1}(n=0, 1,…, N). Furthermore, we define a

basic inverse function, denoted as jk (n) = (0.a0a1…aM)k = a0/k+…

+aM/k
M+1.

Therefore, a one-dimensional Halton sequence with k as the

base can be obtained: Hk(n) = hk (n), n = 1, 2,…, N. A multi-

dimensional Halton sequence can be obtained by combining

multiple one-dimensional Halton sequences with different bases.

The introduction of the Halton sequence in the initialization stage

of the grey wolf population ensures a uniform distribution of
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feasible solutions. However, during the iteration process, GWO

relies on the top three solutions to update the positions of the

population, which makes it prone to getting trapped in local optima.

Therefore, simulated annealing is introduced into GWO to allow a
(the lead wolf) to be replaced by a current worse individual with a

certain probability. In addition, in order to balance both local and

global search capabilities of the algorithm, an incremental strategy

is adopted to determine the replacement probability p for a.

2.3.4 Baseline
K-Nearest Neighbor (KNN) (26) is a non-parametric,

supervised learning classifier. The idea behind this method is very

simple and intuitive: if a sample belongs to the majority class of its k

most similar (i.e., nearest) samples in the feature space, then it also

belongs to that class.

Random Forest (RF) (27) algorithm is a popular and

powerful supervised machine learning technique that can

handle both regression and classification tasks. It creates a

forest of decision trees, with the accuracy and reliability of

predictions improving as more trees are included in the forest.

In regression tasks, the algorithm combines output estimates

from multiple trees, while in classification tasks it uses a voting

system to determine the class that receives the most votes from

all the other trees in the forest.

Decision Tree(DT) (28) is a predictive analytics technique that

uses a tree-like graph to predict the value of a target variable based

on a set of predictors. It employs divide and conquer problem-

solving strategies, starting from the root node with all the data and

intelligently splitting it into multiple branches. The goal is to create

more homogeneous groups at each child node.

Naive Bayes(NB) (5) algorithm is a classification method that

relies on event probability and misclassification loss. Its main

advantage is the use of the attribute conditional independence

assumption strategy, which helps avoid the issue of combinatorial

explosion during posterior probability calculations.

The XGBoost (29) is an advanced modification of the Gradient

Boosting technique. It combines predictions from a set of “weak”

learners to create a more powerful learner. XGBoost aims to prevent

overfitting while optimizing computation. It simplifies objective

functions, allowing for the combination of predictive and

regularization terms without sacrificing computational speed. In

the XGBoost process, the first learner is fitted to the entire input

data space. Then, a second model is fitted to these residuals in order

to address weaknesses in the initial learner. This fitting process

continues iteratively until a stopping criterion is met. The final

model is obtained by summing up the predictions from each

individual learner.
2.4 Experiments and evaluation metrics

In this work, we conducted a systematic analysis of the model’s

performance results and presented them using five performance

indicators to evaluate the robustness and effectiveness of

the outcomes.
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2.4.1 Cross validation
This paper utilizes the 5-fold cross-validation approach to

create training and test sets. The dataset is initially divided into 5

mutually exclusive subsets (D1-D5) that are equal in size and have a

reliable distribution. In each round, one subset is used as the test set

while the remaining subsets serve as the training set. The final result

is obtained by averaging the results from all five sets. The schematic

diagram of the 5-fold cross-validation method is shown in Figure 2.

2.4.2 Performance metrics
Confusion matrix is a specific table layout used for visualizing

evaluation metrics. Each row in the matrix represents the predicted

class of the model, while each column represents the actual class of

the samples. It facilitates comparing the predicted results with the

actual sample classes to evaluate the performance of the model. The

confusion matrix consists of four basic indicators, i.e., TP, FN, FP,

and TN. The parameters such as precision, recall, accuracy, F1-

score, etc. are calculated as:

• Precision: The proportion of correctly predicted positive

samples to all predicted positive samples, used to measure the

accuracy of the model’s predictions.

Precision =
TP

TP + FP
(9)

• Recall: The proportion of correctly predicted positive samples

to all positive samples.

Recall =
TP

TP + FN
(10)

• Accuracy: The proportion of correctly predicted samples in

the prediction model to the total number of observations.

Accuracy =
TN + TP

TN + TP + FN + FP
(11)

• F1-score: This metric combines the output results of Precision

and Recall, which is the average harmonic value of both. The F1-

Score ranges from 0 to 1, where 1 represents the best output result of

the model, while 0 indicates otherwise.

F1 − score =
2*(Precision*Recall)
Precision + Recall

(12)

• AUC: The AUC value is calculated by measuring the area

under the ROC curve. The ROC curve compares the performance of
Frontiers in Endocrinology 05
classifiers across different discrimination thresholds in terms of true

positive rate and false positive rate. This makes the AUC value a

reliable measure for comparing classification algorithms. Equation

13 is used to calculate the AUC based on TP, FN, FP, and TN values.

AUC =
1
2
(

TP
TP + FN

+
TN

TN + FP
) (13)
3 Results

3.1 Data sources and descriptions

This study utilized the electronic medical record system of a

reproductive center to obtain comprehensive patient information

for research purposes. The dataset included records of 840 patients

who underwent ART. Table 1 provides details about the 19 feature

variables and 1 categorical label. The variables in Table 1 are

classified into two categories: 6 qualitative variables and 13

quantitative variables. The label variable, CP (clinical pregnancy),

had a value of 0 indicating no pregnancy (including 90

cases of biochemical pregnancy), and a value of 1 indicating

clinical pregnancy.
3.2 Description of statistics

The frequency distribution histogram of CP Dataset with

category features was shown in Figure 3. The label (CP)

represents whether a clinical pregnancy occurred. The blue

portion represents patients with successful clinical pregnancies,

totaling 437 cases and accounting for 52.02% of the dataset. The

orange portion represents patients without clinical pregnancies,

including biochemical pregnancies, totaling 403 cases and

accounting for 47.98% of the dataset. The label feature exhibits a

small difference and is close to a balanced state, which facilitates

subsequent analysis.

After analyzing the quantity and proportion of label features,

let’s examine the data information separately for numerical features

and categorical features. Each categorical feature consists of 840

samples. To provide a visual representation, we have created

histograms for 6 categorical feature variables, as depicted in

Figure 2. Among the different protocols, the long protocol has the

highest number of samples, with 517 cases and a clinical pregnancy

rate of 58.80%. The GnRH protocol has 111 samples, with a clinical

pregnancy rate of 49.55%. The short protocol has 49 samples, with a

clinical pregnancy rate of 40.82%. The natural cycle has 23 samples,

with no clinical pregnancies. Finally, the antagonist protocol has

140 samples, with a clinical pregnancy rate of 41.43%. The long

protocol exhibits the highest clinical pregnancy rate, while the

natural cycle has the lowest. Regarding the final assisted

reproductive plan, there are 314 samples with ICSI fertilization,

resulting in a clinical pregnancy rate of 50.00%. There are 526

samples with IVF fertilization, resulting in a clinical pregnancy rate

of 39.54%. For fresh transfer cycles, the clinical pregnancy rate is

relatively higher for ICSI fertilization compared to conventional
FIGURE 2

5-fold cross-validation.
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fertilization. In terms of uterine tubal patency testing, there are 145

samples with abnormal findings, resulting in a clinical pregnancy

rate of 54.48%. There are 462 samples with normal findings,

resulting in a clinical pregnancy rate of 51.30%. Finally, there are

233 samples with unknown fallopian tube patency, resulting in a

clinical pregnancy rate of 51.93%. The status of the fallopian tubes

appears to have little impact on clinical pregnancy outcomes in

fresh transfer cycles, as the embryos are directly transferred to the

uterine cavity. Among different infertility types, there are 373

samples of primary infertility, resulting in a clinical pregnancy

rate of 48.26%. There are 467 samples of secondary infertility,

resulting in a clinical pregnancy rate of 55.03%. In terms of

infertility factors, there are 132 samples with male factors,

resulting in a clinical pregnancy rate of 53.03%. There are 506
Frontiers in Endocrinology 06
samples with female factors, resulting in a clinical pregnancy rate of

52.96%. There are 28 samples with both male and female factors,

resulting in a clinical pregnancy rate of 39.29%. There are 174

samples with unknown causes, resulting in a clinical pregnancy rate

of 50.57%. Lastly, in terms of embryo quality, there are 239 samples

of transferred embryos, resulting in a clinical pregnancy rate of

42.68%. There are 601 samples of transferred blastocysts, resulting

in a clinical pregnancy rate of 55.74%. It is evident that the success

rate of blastocysts in fresh transfers is higher than that of embryos.

Based on the distribution of 13 numerical feature variables

plotted based on different label states, we can observe that the

distribution of infertile patients (represented by the red curve) is

consistent with the overall feature distribution (represented by the

blue curve). This implies that it is difficult to determine which
TABLE 1 Description of features.

No. Type Feature name Description
Feature value
(Mean value) (Range)

1

Categorical

Scheme Scheme

1: long protocol
2: GnRH protocol
3: short protocol
4: natural cycles
5: antagonist protocol

2 UFP Ultimate Fertility Program
0: ICSI
1: IVF

3 HSG Hysterosalpingography
0: abnormal
1: normal
2: unknown

4 Gravidity Gravidity
0: primary infertility
1: secondary infertility

5 IF Infertility factor

0: men
1: woman
2: both
3: unknown

6 EQ Embryo quality on embryo transfer day
0: embryo
1: blastocyst

7

Numerical

Age Age of woman 32.25 (4.44) (22-49)

8 BMI Body mass index 23.34 (3.32) (16.4-37.2)

9 Years Years of infertility 4.04 (2.80) (2-17)

10 tdose Total Gonadotrophin dose 3144.51 (1285.60) (75-12275)

11 days Duration of Stimulation 10.64 (2.57) (9-26)

12 Retries to ART Retries to assisted reproductive technology 1.81 (1.39) (1-14)

13 EM TNK Endometrium thickness (mm) on HCG day 10.74 (2.84) (3-12)

14 etwo Oestrogen concentration at the HCG injection 2248.39 (1510.55) (0.64-14030)

15 mtwo Mature oocyte count 8.25 (4.77) (1-33)

16 ETD Embryo transfer day 4.58 (0.98) (3-6)

17 No. of ET Number of transfer embryos 1.57 (0.50) (1-3)

18 SC Total sperm count 49.39 (36.78) (1-212)

19 SM Total sperm motility 39.15 (17.74) (0-91)

20 Label CP Clinical pregnancy
0: no pregnancy
1: clinical pregnancy
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feature is closely related to clinical pregnancy through intuitive

inspection alone. Let’s examine the descriptive statistical

information for each numerical variable (Figure 4):
Fron
• Age: The minimum and maximum values are 22 and 49,

respectively, covering the entire age span of IVF patients.

The average age of clinically pregnant patients is 30.65,

indicating that clinical pregnancy becomes more difficult

with increasing age.

• BMI: The minimum and maximum values are 16.4 and

37.2. The average BMI of clinically pregnant patients is

22.89. Being underweight or obese is unfavorable for

embryo implantation.

• Years (duration of infertility): The range is from 0 to 17

years. The average duration of infertility for clinically

pregnant and non-pregnant patients is 3.29 and 4.84,

respectively. The longer the duration of infertility, the

more difficult it becomes to conceive.

• Tdose (total dose of Gn): The minimum and maximum

values are 75 and 12275, respectively. The average values for

clinically pregnant and non-pregnant patients are 3194.75

and 3090.03, respectively, with little difference.

• Days (total number of Gn days): The minimum and

maximum values are 1 and 14.

• Retries to ART (total number of treatment cycles): The

minimum and maximum values are 1 and 14.

• EM TNK (HCG endometrial thickness): The minimum

and maximum values are 3 and 44.2. The average HCG

endometrial thickness for clinically pregnant and

nonpregnant patients is 10.42 and 11.03, respectively,

indicating that endometrial thickness has little impact on

embryo implantation.
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• etwo (oestrogen concentration at the HCG injection): The

minimum and maximum values are 0.64 and 12226.3. The

average values of etwo for clinically pregnant patients is

2672.7, while for non-pregnant patients it is 1788.29.

Higher values of etwo are beneficial for embryo

implantation.

• mtwo (number of mature eggs): The minimum and

maximum values are 1 and 33. The average numbers of

mature eggs for clinically pregnant and non-pregnant

patients are 9.83 and 6.53, respectively. Having more

mature eggs is beneficial for the clinical pregnancy outcome.

• ETD (embryo transfer day): The ETD for clinical

pregnancy and non-pregnant patients are on the 3rd, 4th,

5th, and 6th day after oocyte retrieval. The average days of

embryo transfer after oocyte retrieval are 4.50 and 4.65 for

clinically pregnant and non-pregnant patients, respectively.

The maximum number of patients who had embryo

transfer on the 5th day after oocyte retrieval is 501.

• ET (number of transferred embryos): The number of ET is

1, 2, and 3 (with only 1 case meeting the criteria for multiple

embryo transfer). There were 362 cases of single embryo

transfer and 477 cases of double embryo transfer.

• SC (sperm count): The minimum and maximum values are

1 (azoospermia and occasional patients) and 212. The

average sperm counts for male partners of clinically

pregnant and non-pregnant patients are 48.44 and 50.41,

respectively.

• SM (sperm motility): The minimum and maximum values

are 0 (azoospermia and occasional patients) and 91. The

average sperm motilities for male partners of clinically

pregnant and non-pregnant patients are 39.16 and 39.13,

respectively. From these statistics, we can see that the male
FIGURE 3

The frequency distribution histogram of CP Dataset with category features.
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Fron
semen condition (SC and SM) has little impact on clinical

pregnancy outcomes, while factors such as age, BMI, Years,

etwo, mtwo, and ETD may play a role in determining the

likelihood of clinical pregnancy.
3.3 Correlation

The correlation between features plays a vital role in the feature

selection stage within an academic setting. To measure this

correlation, we utilize the Pearson correlation coefficient. Positive

values denote a positive correlation, whereas negative values

represent a negative correlation. In Figure 3, the color depth on

the right scale reflects different correlation coefficients, with darker

colors indicating a stronger correlation and vice versa. The dataset

exhibits consistent Pearson correlation coefficients among its

features, except for Age, Scheme, BMI, HSG, Years, IF, Retries to

ART, and SC, which demonstrate negative correlations. On the

other hand, the remaining 10 attributes display positive correlations

with the target variable. The listed features have independent effects
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on the label column, as can be seen from Figure 5, because the

correlation coefficients of each feature are less than 0.3. However,

we can see that feature SM is correlated with SC and UFP, and ETD

is also significantly correlated with EQ. To avoid the influence of

multicollinearity on the prediction model, we excluded the variables

SC, UFP, and ETD in our experiment.
3.4 Models’ comparison

In this section, we trained six algorithms using a 5-fold cross-

validation method and validated the proposed framework using the

CPD dataset. Table 2 presents the average performance of these

algorithms on four metrics including accuracy, precision, recall and

F1-score. Additionally, Table 3 shows the confusion matrices of

these six algorithms, detailing the percentages of TP, FP, TN, and

FN cases in their predicted results.

Accuracy is the key indicator used to evaluate model

performance, with LightGBM achieving an impressive accuracy of

90.48%. Similarly, XGBoost, RF, and DT models attain respective

accuracies of 89.45%, 88.90%, and 83.93%. Conversely, NB and
FIGURE 4

The frequency distribution histogram of CP Dataset with numeric features.
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KNN models exhibit accuracies lower than 80.00%, specifically

79.76% and 72.24% respectively. Notably, precision and recall,

two evaluation metrics, often demonstrate an inverse correlation

trend wherein higher precision corresponds to lower recall, and vice

versa. In this particular experiment, except for the XGBoost,

LightGBM, RF, and DT models, the precision of KNN and NB

models falls below their recall values. In addition, whereas

LightGBM showcases outstanding performance with an F1-Score

of 90.00%.

The evaluation of model performance utilizes the Receiver

Operating Characteristic (ROC) curve and calculates the Area

under the ROC (AUC) as descriptors in Figure 6. A higher AUC

value indicates a stronger generalization ability of the model, as seen

by the ROC curve approaching the top left corner of the graph. The

mean Receiver Operating Characteristic (ROC) for the trained

models, namely KNN, NB, DT, RF, XGBoost and LightGBM,

using a five-fold cross-validation method, are as follows: 68.95% ±

0.04, 82.84% ± 0.02, 80.61% ± 0.02, 91.57% ± 0.02, 92.10% ± 0.01,

and 92.27% ± 0.02, respectively. The RF, XGBoost, and LightGBM
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perform well, with AUC values all above 90%. Among them,

LightGBM achieves the highest AUC value of 92.27 ± 0.02%,

However, the KNN and NB models perform poorly, achieving

AUC values of only 70.45% and 79.78% respectively. In other

words,the proposed model significantly outperformed by at least

23.32% compared to these lowest performing models.

When considering all evaluation metrics, the LightGBM

algorithm demonstrates significant advantages in predicting

successful pregnancy during in vitro fertilization treatment cycles,

closely followed by XGBoost. Furthermore, the comparison

highlights the subpar performance of both the k-nearest

neighbors and naive bayes algorithms.

The impact of the 14 features in the IVF dataset on the

prediction results is unique for each feature. Different models

exhibit preferences for specific features, resulting in varying scores

for these features. However, the KNN and NB algorithms do not

provide internal feature importance evaluation. Therefore, we

present the feature importance rankings of RT, DT, XGBoost and

LightGBM in Figure 7.
TABLE 2 The results of six algorithms.

Alorithm Accuracy Precision Recall F1-score

KNN 0.7024 0.6633 0.7927 0.7009

Naïve Bayes 0.7976 0.7857 0.8049 0.7976

Decision Tree 0.8393 0.8395 0.8293 0.8391

Random Forest 0.8690 0.8750 0.8537 0.8689

XGBoost 0.8750 0.8861 0.8537 0.8696

LightGBM 0.9048 0.9231 0.8780 0.9000
f

FIGURE 5

The correlation matrix of features.
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TABLE 3 The confusion matrix of six algorithms.

Algorithm Confusion matrix Description

KNN

Total
Population

168

Predicted No
Pregnancy

Predicted
Pregnancy TN: In 53 samples, the CP outcome was successfully predicted, and the anticipated results and

actual sample were congruent without pregnancy.
TP : In 65 samples, the CP outcome was successfully predicted, and the anticipated results and
actual sample were congruent with CP.
FP: In 33 samples, the CP outcome was incorrectly predicted, anticipated results indicated CP
and actual sample without pregnancy.
FN: In 17 samples, the CP outcome was incorrectly predicted, anticipated results without
pregnancy and actual samples indicated CP.

Actual No
Pregnancy 86

True Negative
(TN)
53

False Positive
(FP)
33

Actual
Pregnancy 82

False Negative
(FN)
17

True Positive
(TP)
65

NB

Total
Population

168

Predicted No
Pregnancy

Predicted
Pregnancy TN: In 68 samples, the CP outcome was successfully predicted, and the anticipated results and

actual sample were congruent without pregnancy.
TP : In 66 samples, the CP outcome was successfully predicted, and the anticipated results and
actual sample were congruent with CP.
FP: In 18 samples, the CP outcome was incorrectly predicted, anticipated results indicated CP
and actual sample without pregnancy.
FN: In 16 samples, the CP outcome was incorrectly predicted, anticipated results without
pregnancy and actual samples indicated CP.

Actual No
Pregnancy 86

True Negative
(TN)
68

False Positive
(FP)
18

Actual
Pregnancy 82

False Negative
(FN)
16

True Positive
(TP)
66

DT

Total
Population

168

Predicted No
Pregnancy

Predicted
Pregnancy TN: In 73 samples, the CP outcome was successfully predicted, and the anticipated results and

actual sample were congruent without pregnancy.
TP : In 68 samples, the CP outcome was successfully predicted, and the anticipated results and
actual sample were congruent with CP.
FP: In 13 samples, the CP outcome was incorrectly predicted, anticipated results indicated CP
and actual sample without pregnancy.
FN: In 14 samples, the CP outcome was incorrectly predicted, anticipated results without
pregnancy and actual samples indicated CP.

Actual No
Pregnancy 86

True Negative
(TN)
73

False Positive
(FP)
13

Actual
Pregnancy 82

False Negative
(FN)
14

True Positive
(TP)
68

RF

Total
Population

168

Predicted No
Pregnancy

Predicted
Pregnancy TN: In 76 samples, the CP outcome was successfully predicted, and the anticipated results and

actual sample were congruent without pregnancy.
TP : In 70 samples, the CP outcome was successfully predicted, and the anticipated results and
actual sample were congruent with CP.
FP: In 10 samples, the CP outcome was incorrectly predicted, anticipated results indicated CP
and actual sample without pregnancy.
FN: In 12 samples, the CP outcome was incorrectly predicted, anticipated results without
pregnancy and actual samples indicated CP.

Actual No
Pregnancy 86

True Negative
(TN)
76

False Positive
(FP)
10

Actual
Pregnancy 82

False Negative
(FN)
12

True Positive
(TP)
70

XGBoost

Total
Population

168

Predicted No
Pregnancy

Predicted
Pregnancy TN: In 77 samples, the CP outcome was successfully predicted, and the anticipated results and

actual sample were congruent without pregnancy.
TP : In 70 samples, the CP outcome was successfully predicted, and the anticipated results and
actual sample were congruent with CP.
FP: In 9 samples, the CP outcome was incorrectly predicted, anticipated results indicated CP
and actual sample without pregnancy.
FN: In 12 samples, the CP outcome was incorrectly predicted, anticipated results without
pregnancy and actual samples indicated CP.

Actual No
Pregnancy 86

True Negative
(TN)
77

False Positive
(FP)
9

Actual
Pregnancy 82

False Negative
(FN)
12

True Positive
(TP)
70

LightGBM

Total
Population

168

Predicted No
Pregnancy

Predicted
Pregnancy TN: In 80 samples, the CP outcome was successfully predicted, and the anticipated results and

actual sample were congruent without pregnancy.
TP : In 72 samples, the CP outcome was successfully predicted, and the anticipated results and
actual sample were congruent with CP.
FP: In 6 samples, the CP outcome was incorrectly predicted, anticipated results indicated CP
and actual sample without pregnancy.
FN: In 10 samples, the CP outcome was incorrectly predicted, anticipated results without
pregnancy and actual samples indicated CP.

Actual No
Pregnancy 86

True Negative
(TN)
80

False Positive
(FP)
6

Actual
Pregnancy 82

False Negative
(FN)
10

True Positive
(TP)
72
F
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By examining the feature rankings in Table 4, it becomes

evident that the concentration of estrogen at the time of HCG

injection (etwo) plays a crucial role in predicting clinical pregnancy.

EM TNK, Years, and BMI consistently appear among the top five

important features in all four algorithms. These factors are

influential and should not be disregarded during prediction.

Moreover, the table reveals that Decision Tree and Xgboost

algorithms generate similar feature importance rankings since

both algorithms construct the same tree structure during training.

Overall, we used a comparative approach to demonstrate the

prediction results of the LightGBM algorithm and selected

benchmark algorithms on the processed dataset. Based on the

information from the confusion matrix showing four different

prediction outcomes, we calculated accuracy, precision, recall, and

F1 score. We also plotted receiver operating characteristic (ROC)
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curves for each algorithm using 5-fold cross-validation. The

experimental results showed that our proposed algorithm

performed exceptionally well in all evaluation metrics,

demonstrating significant advantages in predicting clinical

pregnancy based on the GWO-LightGBM algorithm framework.

Additionally, we estimated feature importance and correlation

scores for these four algorithms, providing valuable insights for

future algorithm optimization.
4 Discussion

Traditional statistical methods are not suitable for establishing

prediction models for the outcome of IVF-ET treatment due to the

influence of various factors and the complex interactions among
A B

D

E F

C

FIGURE 6

ROC curves are used to evaluate the performance of six machine learning models with 5-fold cross-validation: (A) KNN model; (B) NB model; (C)
DT model; (D) RF model; (E) XGBoost model; (F) LightGBM model.
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them, which violate the assumption of independence between

variables. Machine learning methods, in contrast to traditional

statistical methods, have the ability to effectively model complex

systems by considering the intricate relationships and associations

among variables. This approach affords the opportunity to generate

unbiased and robust models for future predictions, facilitating

synergy between various parameters that may not have direct

connections to the outcomes (30). On the other hand, machine

learning methods offer potential for improving the pregnancy rate

after assisted reproductive technology (ART) treatment. However,

despite numerous reports on prediction models for IVF-ET

treatment outcomes both domestically and in- ternationally, these

models exhibit limitations, such as low prediction accuracy, limited

sample sources (mostly relying on national large sample databases),

and a lack of baseline characteristics of the study population.

It is widely recognized that improving clinical pregnancy rates

has always been a key focus and challenge in the application and

promotion of assisted reproductive technology. Through the

utilization of machine learning to establish predictive models,

clinical doctors can make adjustments to relevant adverse factors

during the in vitro fertilization embryo transfer (IVF-ET) process
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for infertile couples, providing personalized consultations to

improve treatment outcomes (31, 32). Various studies in the

literature aim to predict clinical pregnancy outcomes. These

studies utilize a range of variables, data processing methods, and

machine learning techniques, hindering direct comparisons.

Among them, researchers have primarily focused on technological

innovations in data processing, particularly in the area of feature

selection, as well as advancements in predictive algorithms, during

the application of machine learning for predicting clinical

pregnancy outcomes.

In studies predicting clinical pregnancy outcomes after ART, a

minimum of 4 features was reported (19), and the maximum

number was 82 (33). Based on statistical data, among the 25

studies, the variable analysis in 10 studies involved the use of

embryological, clinical, and demographic data in the IVF dataset,

while only five studies incorporated sperm parameters into these

variables. In the current research, most studies only utilized day 2-3

embryo transfers, while only one study included both day 5

blastocyst transfers and day 3 embryo transfers (34). In

comparison to embryos, blastocysts demonstrate a higher degree

of synchronization with the uterine lining. Furthermore, transfer at
FIGURE 7

Ranking of feature importance for 4 algorithms.
TABLE 4 Features ranking of 4 algorithms.

Ranking Random Forest Decision Tree XGBoost LightGBM

1 etwo etwo etwo BMI

2 Years Years BMI etwo

3 Age Age tdose EM TNK

4 BMI BMI EM TNK Age

5 EM TNK EM TNK Years Years
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the blastocyst stage creates a more physiologically natural

environment and possesses a greater capacity for implantation.

Consequently, there has been an increasing number of patients

undergoing blastocyst transfers. Including the day 5 transfer

variable has a significant impact on the results, and assists in

attaining more realistic and feasible outcomes (35).

This study utilized five machine learning methods and

concluded that the concentration of estradiol, years of infertility,

BMI, and endometrium thickness on HCG Day were the top four

most important variables. Concentration of estradiol, as an

indicator of ovarian reserve, was confirmed as the primary

predictive variable, which is consistent with findings from

previous research (36–39). The years of infertility, as the second

important variable, aligns with the findings of Linda’s study (40).

Moreover, BMI, as a measure of body health, has the potential to

disrupt hormonal balance, decrease fertilization and oocyte

maturation rates, and negatively impact oocyte or embryo quality,

consequently influencing pregnancy outcomes (41, 42). The

incorporation of BMI as a significant predictive indicator

highlights a specific issue in present-day infertility. Bearing in

mind the vital role of the uterine endometrium in embryo

implantation, its inclusion as a variable signifies an essential

factor influencing clinical pregnancy outcomes.

In 2013, Güvenir et al. (43) conducted a study using the basic

information and IVF cycle data of 1456 infertile couples from a local

assisted reproductive institution. They utilized three different

algorithms, namely the SERA algorithm, Naïve Bayes, and

Random Forest, to develop a predictive model for successful

pregnancy outcomes. These algorithms were employed to analyze

a total of 64 independent predictive factors. The AUC values for the

three algorithmic models were determined to be 0.833, 0.794, and

0.769, respectively. It’s AUC of the model proposed in this study is

significantly higher than the findings of previous reports, but it was

much lower than the AUC value of 0.9227 predicted by the

LightGBM model in this study. Untill to 2020, Hassan et al. (44)

recruited a sample of 1048 patients and utilized five algorithms,

including Support Vector Machines (SVM) and random forest, to

develop a predictive model for pregnancy. The study employed two

methods, namely feature selection and non-feature selection, to

construct predictive models for these algorithms. The findings of

the study suggest that the performance of the predictive models

significantly improved after applying feature selection. Moreover,

the study identified the SVM model, following feature selection, as

the most effective with an impressive AUC of 0.995. which is higher

than our study. But in contrast, our study employed a more

extensive range of evaluations, utilizing machine learning model

performance as the basis. A comprehensive comparative analysis

was conducted to assess the applicability and robustness of

the models.

Generally, machine learning models excel in predicting the

clinical pregnancy outcome of IVF-ET treatment. The significant

variables identified by our proposed LightGBM algorithm align

closely with the existing literature. Moreover, by comparing it with

other standard algorithms, we have confirmed the effectiveness and

accuracy of our proposed algorithm.
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5 Conclusion

In this study, we collected samples from patients in our

reproductive center and employed six representative algorithms,

considering comprehensive feature values, to examine the use of

machine learning algorithms in predicting the clinical pregnancy

outcome of IVF-ET. Our findings suggest that the LightGBM model

demonstrates superior predictive capabilities and classification

accuracy, making it an ideal model for forecasting clinical

pregnancy outcomes in future assisted reproductive technologies.

Furthermore, we discovered that the concentration of estradiol, years

of infertility, BMI, and endometrium thickness on HCG Day are the

four most significant variables. These results will enhance fertility

specialists’ ability to predict IVF cycle outcomes, provide consultative

guidance to patients, and further determine the importance of each

IVF variable in successful treatment, thus prompting the

development of novel strategies to optimize these variables.
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