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Background: Overexpression of the transcription factor NR5A1 and constitutive

activation of canonical Wnt signalling leading to nuclear translocation of beta-

catenin are hallmarks of malignancy in adrenocortical carcinoma (ACC). Based

on the analysis of genomic profiles in H295R ACC cells, Mohan et al. (Cancer Res.

2023; 83: 2123-2141) recently suggested that a major determinant driving

proliferation and differentiation in malignant ACC is the interaction of NR5A1

and beta-catenin on chromatin to regulate gene expression.

Methods: I reanalyzed the same set of data generated by Mohan et al. and other

published data of knockdown-validated NR5A1 and beta-catenin target genes,

Results: Beta-catenin is mainly found in association to canonical T cell factor/

lymphoid enhancer factor (TCF/LEF) motifs in genomic DNA. NR5A1 and beta-

catenin regulate distinct target gene sets in ACC cells.

Conclusion:Overall, my analysis suggests a model where NR5A1 overexpression

and beta-catenin activation principally act independently, rather than

functionally interacting, to drive ACC malignancy.

KEYWORDS

adrenocortical carcinoma, beta-catenin, nuclear receptors, transcriptional
regulation, genomics
1 Introduction

Recent studies have allowed to make much progress in our understanding of the

molecular and genomic determinants implicated in the pathogenesis of adrenocortical

carcinoma (ACC), a rare endocrine malignancy. Among those factors, a key role is played

by overexpression of the transcription factor Steroidogenic Factor-1/NR5A1 and activation

of canonical Wnt signalling. NR5A1 overexpression is a common finding in paediatric

ACC (1) and is a marker of malignancy in adults (2). In ACC cells, NR5A1 overexpression

is sufficient to regulate the expression of a set of genes linked to malignancy in a dosage-
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dependent fashion (3–8). On the other hand, somatic mutations of

Catenin beta 1 (CTNNB1) or other genes leading to constitutive

activation of the canonical Wnt pathway are present in about 30%

of ACC, alone or in combination with other genomic alterations (9–

11). Beta-catenin activation is associated to poor outcome in ACC

(12). Activated beta-catenin translocates to the nucleus, where it

regulates gene expression mainly by association with the TCF/LEF

family of transcription factors, even if its interaction with other

classes of transcription factors has been described, including

nuclear receptors (13–15). A number of target genes for activated

beta-catenin has been described in the H295R ACC cell line (where

beta-catenin is constitutively activated due to a CTNNB1 mutation)

after selective downregulation of beta catenin by expression of an

inducible shRNA (16).

Little is known about the potential interplay of those factors in

driving ACC malignancy. Based on the analysis of genomic profiles

in H295R cells, a recent study suggested that a major determinant

driving proliferation and differentiation in malignant ACC is the

interaction of NR5A1 and beta-catenin on chromatin to regulate

gene expression (17). However, by the analysis of the data generated

by Mohan et al. and of published data of knockdown-validated

NR5A1 and beta-catenin target genes, here I show that beta-catenin

is mainly found in association to canonical TCF/LEF motifs in

genomic DNA and that NR5A1 and beta-catenin regulate distinct

target gene sets in H295R ACC cells. These results are strongly

suggestive that NR5A1 and beta-catenin act independently, rather

than functionally interacting, to shape the malignant phenotype of

ACC cells.
2 Materials and methods

2.1 ChIP-seq data analysis

NR5A1 (basal ; SRR19503712), beta-catenin (basal ;

SRR19503710) ChIP-seq and input DNA (SRR19503702) fastq

files from the study by Mohan et al. (17) were retrieved from the

SRA database (https://www.ncbi.nlm.nih.gov/sra). All data analyses

were performed in the Galaxy server (https://usegalaxy.eu) (18).

After quality control and filtering below 20 cut-off value, reads were

mapped on the human genome (version hg38) using Bowtie2 and

default values. For both NR5A1 and beta-catenin ChIP-seq samples

narrow peaks were called from bam files using MACS2 with the

following parameters: control file, input DNA; effective genome

size, 2,700,000,000; build model; lower mfold bound, 5; upper mfold

bound, 50; band width for picking regions to compute fragment

size, 300; peak detection based on 0.05 q-value. After excluding

ENCODE blacklisted regions (ENCFF356LFX), 47,071 peak regions

were obtained for the NR5A1 sample and 1,055 for the beta-catenin

sample. Overlap between those two datasets (979 regions) was

calculated using the Intersect interval tool. The MEME suite

(https://meme-suite.org/meme) (19) was used to analyze DNA

motifs present in the overlapping NR5A1 – beta-catenin ChIP

peaks. After motif analysis by MEME-ChIP, the presence of the
Frontiers in Endocrinology 02
TCF7L2 (MA0523.1 in JASPAR) and NR5A2 (MA0505.2 in

JASPAR) motifs in those sequences was searched by the FIMO tool.
2.2 Gene expression analysis

The lists of genes significantly differentially expressed after

NR5A1 (5, 20, 21) and beta-catenin (16) knockdown in H295R

cells were compared and results visualized using jvenn (22). Gene

Ontology analysis of NR5A1 and beta-catenin target genes was

performed using Metascape (23).
3 Results

3.1 Beta-catenin genomic binding sites
overlapping with NR5A1 binding sites in
H295R cells are enriched with
TCF7L2 motifs

My analysis performed using MACS2 software on the ChIP-seq

data from the Mohan et al.’s study (17) revealed a total of 47,071

genomic binding sites for NR5A1 and 1,055 binding sites for beta-

catenin within H295R cells. Notably, there were 979 binding sites

overlapping binding sites (Figure 1A, Supplementary Table S1 for

details). This is a much smaller figure than the number of

overlapping NR5A1 – beta-catenin binding sites reported by

Mohan et al. (3,559). TCF7L2 and NR5A2 motifs were

significantly enriched in beta-catenin binding sites (1.5e-338 and

3.8e-125, respectively) (Figure 1B). Even if differences in data

analysis methods and thresholds used may account in part for the

discrepancies of my analysis with what reported by Mohan et al.

(17), it is remarkable that out of the 979 NR5A1 – beta-catenin

overlapping peaks, 400 displayed one or more TCF7L2 motifs,

associated or not to a NR5A2 motif, while only 214 NR5A1/beta-

catenin intersect ChIP peaks displayed a NR5A2 motif (76 also

harbouring one or multiple TCF7L2 motif). In addition, 441

NR5A1/beta-catenin intersect ChIP peaks harboured neither

motif (Figure 1C, Supplementary Table S2). These data strongly

suggest that beta-catenin predominantly interacts with cognate TCF

motifs even within overlapping NR5A1 – beta-catenin ChIP peaks.

Examples of adjacent TCF7L2 and NR5A2 motifs within an

overlapping NR5A1 – beta-catenin genomic binding site are

shown in Figure 1D. NR5A1/beta-catenin intersect ChIP peaks

harbouring TCF7L2, NR5A2 or both motifs have a similar genomic

distribution in relationship to gene elements (Figure S1).
3.2 Little overlap among NR5A1 and beta-
catenin target genes in H295R cells

Binding to genomic DNA does not represent evidence for gene

regulation unless complemented with functional data. To

characterize the crosstalk of NR5A1 and beta-catenin on the
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regulation of gene expression programs in H295R cells, I have

compared the published datasets of both NR5A – regulated (5, 20,

21) and beta-catenin – regulated (16) genes in this cell line.

Enriched Gene Ontology categories for genes regulated either

positively or negatively by NR5A1 and beta-catenin are shown in

Figure S2. Prominent enriched categories are genes involved in

steroidogenesis for NR5A1 – positively regulated genes, locomotion

for NR5A1 – negatively regulated genes, Wnt signalling for beta-

catenin – positively regulated genes and regulation of actin

cytoskeleton for beta-catenin – negatively regulated genes. Out of

29 genes positively regulated by beta-catenin, only 3 (CADPS, GRPR

and ISM1) are in common with genes positively regulated

by NR5A1 in at least one of those datasets (Figure 2A,

Supplementary Table S3). On the other hand, out of 29 genes
Frontiers in Endocrinology 03
negatively regulated by beta-catenin, only 4 genes (ITGA8, JAG1,

OTULINL and LXN) were commonly downregulated by NR5A1

and beta-catenin in at least one dataset (Figure 2B, Supplementary

Table S3).
4 Discussion

Previous studies have reported physical and functional

interaction between NR5A1 and beta-catenin to regulate

transcription of specific target genes (13, 24, 25). However, the

study by Mohan et al. (17) has been the first to investigate

the localization of both NR5A1 and beta-catenin binding sites in

the chromatin of H295R ACC cells at the genome-wide scale. Those
A

C

D

B

FIGURE 1

Overlap and motifs in NR5A1 and beta-catenin genomic binding sites in H295R ACC cells. (A) Overlap between NR5A1 and beta-catenin ChIP peaks.
(B) DNA motifs enriched in the 979 NR5A1 – beta-catenin intersect peaks and statistical significance value as calculated by MEME. (C) Abundance of
TCF7L2, NR5A2 or both motifs in the 979 NR5A1 – beta-catenin intersect peaks, as calculated by FIMO. (D) Examples of the presence of various
combinations of the TCF7L2, NR5A2 or both motifs in the sequences of NR5A1 – beta-catenin intersect peaks.
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authors concluded that the interaction between those factors is a

major determinant driving proliferation and differentiation in

malignant ACC.

I have shown here that overlapping NR5A1 – beta-catenin

genomic binding sites in H295R cells contain in large proportion

canonical TCF/LEF motifs, alone or in combination with nuclear

receptor half-sites known as binding motifs for NR5A1/NR5A2.
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This finding strongly suggests that interaction of beta-catenin with

cognate TCF/LEF transcription factors are dominant to shape the

transcriptional profiles of its target genes in ACC cells and are

consistent with the results by Schuijers et al. which showed that

beta-catenin acts nearly exclusively through interaction with TCF/

LEF in colon cancer cells (15). Furthermore, target gene sets

regulated by NR5A1 and beta-catenin in H295R cells are
FIGURE 3

A model for NR5A1 and beta-catenin in driving ACC malignancy. NR5A1 is found overexpressed in ACC, with consequent transcriptional regulation
of dosage-dependent target genes involved in several aspects of the malignant phenotype. Beta-catenin activation in ACC is caused by activating
mutations of CTNNB1 or inactivating mutations in negative regulators of canonical Wnt signalling (ZNRF3, APC). Those produce nuclear translocation
of beta-catenin, which interacts preferentially with TCF/LEF transcription factors and regulates target gene expression.
A B

FIGURE 2

NR5A1 and beta-catenin – regulated genes in H295R cells. (A) Overlap among genes upregulated (downregulated after knockdown) by NR5A1 and
beta-catenin, respectively. (B) Overlap among genes downregulated (upregulated after knockdown) by NR5A1 and beta-catenin, respectively. NR5A1
data are derived from three different datasets (5, 20, 21). Beta-catenin data from Lefèvre et al. (16).
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divergent (Figure 2). Overall, in contrast to the conclusions by the

Mohan et al. article (17), these data provide compelling evidence

that in ACC cells NR5A1 and beta-catenin, which are both relevant

factors driving tumour malignancy, regulate mostly distinct gene

expression programs through different mechanisms. We have

demonstrated that NR5A1 overexpression in ACC cells regulates

the expression of both positive and negative dosage-dependent

target genes which are directly implicated in shaping the

malignant tumour phenotype (3–8). On the other hand,

activating mutations in CTNNB1 and other genetic alterations in

canonical Wnt pathway components in ACC induce nuclear

translocation of beta-catenin and transcriptional regulation of

genes involved in cell proliferation, apoptosis and invasion, being

also associated to immune cell exclusion from the tumour (16, 26–

31). Overall, these data suggest a model where NR5A1

overexpression and beta-catenin activation principally act in

parallel, rather than functionally interacting, to drive ACC

malignancy (Figure 3). Interestingly, both factors can be targeted

by small-molecule inhibitors (26, 32, 33) some of which have

already reached the clinical stage. Combined inhibition of both

NR5A1 and beta-catenin can then be a promising innovative

therapeutic strategy for ACC.
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