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Bone homeostasis, depending on the balance between bone formation and

bone resorption, is responsible for maintaining the proper structure and function

of the skeletal system. As an important group of transcription factors, retinoic

acid receptor-related orphan receptors (RORs) have been reported to play

important roles in bone homeostasis by regulating the transcription of target

genes in skeletal cells. On the other hand, the dysregulation of RORs often leads

to various skeletal diseases such as osteoporosis, rheumatoid arthritis (RA), and

osteoarthritis (OA). Herein, we summarized the roles andmechanisms of RORs in

skeletal diseases, aiming to provide evidence for potential therapeutic strategies.
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1 Introduction

Bone homeostasis is an essential dynamic process of bone modeling and remodeling

(1), which requires accurate regulation by a variety of transcription factors as well as

signaling pathways (2, 3). Retinoic acid receptor-related orphan receptors (RORs) are

ligand-dependent transcription factors and can regulate osteogenesis and

osteoclastogenesis in bone metabolic disorders such as osteoporosis (4). In addition, the

RORs, particularly RORg, mediate the inflammatory response and lead to bone destruction

in inflammatory bone diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA)

(5). In this review, we discussed the effect of RORs on maintaining bone homeostasis and

summarized prospective therapeutic strategies targeting RORs for common bone diseases.
2 The RORs

RORs are a subgroup of the thyroid hormone receptor and belong to the orphan

nuclear receptors (NRs) (6). The RORs contain three members: RORa (same as RORA,

NR1F1), RORb (same as RORB, NR1F2), and RORg (same as RORC, NR1F3). It has been

reported that each member has several isoforms that differ only at their N-terminus, and

these isoforms are expressed in different mammalian species. Specifically, RORa contains
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RORa1–4 in humans, but only RORa1 and RORa4 are expressed

in mice. Both RORb and RORg generate two isoforms (RORb1/
RORb2 and RORg1/RORg2, RORg2 is also known as RORgt) in
humans and mice (7) (Figure 1A).

The modular structure of RORs is typical of NRs and consists of

four functional domains: a distinctive N-terminal domain, a highly

conserved DNA-binding domain (DBD), a ligand-binding domain

(LBD), and a hinge domain (Figure 1A). Differences in sequence of

the N-terminal domain determine the isoforms of RORs. ROR

response elements (ROREs) have an AGGTCA consensus motif

with an A/T-rich region. With two highly conserved zinc finger

motifs, The DBD is responsible for recognizing the AGGTCA

consensus region in ROREs as a monomer. The LBD is the most

important functional domain that is crucial for ligand-binding and

facilitates the recruitment of cofactors in transcriptional regulation.

The hinge domain linking DBD with LBD stabilizes the RORs’

protein structure (8).

Even though evidence has indicated that RORs can be self-

activated without any ligands or other potential stimulators, RORs

transcriptional regulation is primarily ligand-dependent (6, 7).

Cholesterol and its metabolites were firstly identified as natural

ligands by crystallography studies (8). Melatonin was once

considered as an endogenous ligand of RORb. Although it could

bind to RORb directly, the result was not reproducible and

therefore has been withdrawn (9). Apart from natural ligands,
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synthetic ligands have made significant progress (10). According

to conformational changes of RORs, the ligands include agonists,

antagonists, and inverse agonists (11).

RORs interact with co-repressors as well as co-activators and

function as repressors or activators of gene transcription

respectively. When inverse agonists enter the nucleus, RORs can

be trans-activated and recruit co-repressors, such as the nuclear

receptor co-repressor (NCoR) and the silencing mediator for

retinoid and thyroid hormone receptor (SMRT) (4). The co-

repressor complexes then combine with the RORE of target genes

that subsequently prevent the promoter initiation and suppress the

transcription. In contrast, agonists activate RORs with

conformational changes resulting in the dissociation of co-

repressor complexes and the recruitment of co-activators, such as

the p160 steroid receptor co-activator (SRC) family, p300, and

BRG2 complex (6, 12). The formation of co-activator complexes

eventually facilitates transcriptional regulation by enhancing the

promoter of target genes (Figure 1B).

The RORs serve functions in several physiological processes

such as cell division and differentiation, circadian rhythm,

metabolism, and immune regulation (12). ROR family members

and their isoforms exhibit a distinct tissue-specific pattern of

expression and play different roles in pathological processes.

Specifically, RORa is widely distributed in multiple tissues,

including the liver, skeletal muscle, skin, and adipose, which is
A

B

FIGURE 1

Schematic diagram of structure and ligand-dependent mechanism of RORs. (A) Structure: Four functional domains constitute RORs, including a distinct N-
terminal domain, a highly conserved DNA-binding domain (DBD), a ligand-binding domain (LBD), and a hinge domain. The numbers at the tail represent the
total number of encoded amino acids in the corresponding ROR isoforms. (B) Mechanism: Inverse agonists trans-activate RORs to recruit co-repressors and
inhibit transcription of target genes (left). Agonists activate RORs to recruit co-activators and initiate transcription of target genes (right).
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mainly associated with circadian rhythm abnormalities,

tumorigenesis, and metabolic diseases. In addition, RORa is

highly expressed in the pre-hypertrophic and hypertrophic

chondrocytes of the growth plate, suggesting that RORa may be a

regulator of hypertrophic differentiation of chondrocytes and

contribute to endochondral ossification (13, 14). RORb is

expressed restrictedly in the brain, retina, bone, and pineal gland,

and is essential for retinal cell survival and circadian rhythm

regulation (4). Moreover, the two isoforms of RORg differ in the

expression with distinct N-terminus. RORg1 is expressed in various

tissues such as skeletal muscle tissue, liver, and kidney, while RORg2
(same as RORgt) is exclusively expressed in immune cells and plays

prominent roles in thymocyte development (12).
3 Role of RORs in skeletal diseases

Skeletal diseases, such as osteoporosis, rheumatoid arthritis, and

osteoarthritis, significantly impair individuals’ health and quality of

life. Patients may suffer from long-term pain, limitation of

movement, and hypofunction. Studies have found that RORs play

an important role in bone metabolism and maintenance of bone

homeostasis. Interestingly, ROR family members play different roles

in regulating osteogenesis. Most studies believe that RORa mainly

promotes osteogenesis. On the contrary, RORb inhibits osteogenic

differentiation. RORg regulates bone balance by participating in the

inflammatory response and stimulating osteoclastic differentiation.

Herein, we summarize the role of RORs in common

skeletal diseases.
3.1 Osteoporosis

Osteoporosis is one of the most common bone metabolic

disorders, characterized by bone loss and microstructural changes,

which in turn increase the risk of fractures (15, 16). Osteoporosis

occurs when the rate of bone resorption consistently exceeds the

rate of bone formation. RORs affect the occurrence and progression

of osteoporosis by regulating the proliferation and differentiation of

skeletal cells and multiple osteogenic signaling pathways.

3.1.1 RORa in osteoporosis
Studies have shown that RORa positively regulates osteogenic

differentiation in vitro and in vivo. Spontaneous mutations of the

Rora gene were identified in a staggered (sg) mouse strain.

Homozygous staggerer (sg/sg) mice showed limited skeletal

development with a reduction in long bone thickness and bone

mineral density (17, 18). Application of cholesterol sulfate, a RORa
agonist, prevented bone mass loss in the inflammation-mediated or

ovariectomy (OVX) -mediated osteoporosis models (19). Studies in

goats have also confirmed a substantial association between RORa
and growth traits including height and bone length (20). In vitro

evidence suggested that RORa was highly expressed in human

mesenchymal stem cells (hMSCs) and that the expression level

increased with osteogenic differentiation (17, 21).
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Several upstream signaling pathways are mediated by RORa in

osteogenic differentiation (Figure 2A). (1) Circadian clock system:

Brain and muscle ARNT-like protein 1 (Bmal1) knockout mice

exhibited osteoporosis (22). Further studies found that BMAL1

blocked the Wnt/b-catenin signaling pathway by inhibiting the

expression of RORa, thereby preventing the osteogenic

differentiation of bone marrow mesenchymal stem cells (BMSCs)

(23). (2) Oxidative stress: It has been reported that oxidative stress is

a key trigger of osteoporosis. OSGIN2, an inducer of oxidative

stress, prevented osteogenic differentiation of BMSCs by inhibiting

RORa expression (24, 25). (3) DNA methylation: Histone

methylation has been recognized as an important modulator in

the osteogenic differentiation of MSCs (26). RORa mediated DNA

methyltransferase 1 (DNMT1) to control the DNA methylation of

MSCs, thereby suppressing chondrogenic and osteogenic

differentiation (27). (4) Estrogen: Estrogen plays a significant role

in regulating bone metabolism (28). Estradiol is one of the

Estrogen’s natural products, which could activate RORa and

promote osteoblast differentiation (29).

There are several main mechanisms underlying the downstream

pathway of RORa. One is directly promoting the transcription of

osteogenic differentiation marker genes, such as alkaline

phosphatase (ALP), collagen type I (COL I), bone sialoprotein

(Bsp), and dentin matrix protein 1 (DMP1) (17, 21, 30). The

second is activating osteogenic differentiation signaling pathways,

such as Wnt/b-catenin and BMP2/Smad1/5/9 pathways (17, 29).

Furthermore, RORa can associate with a variety of cell types and

influence the microenvironment directly or indirectly. For instance,

in the diabetic bone defect model, underexpression of RORa in

macrophages inhibited the transcription of serum C-C motif

chemokine 3 (Ccl3) and interleukin-6 (Il-6), which led to the

inability of macrophages to convey migration and aggregation

signals to BMSCs, ultimately leading to diabetic bone aplasia (31).

However, it has also been reported that RORa negatively

regulates osteogenic differentiation. For example, transient

overexpression of RORa suppressed osteocalcin (Ocn)

transcription induced by vitamin D3 and consequently inhibited

osteogenesis (17). In addition, bisphenol A (BPA), a ROR agonist,

could promote bone resorption (32). The controversial results may

be due to the time and extent of RORa expression in two different

ways of both bone formation and resorption in bone metabolism.

3.1.2 RORb in osteoporosis
In contrast to RORa, RORb negatively regulates osteogenic

differentiation and promotes the progression of postmenopausal or

age-related osteoporosis. Deletion of the Rorb gene could prevent

bone loss in aged mice (33). RORb expression was significantly

increased with age in the BMSCs from postmenopausal women,

which was consistent with the mouse models of age-related

osteoporosis (34, 35). Data on overexpression or knockdown of

RORb in osteoblastic MC3T3-E1 cells also suggested its negative

effect on osteogenic differentiation (33, 36).

The following mechanisms may explain the negative effects of

RORb on osteogenic differentiation (Figure 2B). (1) Runt-related

transcription factor 2 (Runx2) is an essential transcription factor
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that drives the phenotypic expression of osteoblasts. Its absence can

lead to a complete loss of ossifying capacity (37). When the

expression of RORb was up-regulated in MC3T3-E1 cells,

transcription of Runx2 and its target genes Ocn and osterix (Osx)

were significantly inhibited (34). (2) Transforming growth factor b
(TGF-b) and bone morphogenetic protein (BMP) control the

formation of extracellular matrix (ECM) and provide a

framework for bone mineral deposition (38). Studies have shown

that overexpression of RORb upregulated the expression of these

cytokines and then interfered with ECM synthesis, thereby

inhibiting bone mineralization (36). (3) RORb down-regulated

the Wnt/b-catenin signaling pathway by inhibiting the activities

of Wnt downstream target genes transcription factor 7 (Tcf7) and

osteoprotegerin (Opg), which disrupted the balance between bone

formation and bone resorption, leading to bone loss (33). (4) RORb
could stimulate osteoblast proliferation through the mitogen-

activated protein kinase (MAPK) pathway and prevent osteoblasts

from exiting the cell cycle, thereby delaying osteogenic

differentiation (36). In addition, RORb has been identified as a

molecular target of miR-219a-5p in recent years, which is involved

in the development of osteoporosis (39).

3.1.3 RORg in osteoporosis
Most studies on the effect of RORg on osteoporosis were limited

to RORg2 (RORgt). The main mechanism is to act as a specific

transcription factor of immune cells, especially T helper cell 17

(Th17), and mediate the differentiation of Th17 cells to secret

interleukin 17 (IL-17), thereby enhancing inflammatory response
Frontiers in Endocrinology 04
(5). In recent years, it has been found that T cell-mediated

inflammation plays an important role in the progression of

osteoporosis (40, 41). In human and mouse models, RORgt
affected bone loss in postmenopausal osteoporosis caused by

estrogen deficiency (42, 43). The production of IL-17, mediated

by RORgt, directly stimulated osteoclastogenesis by upregulating

the expression of RANKL (44, 45). IL-27 inhibited the

differentiation of Th17 cells in OVX mice by inhibiting the

transcription factor RORgt (46). In addition, as one of the areas

of scientific interest in recent years, intestinal flora plays a key role

in regulating bone homeostasis through the gut-bone axis (47). The

treatment of Lactobacillus rhamnosus GG (LGG) stimulated Th17

cell differentiation with the alteration of RORgt expression, and had

an advantage in osteogenic promotion, which may account for the

amelioration of osteoporosis in OVX model rats (48, 49). Another

popular probiotic, Bifidobacterium longum (BL), appeared its

immunomodulatory potential to the Th17 cell differentiation that

suppressed osteoclastogenesis in postmenopausal osteoporosis (50).
3.2 Rheumatoid arthritis

Rheumatoid arthritis is a systemic autoimmune disease

characterized by initial synovial inflammation followed by

cartilage degeneration and subchondral bone destruction (51, 52).

The promotion of osteoclast formation and differentiation is the

main reason for bone erosion (53). Immune cells, especially Th17

cells, are activated and concentrated in the inflamed synovium,
A B

C

FIGURE 2

Regulation of osteogenic differentiation by RORa and RORb and of Th17 cell differentiation by RORgt. (A) Upstream effectors including BMAL1,
OSGIN2 and DNMT1 could suppressed osteogenic differentiation by inhibiting RORa, while Estradiol activated RORa to promote osteogenic
differentiation. (B) RORb overexpression inhibited osteogenic differentiation by inhibiting Runx2 transcription, disrupting ECM synthesis, inhibiting
Wnt/b-catenin pathway, and promoting proliferation through the MAPK pathway. (C) RORgt regulates the process of differentiation from CD4+ T
cells to Th17 cells, and the consequent IL-17 secretion. The latter can influence the survival and maturation of immune cells and osteoclastogenesis,
which thus aggravates joint synovial inflammation and bone damage in RA patients. BMAL1, Brain and muscle ARNT-like protein 1; DNMT1, DNA
methyltransferase 1; Runx2, Runt-related transcription factor 2; ECM, Extracellular matrix; MAPK, Mitogen-activated protein kinase; Th17, T helper 17;
IL-17, Interleukin 17; miRNAs, MicroRNAs.
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contributing to persistent joint inflammation and bone erosion in

RA (54). Among RORs, many studies indicated the roles of RORa
and RORgt in inflammatory diseases like RA and OA, whereas little

has been done on RORb.

3.2.1 RORa in rheumatoid arthritis
RORa is involved in the inflammatory response stage of RA and

the regulation of osteoclast activity in bone destruction. RORa is

expressed in Th17 cells and the expression is elevated in collagen-

induced arthritis (CIA) mice (55). RORa can act as a transcription

factor to mediate the differentiation of Th17 cells. The expression of

RORa and RORgt together promoted the differentiation of Th17 and

significantly up-regulated the expression of IL-17, thereby promoting

inflammatory response (56). However, some studies have also

reported that RORa is a negative regulator of inflammatory

response. Compared with controls, the expression level of RORa in

osteoblasts of RA patients was lower (30). The RORa agonist,

cholesterol sulfate, could reduce joint inflammation and bone

destruction in CIA mice by inhibiting RORgt expression and Th17

cell differentiation (57). Differences in the disease itself and the

immune microenvironment determine the cellular response to any

stimulus, which may help to partially explain the different

mechanisms by which RORa regulates inflammation in Th17 cell

differentiation. In addition, RORa is involved in the process of bone

resorption in RA. RORa agonists prevented osteoclastogenesis and

induced osteoclast apoptosis in CIA mice (57). However, direct

depletion of Rora did not affect the agonist-ligand-mediated

inhibition of osteoclast differentiation (19). This suggested that

RORa agonists might be involved in RA osteoclast survival and

differentiation in a RORa-independent manner.

3.2.2 RORg in rheumatoid arthritis
RORgt, as a lineage-specific transcription factor of Th17 cells,

regulates the differentiation of CD4+ T cells into Th17 cells, then

promotes the production of IL-17, and finally aggravates joint

inflammation and bone destruction in RA (58) (Figure 2C). In

RA patients, the aggravation of inflammation is closely related to

the increase in the proportion of Th17 cells and the expression

levels of RORgt and IL-17 (5, 59).

Several upstream signals including cytokines, RA drugs, and

microRNAs (miRNAs), can regulate RORgt expression and Th17

cell differentiation. Specifically, pro-inflammatory factors, such as

IL-6 (60), IL-23 (61), and tumor necrosis factor-a (TNF-a) (62),
transmitted inflammatory signals to Th17 cells. Some natural and

synthetic RA drugs, such as digoxin and pioglitazone, reduced the

expression levels of RORgt and IL-17, thereby alleviating

inflammation and preventing further bone destruction (63–67).

miRNAs regulating RORgt expression, such as miRNA-16 (68),

miRNA-301a-3p (69), miRNA-34a (70), and miRNA-146a (71, 72),

were also involved in RORgt-mediated regulation of Th17 cell

differentiation during RA progression. In addition, the RORgt-
CCR6-CCL20 axis might be involved in the directional migration

of Th17 cells toward synovial inflammation (73). Furthermore,

epigenetic modifications can regulate RORgt activity through post-

translational mechanisms such as ubiquitination and acetylation
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(74). During the early stages of RA activity, DNA methylation of

RORgt DNA sequences was enhanced (75). TNF-a inhibitors could

attenuate the histone acetylation modification on the RORgt
promoter and reduce its expression in Th17 cells (62).

In RA, upstream cytokines stimulated signal transduction and

activation transcription factor 3 (STAT3) into the nucleus and

initiated RORgt activation (61, 65). RORgt and STAT3 could bind

in the IL-17 promoter region and thus regulate the production of

IL-17. In the downstream pathways, IL-17 overexpression

promoted the survival and maturation of fibroblasts and immune

cells in the synovium, thereby aggravating synovial inflammation

[90], which ran through the whole process of RA (76). At the same

time, increased IL-17 levels might promote osteoclast generation

through the RANKL/OPG signaling pathway, thereby aggravating

subchondral bone erosion (77). Metallothionein-1 (MT-1) inhibited

Th17 differentiation by reducing the expression of STAT3 and

RORgt, and significantly suppressed synovial inflammatory

response and subsequent bone destruction (78).
3.3 Osteoarthritis

OA is a chronic degenerative arthritis that affects all joints and is

characterized by cartilage degradation, subchondral bone

remodeling, and bone mineralization (79). Different from RA,

where synovial inflammation is the main pathological change,

cartilage degeneration is the pathological center of OA (80). The

molecular mechanisms underlying OA pathophysiology are poorly

understood. OA was previously considered to be a non-

inflammatory joint disease. However, recent studies have

identified proinflammatory cytokines and immune inflammatory

cells as key mediators of cartilage damage in OA (81). OA and RA

share some risk factors and pathogenic features, and they both

exhibit highly inflammatory features driven by CD4+ T cells (82).

The expression of IL-17 in the synovial tissue of OA and RA

patients was increased. This eventually led to increased joint

inflammation and bone erosion (83).

It has also been suggested that metabolic disorders may also be

an important mechanism leading to this disease. RORa can

significantly affect the progression of OA through cartilage-

specific cholesterol metabolism. In the CH25H-CYP7B1-RORa
axis of cholesterol metabolism, RORa acted as a substrate for

cholesterol hydroxylase (CH25H and CYP7B1) (84). High

cholesterol and its metabolites could directly activate RORa in

chondrocytes, which could bind to the promoter of cartilage matrix

catabolic factors and activate its transcription, leading to cartilage

damage (85, 86). In addition, RORa accelerated cartilage matrix

degradation through the IL-6/STAT3 signaling pathway (87, 88).
4 Therapy strategies targeting RORs in
skeletal diseases

Therapeutic applications targeting RORs have developed along

with the identification of ROR ligands including agonists, inverse
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agonists, and antagonists. Specifically, ROR agonists enhance the

transcription levels of target genes by either promoting the

recruitment of coactivator complexes or preventing the recruitment

of corepressor complexes, whereas ROR inverse agonists do the

opposite. ROR antagonists reduce the transcription by preventing

the recruitment of any complexes (11, 89).

Since the first ROR agonist was identified, RORs have been

investigated as a potential therapeutic target for various diseases

(90, 91). Among bone diseases, inflammatory arthropathy has

received the most attention. Treatment with RORa agonist

cholesterol sulfate prevented osteoclast osteogenesis in CIA mice

and protected against bone loss in postmenopausal osteoporosis

(19). A dual inverse agonist of RORb and RORgt, N-(5-

(arylcarbonyl)thiazol-2-yl)amides, has been identified to exhibit

therapeutic potential in CIA mice (92). Compared with RORa
and RORb, the treatment targeting RORgt is more commonly used

in inflammatory and autoimmune arthropathies.

Several natural compounds have been identified as RORgt-
specific modulators that can be used in the treatment of

autoimmune diseases. Digoxin was the first RORgt inhibitor

reported to reduce inflammation in CIA mice (66), however, its

disadvantages were obvious cytotoxicity and limited therapeutic

index. In addition, ursolic acid had anti-RORgt activity, but it could
also activate glucocorticoid receptors as a side effect (93). To solve

these problems, the synthesis of selective RORgt small molecule

modulators has become a promising treatment for autoimmune

diseases such as RA (94). In vivo data showed that amide drugs had

good clinical efficacy as effective RORgt inhibitors (95).

Phenylenediamine derivative of RORgt inhibitor reduced the

severity of arthritis symptoms in mice (96). Moreover,

imidazolopyridine analogs, a RORgt selective inverse agonist,

alleviated the pathological symptoms of adjuvant arthritis (AIA)

in rats (97, 98). Recently, three azacyclic inverse RORgt agonists
were identified by structure-activity relationship studies, which

showed biologically similar efficacy in preclinical models of RA (99).
5 Discussion and conclusion

In summary, as transcription factors, RORs directly regulate

osteogenic differentiation and osteoclastogenesis and associate with

other factors or signals to indirectly mediate the destruction of

cartilage and bone by immune-inflammatory responses. In terms of

selective molecular modulators, RORg has made remarkable

progress in auto immune diseases . However , on the
Frontiers in Endocrinology 06
pharmacological front, there are concerns about the safety and

efficacy of existing small-molecule drugs targeting RORg. In

addition, the effects of administration form and ROR binding

mode on clinical efficacy remain to be further studied.
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