
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Mark Vickers,
The University of Auckland, New Zealand

REVIEWED BY

Anne Gabory,
Institut National de recherche pour
l’agriculture, l’alimentation et l’environnement
(INRAE), France
Camille Fung,
The University of Utah, United States

*CORRESPONDENCE

Julian K. Christians

julian_christians@sfu.ca

RECEIVED 28 September 2023
ACCEPTED 11 December 2023

PUBLISHED 22 December 2023

CITATION

Christians JK and Reue K (2023) The role of
gonadal hormones and sex chromosomes
in sex-dependent effects of early nutrition
on metabolic health.
Front. Endocrinol. 14:1304050.
doi: 10.3389/fendo.2023.1304050

COPYRIGHT

© 2023 Christians and Reue. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 22 December 2023

DOI 10.3389/fendo.2023.1304050
The role of gonadal hormones
and sex chromosomes in sex-
dependent effects of early
nutrition on metabolic health
Julian K. Christians1,2,3,4* and Karen Reue5

1Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, 2Centre for
Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada, 3British
Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada, 4Women’s Health
Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada,
5Department of Human Genetics, David Geffen School of Medicine, University of California, Los
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Early-life conditions such as prenatal nutrition can have long-term effects on

metabolic health, and these effects may differ between males and females.

Understanding the biological mechanisms underlying sex differences in the

response to early-life environment will improve interventions, but few such

mechanisms have been identified, and there is no overall framework for

understanding sex differences. Biological sex differences may be due to

chromosomal sex, gonadal sex, or interactions between the two. This

review describes approaches to distinguish between the roles of

chromosomal and gonadal sex, and summarizes findings regarding sex

differences in metabolism. The Four Core Genotypes (FCG) mouse model

allows dissociation of the sex chromosome genotype from gonadal type,

whereas the XY* mouse model can be used to distinguish effects of X

chromosome dosage vs the presence of the Y chromosome.

Gonadectomy can be used to distinguish between organizational

(permanent) and activational (reversible) effects of sex hormones. Baseline

sex differences in a variety of metabolic traits are influenced by both

activational and organizational effects of gonadal hormones, as well as sex

chromosome complement. Thus far, these approaches have not been widely

applied to examine sex-dependent effects of prenatal conditions, although a

number of studies have found activational effects of estradiol to be protective

against the development of hypertension following early-life adversity.

Genes that escape X chromosome inactivation (XCI), such as Kdm5c,

contribute to baseline sex-differences in metabolism, while Ogt, another

XCI escapee, leads to sex-dependent responses to prenatal maternal stress.

Genome-wide approaches to the study of sex differences include mapping

genetic loci influencing metabolic traits in a sex-dependent manner. Seeking

enrichment for binding sites of hormone receptors among genes showing
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sexually-dimorphic expression can elucidate the relative roles of hormones.

Using the approaches described herein to identify mechanisms underlying

sex-dependent effects of early nutrition on metabolic health may enable the

identification of fundamental mechanisms and potential interventions.
KEYWORDS

sex chromosomes, gonadal sex, Four Core Genotypes, gonadectomy,
developmental origins of health and disease, fetal programming, genome-wide
association studies, quantitative trait loci
Introduction

Early-life conditions such as prenatal nutrition can have long-

term effects on metabolic health, and these effects may differ

between males and females (1–6). Moreover, the effectiveness of

potential interventions may depend on sex (7). Understanding the

biological mechanisms underlying such sex-dependent responses

will improve interventions by, for example, revealing why one sex is

protected or the other sex is vulnerable. However, few mechanisms

underlying sex differences in the response to early-life environment

have been identified, and there is no established framework for

investigating sex differences, or for predicting sex-dependence. In

contrast, there has been substantial work on the mechanisms

underlying baseline sex differences in metabolism (8–16), i.e.,

differences between the sexes in the general population and in

animal models not manipulated in early life. The application of

similar powerful approaches to understand sex-dependent

developmental programming would be valuable.

Biological sex differences can be ascribed to two factors: genetic

sex, which is determined at conception by inheritance of XX or XY

chromosomes, and gonadal sex, which is specified by the sex

chromosomes and influences the hormonal milieu at specific

times during development and in adulthood. In many cases, there

are interactions between chromosomal and gonadal sex to influence

a particular trait. Additionally, there are interactions between

biological sex and gender, which relates to cultural and behavioral

norms of femininity and masculinity. The intersection of biological

sex and gender likely contributes to sex differences in the prevalence

and presentation of numerous diseases. However, in this review, we

will use the term “sex” for brevity because we are primarily

concerned with exposures that occur prior to birth and will often

refer to animal models.

Most work on sex differences in metabolism has focused on the

role of gonadal hormones, or simply assumes that sex differences in

adulthood are due to hormonal effects. However, the emergence of

sex differences (e.g., in gene expression) prior to the development of

gonads (17, 18) illustrates the importance of chromosomal sex, but

what physiological processes are affected, and how this influences

interactions between the early environment and health later in life
02
are not clear. The roles of the sex chromosomes can be further

categorized into the role of X chromosome dosage vs the presence of

the Y chromosome. Similarly, the role of sex hormones can be

divided into organizational (permanent) and activational

(reversible) effects (19).

The purpose of this review is to provide an overview of

approaches that allow the discrimination of specific sex

components that explain baseline sex differences in metabolism,

to describe how they have been applied, and to propose how they

might be valuable in studies of developmental programming. In

particular, we focus on strategies to uncover the relative importance

of gonadal hormones and sex chromosomes in the development of

sex-biased effects of early nutrition on metabolic health.
Approaches to dissect the roles of sex
chromosomes and hormones

Using standard experimental models, it has not been possible to

distinguish potential effects of sex chromosomes and gonadal

hormones on responses to early life conditions. Although not yet

used to study developmental programming, the Four Core Genotypes

(FCG) mouse model is the most widely-used system for examining

the relative roles of gonadal and chromosomal sex (20, 21). This

model allows dissociation of the sex chromosome genotype (XX or

XY) from gonadal type (ovaries or testes) so that the impact of each

on traits of interest may be evaluated. The model combines a deletion

in the testis-determining Sry gene from the Y chromosome (referred

to as Y-), with an insertion of the Sry gene on an autosome (12, 16),

such that the determination of gonadal sex is independent from the

sex chromosomes. As shown in Figure 1A, mating between an XY-

Srymale with a wild-type XX female yields 4 genotypes: XX Srymales

(with testes), XY- females (with ovaries), as well as normal XX females

and XY- Sry males (carrying Sry on an autosome rather than the Y

chromosome). Analysis of a trait of interest using the FCG model

reveals whether a trait is influenced by chromosomal sex, gonadal sex,

or an interaction between the two. Depending on the results,

subsequent analyses may involve further investigation of the sex

chromosome effect or gonadal effect as described below.
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If analysis with FCG mice shows that XX mice (including both

gonadal females and gonadal males) differ from XY- mice

(including both gonadal females and gonadal males), this

indicates that chromosomal sex is a determinant. In that case, it

becomes valuable to determine whether dosage of the X or Y

chromosome is causal. This can be approached with the XY*

mouse model, which allows the generation of mice with XO, XX,

XY or XXY chromosome complements due to the ability of the Y*

chromosome to undergo abnormal recombination events (12).

Analysis of the trait of interest in XY* mice reveals whether it is

influenced by presence of one or two X chromosomes, or presence

or absence of a Y chromosome (Figure 1B). This can aid in the

identification of potential candidate genes on the X or Y

chromosome. Studies in humans with the same sex chromosome

genotypes as in the XY* model, such as XO (Turner syndrome) and

XXY (Klinefelter syndrome), have corroborated sex chromosome

effects observed in XY* mice in traits such as adiposity and

development of metabolic syndrome (15). However, studies of

these genotypes in humans are challenging due to limited

numbers of subjects and complications due to exogenous

hormone treatment.

If analysis with FCG mice indicates that a trait segregates with

Sry genotype (i.e., mice with testes differ from mice with ovaries), it

is attributed to gonadal sex (Figure 1A). In this case, gonadectomy

in adult mice can be used to further distinguish organizational and

activational effects of gonadal hormones (Figure 1C) (16). While

gonadectomy is useful for identifying activational effects of the sex

hormones even in standard male and female mice, organizational

effects of sex hormones are confounded with the effects of

chromosomal sex unless the FCG model is used. Deeper

investigation of gonadal sex effects may also be performed by
Frontiers in Endocrinology 03
gonadectomy followed by replacement of specific gonadal

hormones, and by ablation of estrogen and androgen hormone

action with selective agonists or by genetic deletion (21–23).
Results from mouse models that
dissect the roles of sex chromosomes
and hormones

Studies in FCG and XY* mouse models have identified specific

roles for chromosomal and gonadal sex in numerous physiological

traits including behavior, neurological diseases, atherosclerosis, and

obesity (12, 24–30). These studies are aided by the availability of

FCG and XY* strains with a C57BL/6 inbred genetic background,

which is susceptible to numerous neurologic, immunologic and

metabolic diseases. The earliest studies of metabolism in FCG mice

assessed the determinants of sex differences in body weight, which

showed that this trait is influenced by both activational and

organizational effects of gonadal hormones, as well as sex

chromosome complement. As is typical in mouse models, body

weight was greater in gonadally intact males than females, but XX

mice were heavier than XY mice (28, 31). XX chromosome

complement was also associated with increased adipose tissue

mass, fatty liver, higher plasma cholesterol levels, and

development of atherosclerotic lesions in the aortic sinus (25, 28,

29, 31). Gonadal sex, particularly via the activational effects of sex

hormones, was the predominant determinant of circulating

triglyceride levels, and had major effects on gene expression in

liver, adipose tissue, and hippocampus of FCG mice, although sex

chromosomes influenced expression of specific genes as well (29,
A B C

FIGURE 1

Approaches to identify mechanisms underlying sex differences. (A) Four Core Genotypes mouse model; (B) XY* mouse model; (C) Gonadectomy.
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32–35). There were also interactions between gonadal sex and

chromosomal sex, for example, in fat and lean body composition

(28, 30, 31).

One component of energy balance that contributes to sex

differences in adiposity is food consumption. Interestingly, the

effects of gonadal hormones and sex chromosomes on food

consumption differed between the dark and light phases, with X

chromosome copy number influencing food intake specifically

during the inactive phase of the circadian cycle (28, 31).

Gonadectomized XY mice consumed more of a palatable food

and were more motivated to obtain it than XX mice (36).

Additional work showed that both chromosome complement and

activational effects of gonadal hormones influenced circadian

regulation, particularly in males (37).

Studies in inbred C57BL/6 XY* mice revealed that differences in

adiposity that are associated with chromosomal sex were due to

number of X chromosomes, rather than presence of the Y (28).

However, on an outbred MF1 genetic background, the presence of a

Y chromosome, even in the absence of testes, could influence

adiposity, indicating a role for non-Sry Y chromosome genes,

perhaps including Y-linked genes that are paralogous to X-linked

genes (38). In some studies, removing the activational effects of

gonadal hormones by gonadectomy uncovered sex differences that

were not apparent in intact mice, suggesting that some activational

effects of hormones may counterbalance chromosomal effects,

causing intact XX females and XY males to be more similar to

one another (29). Gonadal and chromosomal sex influencing a

given trait in opposite directions appears to be a general

phenomenon beyond metabolic traits (27, 39).

To date, no study has used the Four Core Genotypes model to

examine sex-dependent effects of prenatal nutrition. However, a

few studies have examined interactions between postnatal

nutrition, gonadal hormones and sex chromosomes on

metabolic traits. The effects of gonadal and chromosomal sex on

adiposity are often similar on regular and high-fat diets (28),

although an XX complement exacerbated the effects of a high-fat

diet on adiposity (30), and XX mice also developed fatty liver and

reduced insulin sensitivity (28). In some cases, the relative roles of

gonadal and chromosomal sex are affected by diet. Whereas

adipose tissue miRNAs were affected primarily by the

activational effect of gonadal hormones on a regular diet, a

high-fat diet revealed organizational and chromosomal effects

(40). Similarly, the effects of chromosomes, gonadal sex, and

gonadectomy on plasma lipid traits varied between regular and

high cholesterol diets (29). In a model of hypercholesterolemia

brought on by genetic deletion of apolipoprotein E, gonadal but

not chromosomal sex had a significant effect on total plasma

cholesterol and free fatty acids, with higher levels in gonadal males

(35), as also occurs in wildtype mice (29). In this model of

hypercholesterolemia, gonadal sex and chromosomal sex both

widely influenced hepatic gene expression, with more than 3000

genes showing differential expression due to ovaries vs. testes, and

~1400 genes having differential expression in XX vs. XY mice (35).

Importantly, differentially expressed genes influenced by gonadal

and chromosomal sex were similarly distributed across autosomes

and the X chromosome (35).
Frontiers in Endocrinology 04
Gonadectomy to study sex-dependent
effects of early life environment

Gonadectomy has been widely used to investigate the role of

acute gonadal hormone action in sex differences, particularly in

rodents. However, relatively few studies have used this approach to

investigate sex-dependence of developmental programming,

although a series of studies have examined activational effects of

hormones on the development of hypertension following

intrauterine growth restriction in rats (41). Intrauterine growth

restriction, induced by surgically reduced uteroplacental perfusion,

leads to hypertension in males but not females. Castration in males

eliminated the hypertensive response to growth restriction (42). In

contrast, ovariectomy revealed susceptibility to growth-restriction

induced hypertension, which was rescued by exogenous estradiol

(43). These results indicate activational, permissive effects of

testosterone and protective effects of estradiol. Further studies

have used gonadectomy to further examine the mechanisms

underlying these effects, such as renal sensitivity to angiotensin II

(44–47).

A maternal low-protein diet also increases blood pressure in

rats, sometimes in both sexes (48), and sometimes in males only

(49). In contrast to the effects of castration on growth-restriction

induced hypertension, castration did not eliminate maternal low-

protein diet-induced hypertension (49). At younger ages (16 weeks

of age), ovariectomy exacerbated the effects of a maternal low-

protein diet on blood pressure, which was partially reversed by

estradiol, again suggesting protective activational effects of estradiol

(50). However, at 12 months of age, ovariectomy ameliorated effects

of a maternal low-protein diet on blood pressure (51). While

ovariectomy also increased urinary albumin and protein and

urine volume, these effects were independent of maternal diet,

indicating that gonadal status did not influence the response to

early-life nutrition (51).

Perinatal nicotine exposure increases angiotensin II-induced

hypertension in males but not females (52), and ovariectomy

increased the response in nicotine-exposed females, which was

rescued by exogenous estradiol (53), suggesting protective

activational effects of estradiol. Maternal separation, a model of

early life stress, did not increase baseline blood pressure, but

enhanced angiotensin II-induced hypertension in male rats, and

this effect was attenuated by castration (54), consistent with a

permissive activational effect of testosterone. While these studies

generally suggest that the sex-dependent programming of

hypertension is due to activational effects of sex steroids, the FCG

model has also shown effects of chromosomal complement on

angiotensin II-induced hypertension in the absence of prenatal

insults (55).
Genes that escape X
chromosome inactivation

In mammals, X chromosome gene dosage is partially

normalized between XX and XY cells by transcriptional
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inactivation of most genes on one X chromosome in females during

early development. However, specific X-linked genes escape X-

chromosome inactivation (XCI), sometimes in a tissue-specific

manner (56–59). Genes that escape XCI are good candidates for

the causative agents responsible for effects of sex chromosomes.

Moreover, some of these genes are conserved between rodents and

humans (60), such that their study in the former could inform sex

differences in the latter. In the studies of sex differences in adiposity

described above, a number of XCI escapees, including Kdm5c, had

higher expression in XX liver and adipose tissue than in the

corresponding tissue of XY mice (21, 23). Kdm5c encodes a

histone demethylase that modifies histone marks at gene

promoters and enhancers to influence gene expression across the

genome. Hemizygous Kdm5c knockout XX mice, with one

functional allele and one knockout allele (i.e., gene dosage similar

to XY mice) showed that Kdm5c dosage influences adiposity and

that modifying Kdm5c gene dosage mirrors many differences in

metabolism that occur between XX and XY mice (30). The human

KDM5C gene also escapes XCI and KDM5C expression levels and

genetic variants are both associated with body mass (30).

The X-linked gene O-linked N-acetylglucosamine transferase

(Ogt) gene undergoes random XCI in most adult tissues (61, 62) but

escapes XCI in extraembryonic tissues. As a result, expression is

higher in female placentas than in male placentas in both mice and

humans (63–65). As with Kdm5c, the protein encoded by Ogt plays

a role in histone modification, such that its sexual dimorphism

could have cascading effects on many other genes (66). In the

mouse, placental expression of Ogt exerts effects on fetal

development, influencing fetal hypothalamic gene expression (66),

leading to sex-dependent responses to prenatal maternal stress (64,

67). As with Kdm5c, the role of Ogt in sex differences has been

investigated by hemizygous deletion to render placental dosage

similar in males and females (66). While Ogt would be expected to

be responsive to nutrition (68, 69), it is not clear whether placental

OGT mediates sex-dependent responses to maternal nutrition.

Placental Ogt expression was upregulated by a high-fat diet and a

low-fat diet (both compared to an intermediate control) in one

study (70), but was not affected by other obesogenic diets (71, 72) or

a low protein diet (73). The placental expression of Kdm5c was not

affected by any of these diets.

Other genes escaping XCI, such as spermine synthase (SMS),

have widespread effects on placental metabolism and gene

expression (74) and so might have sex-dependent effects on the

placental response to prenatal nutrition. More generally, genes

escaping XCI have higher expression in females, and thus any

insult or environmental perturbation that affects the expression of

such a gene would be expected to have a proportionately larger

effect on gene expression in males. This leads to the prediction that,

where sex differences are due to escape from XCI, males should be

more affected by early-life environment, as is the case with the

effects of prenatal stress mediated by Ogt (64, 67).

While specific genes that escape X chromosome inactivation

have been examined, the role of Y chromosome genes is less clear.

As described above, in some genetic backgrounds the presence of a

Y chromosome can influence adiposity (38). Moreover, interactions

between the X and Y chromosomes may influence placental weight
Frontiers in Endocrinology 05
(75). While these effects on placental weight were observed in the

context of interspecific hybrids, they may also occur in placental

responses to the environment. Beyond the placenta, some Y

chromosome genes are broadly expressed in adult tissues and

may balance the expression of X-linked genes that escape XCI

(76). These include regulatory genes and so could influence the

expression of autosomal genes, leading to lasting effects on the

offspring (76).
Genome-wide approaches

Beyond candidate genes on the sex chromosomes, genetic

mapping across the genome has identified autosomal loci that

influence traits in a sex-biased manner. Quantitative trait locus

(QTL) and genome-wide association studies (GWAS) both seek to

identify associations between variation at the DNA level (e.g.,

single-nucleotide polymorphisms, SNP) and phenotypic variation.

In humans, GWAS studies have identified autosomal loci affecting

traits related to fat distribution in a sex-biased manner (11, 16, 77,

78). GWAS studies identify associations between genomic regions

and phenotypic traits and not the underlying mechanisms or even,

in most cases, the underlying genes. However, there are diverse

potential mechanisms by which an autosomal locus could have sex-

dependent effects, e.g., affecting the expression of sex-steroid

receptors or sex-steroid synthesizing enzymes, interacting with

proteins coded by Y-chromosome genes or genes that escape XCI,

or acting as transcription factors that affect expression of X- or Y-

chromosome genes. GWAS is a powerful approach, but its power

has not been fully realized for the analysis of genetic determinants

of sex differences because many studies fail to segregate results by

sex. Additionally, GWAS studies often exclude the sex

chromosomes since they require more complex statistical

methods in the analysis (16), an issue also encountered in

methylation studies (79).

Mouse models are also valuable for genetic mapping of loci

affecting traits in a sex-dependent manner. Genome-wide analyses

in mice have identified sex-specific loci affecting insulin resistance,

adiposity, plasma triglycerides and liver triglycerides (80, 81).

Various populations are available for mapping QTL in mice (82),

including the Hybrid Mouse Diversity Panel. This panel of >100

mouse strains (83) has been phenotyped for numerous metabolic

traits (81, 84) and genotyped at markers throughout the genome

(85), allowing association of phenotype and genotype data to

identify associated loci. In principle, it would be feasible to

acquire a set of strains, examine effects of early life nutrition on

metabolic traits, and map loci for the interactions between sex and

prenatal environment. However, using such approaches to identify

loci influencing interactions between sex and prenatal or postnatal

diet will be challenging. Resources are typically designed to detect

associations between a trait and genotype, whereas identifying an

interaction in the effects of genotype and sex on a trait requires

greater statistical power, and identifying a three-way interaction

between genotype, sex and prenatal or postnatal diet will pose an

even greater challenge. Genome-wide genetic approaches also rely

on genetic variation; they may identify loci underlying differences
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between individuals, but not necessarily those that are involved in

responses in all individuals of a given sex where there is no genetic

variation. Nevertheless, such approaches could reveal pathways that

influence the impact of sex on pre- and postnatal nutrition that are

generalizable across different genetic backgrounds.

In addition to identifying associations between genetic variation

and metabolic traits, many studies examine associations with gene

expression levels to identify expression QTL (eQTL). This allows

colocalization between loci that influence gene expression and loci

that influence metabolic traits (86), which can contribute to

identifying causal genes underlying sex differences (81). eQTL are

often sex-dependent in tissue-specific ways (81, 86, 87). However,

mapping of eQTL to identify roles of sex chromosomes, i.e., by

mapping eQTL to sex chromosomes, would be challenging. Most

eQTL studies focus on associations of variants close to a gene (such

as in a gene promoter) with the expression of that gene, identifying

what are known as cis eQTL. To test associations of variants on the

sex chromosomes with expression of genes throughout the genome,

which would identify trans-acting eQTL, would require a larger

search space, and consequently a larger number of comparisons and

reduced statistical power.

Genome-wide genetic approaches can also provide insight into

the role of gonadal hormones on gene expression by detecting

colocalization between eQTL influencing genes with sex differences

in expression and regulatory elements with estrogen receptor or

androgen receptor binding motifs (88). The enrichment of known

transcription factor binding sites in close proximity to genes with

sexually dimorphic expression can also be assessed independently

of eQTL. Genes expressed in a sexually dimorphic manner often

exhibit enrichment for androgen or estrogen receptor binding sites,

consistent with activational effects of hormones playing a

prominent role in gene expression (32, 33), although this is not

always the case (87). In fact, binding sites for transcription factors

other than estrogen and androgen receptors show the greatest

enrichment at genes with sexually dimorphic expression (86). For

example, binding sites for NR3C1, the glucocorticoid receptor, are

sometimes more enriched than binding sites for androgen and

estrogen receptors at genes with differential expression regulated by

activational effects of sex steroids in mouse liver and adipose tissue

(33). Thus, while activational effects of sex steroids contribute to sex

differences in gene expression, other transcription factors are

also important.

Further study is required to understand the intricate

interactions between gonadal hormones and transcription factors

that influence sex-biased gene expression. The construction of co-

expression networks in combination with transcription factor

binding site data has shown that sex steroid receptors are not the

predominant transcription factors controlling expression networks,

but that these receptors target different genes in males and females

in tissue-specific ways (89). This provides additional evidence that

transcription factors other than gonadal hormone receptors play an

important role in regulating sex-biased gene expression. Applying

such analyses to studies of the effects of early nutrition (e.g (70–

73).,) could contribute to understanding critical transcription

factors and regulatory networks.
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Limitations, gaps and future directions

Identifying mechanisms underlying sex-dependent effects of

early nutrition on metabolic health requires consistent sex-

dependent effects. Unfortunately, results are often not consistent

between studies; in a review of the sex-dependent effects of impaired

prenatal nutrition in rodents, the only consistent effect on long-

term health was that males were more susceptible to hypertension

(90), and similar inconsistencies have been observed in human

studies (91). A contributing factor to these inconsistencies is that

many studies rely on inadequate statistical approaches, such as

analyzing males and females separately and interpreting effects to be

sex-dependent when they are significant in one sex but not the

other. However, analyzing the sexes separately, without explicitly

testing whether the effect in males differs from the effect in females

using rigorous approaches (e.g., testing for statistical interactions),

will increase the rate of false positives (92, 93). Beyond

inconsistencies due to spurious results, there may be real

differences between studies where effects of sex on metabolic

traits depend on genetic background (81). Reflecting the literature

in this field, this review has focused largely on rodents, but studies

in rodents may not always recapitulate mechanisms that operate in

humans. One difference between species is that more genes escape

XCI in humans than in mice, but approximately half of those genes

that escape in mice also escape in humans (60), making mice a valid

model to study that subset of genes and suggesting that the impact

of XCI genes may be even more pronounced in human biology.

Furthermore, identifying what is conserved and what has diverged

will improve understanding of species differences, which can

identify questions of interest to be addressed in humans (12).

We have provided an overview of approaches that are widely

used to study sex differences yet remain underutilized in the field of

fetal programming. Key approaches include the use of gonadectomy

to study activational effects of gonadal hormones, and FCG and XY*

mouse models to reveal relative effects of gonadal and chromosomal

sex components. The FCG model has been used to study sex

differences in a maternal antibody-induced model of autism

spectrum disorder (94) and could be applied in an analogous

manner to other developmental programming models. Given the

known roles of Ogt and Kdm5c (discussed above), genes that escape

XCI deserve further investigation for their roles in sex differences.

The placenta likely plays an important role in sex-dependent

programming (1, 3, 95, 96), and the FCG model could be used to

study sex differences in this tissue given that it is the same genotype

as the fetus. In humans in early pregnancy, the production of fetal

androgens does not increase differences in placental gene expression

between males and females (97), suggesting important roles of sex

chromosomes in this tissue.

Identifying the roles of chromosomes and hormones in sex-

dependent effects of early nutrition on metabolic health may allow

us to move beyond simply cataloging sex differences and to identify

general patterns, such as whether sex differences due to hormones

or chromosomes are more responsive to prenatal insults.

Understanding these mechanisms could stimulate further areas of

research, including identification of interactions between
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glucocorticoids and sex steroids in metabolic programming (98),

and sex-dependent responses to pharmaceutical intervention (35).
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68. Hardivillé S, Hart GW. Nutrient regulation of signaling, transcription, and cell
physiology by O- GlcNAcylation. Cell Metab (2014) 20:208–13. doi: 10.1016/
j.cmet.2014.07.014

69. Hart B, Morgan E, Alejandro EU. Nutrient sensor signaling pathways and
cellular stress in fetal growth restriction. J Mol Endocrinol (2019) 62:R155–65.
doi: 10.1530/JME-18-0059

70. Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE, Rosenfeld CS. Contrasting
effects of different maternal diets on sexually dimorphic gene expression in the murine
placenta. Proc Natl Acad Sci U.S.A. (2010) 107:5557–62. doi: 10.1073/pnas.1000440107

71. de Barros Mucci D, Kusinski LC, Wilsmore P, Loche E, Pantaleão LC, Ashmore
TJ, et al. Impact of maternal obesity on placental transcriptome and morphology
associated with fetal growth restriction in mice. Int J Obes (2020) 44:1087–96.
doi: 10.1038/s41366-020-0561-3

72. Gabory A, Ferry L, Fajardy I, Jouneau L, Gothié JD, Vigé A, et al. Maternal diets
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