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Comparing Day 5 versus Day 6
euploid blastocyst in frozen
embryo transfer and
developing a predictive model
for optimizing outcomes: a
retrospective cohort study
Beining Yin1†, Sichen Li1†, Lin Sun1, Zhiyi Yao1, Yueyue Cui1,
Congli Zhang1 and Yile Zhang1,2*

1Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, Henan, China, 2Henan Key Laboratory of Reproduction and Genetics, First Affiliated
Hospital of Zhengzhou University, Zhengzhou, Henan, China
Background: Optimal protocols for frozen-thawed embryo transfer (FET)

after preimplantation genetic testing (PGT) remain unclear. This study

compared Day 5 (D5) and Day 6 (D6) blastocysts and evaluated predictors

of FET success.

Methods: A total of 870 patients with genetic diseases or chromosomal

translocations who received PGT at the First Affiliated Hospital of Zhengzhou

University from January 2015 to December 2019 were recruited. All patients

underwent at least one year of follow-up. Patients were divided into groups

according to the blastocyst development days and quality. Univariate and

multivariate logistic regression were applied to identify risk factors that affect

clinical outcomes and to construct a predictive nomogram model. Area

under the curve (AUC) of the subject’s operating characteristic curve and

GiViTI calibration belt were conducted to determine the discrimination and fit

of the model.

Results: D5 blastocysts, especially high-quality D5, resulted in significantly

higher clinical pregnancy (58.4% vs 49.2%) and live birth rates (52.5% vs 45%)

compared to D6. Multivariate regression demonstrated the number of

blastocysts, endometrial preparation protocol, days of embryonic

development and the quality of blastocysts independently affected live

birth rates (P<0.05). A nomogram integrating these factors indicated

favorable predictive accuracy (AUC=0.598) and fit (GiViTI, P=0.192).

Conclusions: Transferring high-quality D5 euploid blastocysts after PGT

maximizes pregnancy outcomes. Blastocyst quality, blastocyst

development days, endometrial preparation protocols, and number of
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blastocysts, independently predicted outcomes. An individualized predictive

model integrating these factors displayed favorable accuracy for counseling

patients and optimizing clinical management.
KEYWORDS

preimplantation genetic testing, frozen embryo transfer, D5/D6 euploid blastocysts,
blastocyst morphology, predictive model
Introduction

Preimplantation Genetic Testing (PGT) is a revolutionary set of

techniques employed in the field of assisted reproductive

technology (ART) to assess the genetic health of embryos prior to

their implantation in the uterus. Preimplantation genetic testing

(PGT) is now routinely utilized to identify euploid embryos with

standard chromosome copy numbers for transfer in IVF cycles.

Transfer of euploid embryos after PGT has been conclusively

demonstrated to improve implantation rates and live birth

outcomes compared to untested embryo transfer (1). Vitrification

has enabled exceptionally high post-warming survival rates (>95%),

making frozen-thawed embryo transfer (FET) a vital component of

IVF treatment (2). However, several patient and treatment related

factors could impact the viability of warmed euploid blastocysts.

Addressing these critical knowledge gaps could assist in improving

clinical pregnancy and live birth rates after thawed euploid

embryo transfer.

A significant determinant of embryo quality is the duration of in

vitro culture before vitrification. Prolonged culture till the blastocyst

stage on D5 or D6 allows for preferable selection of viable embryos

with supreme implantation competence (3). However, extended in

vitro culture might also negatively impact the developmental ability

of embryos by exacerbating errors in gene expression, metabolism,

and epigenetic modifications (4). This raises significant debate

regarding whether D5 or D6 blastocysts provide superior frozen-

thawed pregnancy outcomes after PGT. While several studies

demonstrate comparable viability between D5 and D6 vitrified-

warmed blastocysts (5, 6), other reports indicate higher success

rates with transfer of D5 blastocysts compared to developmentally

delayed D6 after cryopreservation (7, 8). Along with the duration of

culture, the morphological grade is a significant predictor of

blastocyst quality and competence (9). Evidence demonstrates

that transfer of high-quality blastocysts classified as 3BB or higher

is associated with significantly higher implantation, clinical
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pregnancy and live birth rates than poor-quality blastocysts (10).

However, it is unclear whether extended in vitro culture could

compensate for a reduced morphological grade regarding

reproductive potential. Additional randomized controlled trials

(RCT) are required to conclusively establish if D5 blastocyst

transfer confers superior reproductive outcomes compared to D6

blastocyst after PGT and cryopreservation. Another critical

determinant of success with frozen-thawed embryo transfer is

endometrial receptivity. For endometrial preparation before FET,

patients undergo either natural cycle (NC) monitoring or artificial

hormone replacement therapy (HRT) (11). Evidence regarding

which protocol provides optimal pregnancy outcomes remains

contradictory (12).

In conclusion, multiple factors critically impact the

implantation potential and reproductive outcomes of euploid

blastocysts after cryopreservation and transfer in FET cycles.

Addressing these research questions through well-designed

studies can optimize clinical practice recommendations for PGT

and FET. Developing and validating predictive models based on

critical determinants of cryopreserved blastocyst potential is also

essential for individualized prognosis (13). Results from such

investigations can assist in patient counselling and evidence-based

clinical decision-making, improving overall outcomes with frozen

embryo transfer.
Materials and methods

Study design and population

This was a retrospective cohort follow-up study. The clinical

data of patients with genetic diseases or chromosomal

translocations receiving PGT at the First Affiliated Hospital of

Zhengzhou University from January 2015 to December 2019 were

analyzed. A total of 870 first single frozen-thawed euploid blastocyst

transfer cycles were recruited. All patients were followed up for at

least one year.

The inclusion criteria for this study are as follows: 1) Patients

who underwent their first single embryo thawed transfer at our

reproductive center; 2) Patients who underwent preimplantation

genetic testing (PGT); 3) Patients who underwent endometrium

preparation using either a natural cycle or hormone replacement
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therapy (HRT) protocol, and the exclusion criteria: 1) Male

chromosomal abnormalities; 2) Endometriosis; 3) Polycystic

ovary syndrome (PCOS); 4) Cervical insufficiency; 5) Inner

membrane thickness on conversion day < 7mm (14); 6) Uterine

adhesions and malformations; 7) Patients with autoimmune

infertility; 8) Patients with significant missing data. Of these, 95

were excluded from the study for the following reasons: male

chromosomal abnormalities (n=8), endometriosis (n=18), poly

cystic ovary syndrome (n=64), and cervical insufficiency (n=5).

After screening, 775 eligible participants were included in the

study (Figure 1).

Patients’ clinical data were obtained from the Clinical

Reproductive Medical Record Cohort Database (CCRM/EMRCD)

of the Reproductive Medical Center of The First Affiliated Hospital

of Zhengzhou University, and follow-up data were obtained from

the results of the telephone follow-up or from the obstetric medical

record system of our hospital. This study was approved by the

Institutional Review Board and Ethics Committee of the First

Affiliated Hospital of Zhengzhou University (reference number:

2020-KY-256). The information of the statistical recipients had

been anonymized and follows the ethical principles of the

Declaration of Helsinki. Due to the retrospective study, the

patient did not sign the informed consent form.
Morphological evaluation of the blastocyst

Methods of ovarian stimulation, transvaginal ultrasound egg

retrieval, IVF/ICSI (Intracytoplasmic sperm injection), embryo

culture, embryo vitrification, and thawing of embryos are

described in previous publications by researchers at our center
Frontiers in Endocrinology 03
(15). The egg retrieval day was defined as D0. On the morning of the

fifth or sixth day after egg retrieval, experienced embryologists

scored the blastocysts according to the Gardner and Schoolcraft

scoring systems (16). First, the blastocysts were classified into

different stages according to the degree of expansion. The quality

of the inner cell mass (ICM)/trophectoderm (TE) of the stage 3 to 6

blastocysts was further assessed. If both ICM and TE scores are

above grade B (3BB), this blastocyst is defined as a high-quality

blastocyst; otherwise, it is considered a poor-quality blastocyst.
Blastocyst biopsy and euploidy diagnosis

PGT encompasses several specialized techniques. Each

technique provides unique insights into different aspects of

genetic health assessment. The PGT signal detection techniques

used by our reproductive center mainly include Next Generation

Sequencing, Single Nucleotide Polymerism, and Karyomapping. In

general, embryos with mosaic proportions below 30% are

considered suitable for transfer.

Next-Generation Sequencing (NGS) is a high-throughput

genetic sequencing technology widely employed in the field of

reproductive medicine. It involves fragmenting DNA samples into

millions of small segments, followed by parallel sequencing and

reassembly to obtain comprehensive genomic or exomic

information. NGS enables simultaneous detection of numerous

genetic regions, providing high-resolution genetic data. In the

context of Preimplantation Genetic Testing (PGT), NGS finds

extensive applications, including PGT-A for detecting

chromosomal aneuploidies, PGT-M for identifying specific

monogenic mutations, and PGT-SR for assessing structural
FIGURE 1

The flowchart of participants. PGT, Preimplantation genetic testing; PCOS, PolyCystic Ovary Syndrome.
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rearrangements such as inversions, translocations, or segmental

deletions in embryos.

Single Nucleotide Polymorphism (SNP) is a common form of

genetic variation characterized by single-nucleotide substitutions

within the genome. SNP analysis involves the detection of SNP

marker sites within embryo cell samples, facilitating the

determination of genetic information and genotypes in specific

chromosomal regions.

Karyomapping is an advanced PGT technique that integrates

SNP analysis to simultaneously detect both chromosomal

abnormalities and specific gene mutations. By analyzing SNP

marker sites within embryo cells, Karyomapping provides

information about the genetic content and genotypes in different

chromosomal regions.
Endometrial preparation protocols

Natural Cycle (NC): On days 8-10 of the menstrual cycle,

transvaginal ultrasound is performed to monitor follicular growth

and endometrial thickness. When the dominant follicle reaches a

diameter of 14 mm, luteinizing hormone (LH) levels are monitored

in urine both in the morning and evening. The day of the LH peak

or the day of ovulation confirmed by ultrasound is considered the

conversion day (D1). From the conversion day, vaginal

progesterone capsules (Utrogestan, 100mg/capsule, Cyndea

Pharma, S.L.) are inserted at a daily dose of 400mg. Starting from

day 3 (D3), oral administration of dydrogesterone tablets

(Duphaston, 10mg/tablet, Abbott Healthcare Products B.V)

begins at a daily dose of 30mg. Embryo transfer is performed on

day 5 (D5) following the standard protocol of our center, guided by

abdominal ultrasound. After the procedure, vaginal progesterone

gel (Crinone, 90mg/applicator, MERCK SERONO LIMITED.) at a

daily dose of 90mg or vaginal progesterone capsules at a dose of

400mg/day are used. Oral administration of dydrogesterone tablets

at a dose of 30mg/day continues until peripheral blood beta human

chorionic gonadotropin (b-hCG) is tested after 14 days post-

transfer to determine biochemical pregnancy. Abdominal

ultrasound examination is performed on day 35 post-transfer to

determine clinical pregnancy. If pregnancy is confirmed,

progesterone support continues until day 45 post-transfer, after

which vaginal progesterone gel or vaginal progesterone capsules are

discontinued. Dydrogesterone tablets are discontinued on day 65

post-transfer.

Hormone Replacement Therapy (HRT): Starting from days 2-3

of the menstrual cycle, serum hormone levels are monitored. In the

absence of abnormalities, estradiol valerate tablets (Progynova,

1mg/tablet, DELPHARM Lille S.A.S.) are taken at a daily dose of

4mg. The dosage is adjusted based on serum hormone levels and

endometrial growth. On days 12-14 of medication, when the

endometrial thickness reaches ≥ 7 mm, intramuscular injection of

60mg progesterone (Progesterone, 20mg/injection, Zhejiang Xianju

Pharmaceutical Co., Ltd.) is added to induce endometrial

transformation. The following day, oral administration of

dydrogesterone tablets begins at a dose of 10mg/day, which is

changed to 30mg/day after 3 days. Embryo transfer is performed
Frontiers in Endocrinology 04
according to the standard protocol of our center, guided by

abdominal ultrasound, on the sixth day of progesterone injection.

After the procedure, vaginal progesterone gel at a daily dose of

90mg or vaginal progesterone capsules at a dose of 400mg/day are

used. Oral administration of dydrogesterone tablets at a dose of

30mg/day continues until peripheral blood b-hCG is tested after 14

days post-transfer to determine biochemical pregnancy. Abdominal

ultrasound examination is performed on day 35 post-transfer to

determine clinical pregnancy. If pregnancy is confirmed,

progesterone support continues until day 45 post-transfer, after

which vaginal progesterone gel or vaginal progesterone capsules are

discontinued. Dydrogesterone tablets are discontinued on day 65

post-transfer.
Group and observation indicators

Based on the development day of the transplanted blastocysts,

all patients were divided into groups D5 (n=558) and D6 (n=217).

According to the blastocyst quality, the patients continued to be

divided into high-quality D5 group (n=257), poor-quality D5 group

(n=301), high-quality D6 group (n=120) and poor-quality D6

group (n=97). Baseline characteristics in both groups were

prospective during the visit. The following data were collected:

age (years), height (m), body weight (kg), infertility type, BMI,

essential endocrine FSH, E2, AMH, AFC and infertility causes (e.g.,

ovulation disorders, male factors, fallopian tube factors, premature

ovarian failure (POF) or idiopathic infertility). The primary clinical

outcome was obtained from the consensus reached by the American

Society of Reproductive Medicine in 2017 (17). Clinical pregnancy

was defined as one or more gestational cysts detected by ultrasound.

Live birth was defined as the delivery of at least one live infant after

22 weeks of gestation.
Statistical analysis

All statistical analyses were conducted in R statistical

environment (R version 4.1.3). The quantitative data with

variance meeting the normal distribution and homogeneity were

tested by one-way analysis of variance test, and the results were

expressed as mean ± standard deviation; the data not meeting the

normal distribution and variance heterogeneity were tested by

Kruskal-Wallis test, and the results were expressed as median

(Q1, Q3). Qualitative data were compared between multiple

groups using the chi-square test. Factors with statistically

significant differences in the univariate analysis results were

subsequently included in the multivariate logistic regression

model, and the risk factors ultimately included in the model were

selected using the forward stepwise method.

Furthermore, based on the regression coefficients of the

independent variables, we used the RMS package for nomogram

drawing. We built an individualized nomogram prediction model to

predict patients’ clinical outcomes based on risk factors. The

discrimination of the model prediction results is usually evaluated

by calculating the area under the curve (AUC) of the subject’s
frontiersin.org

https://doi.org/10.3389/fendo.2023.1302194
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yin et al. 10.3389/fendo.2023.1302194
operating characteristic curve. The AUC values are between 0.5 and

1.0. The closer the AUC value is to 1, the better the discriminative

power of the predictive model is. Generally, a prediction model with

an AUC of 0.5-0.75 is considered acceptable.

Subsequently, the GiViTI calibration band was applied to test

the goodness of fit of the predictive model (18). Unlike the

conventional Hosmer-Lemeshow goodness-of-fit test, the GiViTI

calibration band aims to reveal the relationship between predicted

and observed probabilities by fitting polynomial logistic functions

and indicates the direction, degree, and risk grade affected by these

deviations. A statistically significant deviation from the bisector

occurs when the 95% CI boundaries of the GiViTI calibration belt

do not encompass the bisector (the ideal line of perfect calibration).

The significant P-value in the calibration test indicates insufficient

evidence that the model was a poor fit. GiViTI Calibration bands

were drawn using the givitiR package. Two-sided P <0.05 were

considered statistically significant.
Results

Comparison of differences between groups

Table 1 presented patients’ baseline characteristics and clinical

outcomes in groups D5 and D6. The data exhibited that the two

groups were comparable for baseline characteristics, such as female

age, duration and type of infertility, BMI and basal hormone levels.

The clinical pregnancy and live birth rates in the D5 group were

54.84% and 48.92%, significantly higher than 44.24% and 39.17% in

the D6 group (P <0.05).

Table 2 presented each group’s baseline characteristics and

clinical outcomes when the patients were further grouped

according to the transplanted blastocyst quality. In the whole

population, the clinical pregnancy rate and live birth rate were

51.87% and 46.19%, while in the high-quality D5 group, this data

reached 58.37% and 52.53%, which was significantly higher than the

other three groups (P <0.001). Subsequently, the analysis of the

poor-quality D5 group and high-quality D6 group exhibited no

significant differences between some baseline characteristics and

clinical outcomes (Supplementary Table 1). However, it is worth

noting that the total number of AFC in the poor-quality D5 group

were significantly higher than those in the high-quality D6 group

(P <0.05).
Risk factors affecting pregnancy outcomes

Univariate logistic regression was conducted to dissect the effect

of each variable on pregnancy outcome (Table 3 and Supplementary

Table 2). The results demonstrated that the quality of the

transplanted blastocysts was positively correlated with the live

birth rate, and the days of embryonic development (D5 and D6)

were negatively correlated with the clinical pregnancy rate and live

birth rate. Other statistically significant risk factors included the

endometrial preparation protocol and the number of blastocyst

embryos formed (P <0.05). Furthermore, no subsequent analysis
Frontiers in Endocrinology 05
was performed since only a single risk factor influenced the clinical

pregnancy rate. The inclusion of risk factors selected from the

univariate analysis into the unconditional binary multivariable

Logit model (Table 3 and Supplementary Table 2) displayed that

the number of blastocysts (OR,1.039; 95% CI, 1.003-1.076;

P=0.031), endometrial preparation protocol (OR,1.462; 95% CI,

1.044-2.047; P=0.027), days of embryonic development (OR,0.659;

95% CI, 0.476-0.911; P=0.012), and the quality of blastocysts

(OR,1.453; 95% CI, 1.087-1.940; P=0.012) were independent risk

factors affecting the live birth rate. It was suggested that adopting a

natural cycle for intimal preparation and avoiding transplanting D6

blastocysts and poor-quality blastocysts are beneficial to improving

the live birth rate. Meanwhile, the forming blastocyst number also

exhibited a potential clinical predictive value. The collinear

diagnostic analysis of the above independent risk factors also

demonstrated that there was no multicollinearity between them.
Construction and evaluation of the
prediction models

Based on the four independent predictors of blastocyst number,

endometrial preparation protocol, days of blastocyst development,

and blastocyst quality, we fitted the live yield prediction model and

constructed a personalized nomogram. Based on the nomogram,

the total score was obtained by adding the scores corresponding to

each predictor, and the probability value corresponding to the

vertical line of the total score was the live birth rate predicted by

the model (Figure 2A). Furthermore, the diagonal bisector was

located within the 95% confidence interval of the GiViTI calibration

band with no deviations and a GiViTI calibration test P-value of

0.192 (Figure 2B). It indicated that the model’s prediction was not

statistically significant overprediction, and the model cannot be

considered poorly fit. The predicted and actual probabilities of the

model were strongly consistent. Further drawing the ROC curves of

the prediction model displayed that the AUC of the model was

0.598 (95%CI: 0.559-0.638), which showed a relatively good

discrimination degree, and the prediction model was considered

acceptable (Figure 2C).
Discussion

This retrospective cohort study analyzed pregnancy outcomes

of 775 patients undergoing frozen-thawed blastocyst transfer after

PGT. It evaluated the effects of blastocyst development time and

quality on clinical pregnancy and live birth rates. The results

demonstrated that transfer of D5 blastocysts, incredibly high-

quality D5 blastocysts, significantly increased pregnancy and live

birth rates compared to D6 blastocysts. Multivariate regression

analysis revealed that blastocyst number, endometrial preparation

protocol, blastocyst development time and quality were

independent predictors of live birth rate. A predictive nomogram

constructed using these factors displayed preferable discriminatory

and calibration abilities.
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The optimal timing for frozen embryo transfer has remained a

controversial issue. During preimplantation development, the

embryo undergoes complex molecular and cellular changes to

gain developmental competence and prolonged in vitro culture

might negatively impact embryonic viability (19). Some studies

have compared outcomes of D3 embryo and D5/D6 blastocyst

transfers, but results remain contradictory (20, 21). A randomized

controlled trial found significantly higher pregnancy rates with D5

blastocyst transfer than D3 cleavage-stage embryos (3), indicating
Frontiers in Endocrinology 06
that culturing embryos to the blastocyst stage allows better selection

of embryos with higher implantation potential.

However, evidence regarding differences between D5 and D6

blastocyst transfer is complicated. Taylor et al. retrospectively

compared outcomes of single embryo transfer of 1508 D5 and

361 D6 blastocysts. They found no significant differences in

aneuploidy rates, pregnancy or live birth rates between D5 and

D6 blastocysts (5). Liebermann et al. compared vitrified D5 and D6

blastocysts to conventional slow freezing and found higher survival
TABLE 1 Baseline characteristics and pregnancy outcomes of patients.

Overall D5 D6 P value

PGT cycles 775 558 217

Female age at oocyte retrieval 29.726 (4.094) 29.778 (4.146) 29.594 (3.963) 0.576

Female age at blastocyst transfer 30.063 (4.104) 30.120 (4.139) 29.917 (4.016) 0.537

Age group (%) 0.249

>35 78 (10.06) 61 (10.93) 17 (7.83)

≤35 697 (89.94) 497 (89.07) 200 (92.17)

Infertility years 2.000 [1.000, 3.000] 2.000 [1.000, 3.000] 2.000 [1.000, 3.000] 0.358

Pregnancy numbers 1.588 (1.505) 1.613 (1.536) 1.525 (1.424) 0.468

Abortion Numbers 1.000 [0.000, 2.000] 1.000 [0.000, 2.000] 1.000 [0.000, 2.000] 0.799

Infertility type (%) 0.472

Primary 244 (31.48) 171 (30.65) 73 (33.64)

Secondary 531 (68.52) 387 (69.35) 144 (66.36)

BMI (kg/m2) 22.786 (2.974) 22.759 (2.932) 22.854 (3.088) 0.691

BMI group(%) 0.472

>24 244 (31.48) 171 (30.65) 73 (33.64)

≤24 531 (68.52) 387 (69.35) 144 (66.36)

Basic endocrine

FSH(mIU/mL) 6.390 [5.300, 7.300] 6.480 [5.350, 7.320] 6.240 [5.188, 7.228] 0.167

E2(pg/mL) 35.620 [25.400, 48.430] 35.510 [25.000, 47.790] 36.330 [26.135, 51.912] 0.627

AMH(ng/mL) 3.640 [2.280, 5.870] 3.670 [2.317, 5.615] 3.610 [2.210, 6.040] 0.931

Endometrial preparation protocol (%) 0.670

Hormone replacement therapy 592 (76.39) 429 (76.88) 163 (75.12)

Natural cycle 183 (23.61) 129 (23.12) 54 (24.88)

AFC 16.130 (5.783) 16.005 (5.678) 16.451 (6.047) 0.341

AFC group(%) 0.231

≤10 152 (19.61) 103 (18.46) 49 (22.58)

>10 623 (80.39) 455 (81.54) 168 (77.42)

No.of retrieved oocytes 18.000 [12.000, 23.000] 17.000 [12.250, 23.000] 18.000 [12.000, 23.000] 0.496

Endometrial Thickness(mm) 11.000 [10.000, 13.000] 11.000 [10.000, 13.000] 11.000 [9.000, 13.000] 0.470

Clinical pregnancy rate(%) 402 (51.87) 306 (54.84) 96 (44.24) 0.010

Live birth rate(%) 358 (46.19) 273 (48.92) 85 (39.17) 0.018
PGT, Preimplantation genetic testing; BMI, body mass index; FSH, follicle-stimulating hormone; E2, estradiol; AMH, antimullerian hormone; AFC, antral follicle count.
AMH, antimullerian hormone; AFC, antral follicle count.
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and pregnancy rates with D5 and D6 vitrification compared to slow

freezing. However, pregnancy rates were comparable between

vitrified D5 and D6 blastocysts at 52% and 39%, with no

significant difference statistically (6). This suggested that D5 and

D6 blastocysts might have similar reproductive potential. In

contrast , several studies reported significantly higher
Frontiers in Endocrinology 07
implantation, clinical pregnancy and live birth rates with D5

frozen-thawed blastocysts than developmentally delayed D6

blastocysts (7). Our results were consistent with the latter study,

demonstrating markedly higher clinical pregnancy and live birth

rates after D5 blastocyst transfer compared to D6. A recent

systematic review and meta-analysis examining factors
TABLE 2 Baseline characteristics and pregnancy outcomes of patients.

High-quality
D5 group

Poor-quality
D5 group

High-quality
D6 group

Poor-quality
D6 group

Pvalue

PGT cycles 257 301 120 97

Female age at
oocyte retrieval

30.113 (4.332) 29.492 (3.965) 29.792 (4.317) 29.351 (3.482) 0.248

Female age at
blastocyst transfer

30.420 (4.279) 29.864 (4.006) 30.167 (4.424) 29.608 (3.445) 0.270

Age group (%) 0.251

>35 33 (12.84) 28 (9.30) 11 (9.17) 6 (6.19)

≤35 224 (87.16) 273 (90.70) 109 (90.83) 91 (93.81)

Infertility years 2.000 [1.000, 3.000] 2.000 [1.000, 3.000] 2.000 [1.000, 3.000] 2.000 [1.000, 4.000] 0.676

Pregnancy numbers 1.716 (1.635) 1.525 (1.443) 1.625 (1.567) 1.402 (1.222) 0.269

Abortion Numbers 1.000 [0.000, 2.000] 1.000 [0.000, 2.000] 1.000 [0.000, 2.000] 1.000 [0.000, 2.000] 0.732

Infertility type (%) 0.701

Primary 74 (28.79) 97 (32.23) 40 (33.33) 33 (34.02)

Secondary 183 (71.21) 204 (67.77) 80 (66.67) 64 (65.98)

BMI (kg/m2) 22.678 (2.996) 22.828 (2.879) 22.932 (3.359) 22.756 (2.726) 0.874

BMI group(%) 0.333

>24 78 (30.35) 93 (30.90) 46 (38.33) 27 (27.84)

≤24 179 (69.65) 208 (69.10) 74 (61.67) 70 (72.16)

Basic endocrine

FSH(mIU/mL) 6.505 [5.405, 7.340] 6.460 [5.230, 7.290] 6.250 [5.320, 7.400] 6.050 [5.175, 7.035] 0.392

E2(pg/mL) 34.000 [24.280, 46.530] 36.450 [26.778, 49.365] 38.325 [25.372, 48.745] 35.040 [27.085, 57.098] 0.380

AMH(ng/mL) 3.460 [2.125, 5.630] 3.890 [2.590, 5.490] 3.230 [2.070, 5.535] 4.170 [2.530, 6.762] 0.062

Endometrial
preparation protocol

0.880

HRT 195 (75.88) 234 (77.74) 89 (74.17) 74 (76.29)

NC 62 (24.12) 67 (22.26) 31 (25.83) 23 (23.71)

AFC 15.992 (5.818) 16.017 (5.567) 15.940 (6.165) 17.073 (5.873) 0.402

AFC group(%) 0.090

≤10 54 (21.01) 49 (16.28) 32 (26.67) 17 (17.53)

>10 203 (78.99) 252 (83.72) 88 (73.33) 80 (82.47)

No.of retrieved oocytes 17.000 [12.000, 24.000] 18.000 [13.000, 22.000] 17.000 [11.000, 22.000] 19.000 [15.000, 26.000] 0.083

Endometrial Thickness(mm) 11.000 [10.000, 13.000] 11.000 [10.000, 13.000] 11.000 [10.000, 13.000] 11.000 [9.000, 13.000] 0.644

Clinical pregnancy rate(%) 150 (58.37) 156 (51.83) 59 (49.17) 37 (38.14) 0.007

Live birth rate(%) 135 (52.53) 138 (45.85) 54 (45.00) 31 (31.96) 0.007
fron
PGT, Preimplantation genetic testing; BMI, body mass index; NC, natural cycle; HRT, hormone replacement therapy; FSH, follicle-stimulating hormone; E2, estradiol;
AMH, antimullerian hormone; AFC, antral follicle count.
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influencing the implantation of haploid embryos revealed a

significantly lower survival rate for single haploid embryo transfer

(SET) on Days 6-7 compared to Day 5 embryos (OR, 1.49; 95% CI,

1.25-1.76; P<0.001) (22). These findings further supported our

research conclusion that Day 5 blastocysts might demonstrate

more preeminent viability outcomes compared to Day 6

blastocysts. Overall, most evidence indicated that post-PGT

transfer of euploid D5 blastocysts maximized the chances of

pregnancy success. However, reasonably successful outcomes

could still be achieved with D6 blastocysts in some situations.

This indicated a need for further RCT to provide more robust

evidence favoring prioritized D5 embryo transfer. In summary,

prolonged culture to the blastocyst stage appears beneficial, but

whether D5 or D6 blastocysts provided optimal results requires

further investigation.

Blastocyst morphology was an important indicator of its viability.

The inner cell mass generated fetal tissues, while the trophectoderm

formed the critical extraembryonic tissues for implantation and

placental development (23). Algorithms combining morpho kinetic

parameters with standard morphological criteria have been shown to

predict blastocyst implantation success more accurate (24, 25).

Several studies demonstrated higher implantation, clinical

pregnancy and live birth rates after transferring high-quality

blastocysts compared to euploid and aneuploid embryos (26, 27).
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Fragouli et al. found higher implantation and lower miscarriage rates

with morphologically higher-graded blastocysts in studying the

relationship between embryo morphology and developmental

potential (28). Similarly, Irani et al. found comparable results when

studying the impact of morphological grading of euploid blastocysts

on implantation and ongoing pregnancy rates (10). Our results were

unanimous with these findings, showing significantly higher

pregnancy and live birth rates after transferring high-quality D5

blastocysts than poor-quality D5 and D6 blastocysts.

However, few studies directly compare poor-quality D5

blastocysts to high-quality D6 blastocysts. Our study found no

statistically significant difference in pregnancy outcomes between

these groups, suggesting even poor-quality D5 blastocysts might

have similar developmental potential as high-quality D6 blastocysts.

As far as we know, the relatively slower development and poorer

viability of D6 blastocysts might explain this discrepancy (29, 30).

Additionally, the shorter culture time of low-quality D5 blastocysts

might synchronize their developmental stage with the receptive

endometrium, whereas prolonged in vitro culture for high-quality

D6 embryos could lead to displacement and increased risk of

embryo asynchrony, stress, and compromised viability, potentially

affecting successful implantation (7, 31).

Furthermore, Hashimoto et al. discovered that delayed growth

of human blastocysts increases spindle abnormalities and reduces
TABLE 3 Univariate and multivariate logistic regression analysis on the effect of live birth rate.

Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Female age at oocyte retrieval 0.970 (0.937-1.005) 0.088 – –

Female age at blastocyst transfer 0.971 (0.938-1.005) 0.094 – –

Age group (>35 VS ≤35) 0.839 (0.523-1.347) 0.468 – –

Pregnancy numbers 1.048 (0.954-1.151) 0.330 – –

Abortion Numbers 1.035 (0.929-1.154) 0.532 – –

Infertility years 0.953 (0.898-1.011) 0.109 – –

Infertility type (Primary VS Secondary) 1.057 (0.780-1.432) 0.723 – –

BMI 1.011 (0.964-1.060) 0.666 – –

BMI group (>24 VS ≤24) 1.042 (0.769-1.413) 0.791 – –

FSH 0.999 (0.996-1.003) 0.709 – –

E2 1.000 (1.000-1.000) 0.990 – –

AMH 1.013 (0.964-1.066) 0.606 – –

Endometrial preparation protocol (NC VS HRT) 1.430 (1.026-1.995) 0.035 1.462 (1.044-2.047) 0.027

AFC 1.013 (0.988-1.038) 0.311 – –

No. of retrieved oocytes 0.995 (0.977-1.012) 0.556 – –

No. of formatted blastocysts 1.035 (1.000-1.071) 0.048 1.039 (1.003-1.076) 0.031

Endometrial Thickness(mm) 1.034 (0.978-1.092) 0.243 – –

Blastocyst development day (Day 6 VS Day 5) 0.672 (0.489-0.925) 0.015 0.659 (0.476-0.911) 0.012

Blastocyst quality (High-quality VS Poor-quality) 1.362 (1.026-1.808) 0.032 1.453 (1.087-1.940) 0.012
BMI, body mass index; FSH, follicle-stimulating hormone; E2, estradiol; AMH, anti-mullerian hormone; NC, natural cycle;
HRT, hormone replacement therapy; AFC, antral follicle count.
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post-vitrification implantation potential (32). This abnormality

might contribute to the similar implantation potential observed

between high-quality D6 and low-quality D5 blastocysts. Prolonged

in vitro culture can exacerbate errors in gene expression, epigenetic

modifications, and mitochondrial activity, further impairing

embryonic competence (33). Studies have demonstrated that the

down regulation of oxidative phosphorylation genes, influenced by

mitochondrial RNA, can affect oocyte quality, including fertilization

and subsequent embryonic development (34). Additionally,

accumulation of mtDNA mutations, decreased copy number, and

reduced expression associated with mitochondrial defects can

impact embryonic development (35), indicating that even high-

quality blastocysts may accumulate a significant number of mtRNA

mutations due to extended culture time, which can affect further

development after implantation. Moreover, timely degradation of

maternal RNA during the transition from the maternal to the

zygotic genome has been demonstrated as crucial. Inhibiting its

degradation leads to a mixed developmental state and embryo

developmental failure (36, 37). Overall, considering the

combinat ion of genetic and epigenet ic composi t ion,

developmental time, and physical conditions of the embryo, these

factors collectively contributed to similar pregnancy outcomes
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observed in low-quality D5 blastocysts and high-quality

D6 blastocysts.

Endometrial receptivity was another critical factor impacting

pregnancy success. Under the influence of ovarian steroid

hormones, the endometrium undergoes complex molecular changes

to achieve a state receptive to embryo attachment, adhesion and

implantation (38). The natural cycle relied on endogenous hormones

for optimal secretory transformation of the endometrium, while HRT

utilized exogenous steroids. A few evidence based on systematic

reviews and meta-analyses indicates more favorable pregnancy

outcomes with natural cycles than HRT (39, 40). This was

consistent with our findings of higher live birth rates with natural

cycle preparation. However, further research was warranted to

elucidate the precise mechanisms of endometrial receptivity.

The advantages of this study were as follows. Firstly, all

implanted blastocysts in this study underwent PGT, minimizing

the impact of aneuploidy on pregnancy outcomes. Besides, our

nomogram integrated the number of blastocysts formed,

endometrial preparation method, blastocyst culture time and

quality to provide an individualized prediction of live birth

probability after frozen embryo transfer. While these factors have

been identified previously, constructing and validating a robust
B C

A

FIGURE 2

Construction and test of the prediction model for live birth rate. (A). The nomogram exhibited four characteristics of a patient (Blastocyst Number =
14, Endometrial Preparation Protocol = HRT, Blastocyst Quality = Poor, Blastocyst Development Day = D6), with a total score of 142 points, and the
predicted probability of live birth was 48.2%. (B). The sample number of the prediction model was 775, and the diagonal bisector was within the 95%
confidence interval (P = 0.192). (C). The area under the curve of Norman score was 0.598 (95% CI: 0.559-0.638), exhibiting a relatively good
discrimination degree.
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predictive model represents a novel contribution. Given the rapid

expansion of PGT, the nomogram could serve as a valuable

counselling tool to manage patient expectations and guide clinical

decision-making. Patients strongly favor personalized risk

estimation rather than population averages to make informed

treatment choices. Providing individualized outcome prediction

based on patient and treatment characteristics is also aligned with

the goals of precision medicine (41).

There are some limitations in this study. Firstly, being a

retrospective survey, it was prone to inherent biases. Conducting

prospective randomized controlled trials would provide better

insights into the impact of prolonged in vitro culture and blastocyst

quality on frozen embryo transfer outcomes. Additionally, the

mechanisms underlying the higher implantation rates and

improved pregnancy outcomes of D5 blastocysts compared to D6

blastocysts after PGT remain incompletely understood. Further

experimental results are crucial to support the conclusions of this

study, particularly in the comparison of low-quality D5 blastocysts

with high-quality D6 blastocysts. Secondly, external validation of our

cohort is necessary before implementing our nomogram in clinical

practice. Other potential predictive factors, such as ploidy status,

previous failed transfers, and freezing methods, have not been taken

into consideration. Moreover, although live birth was selected as the

primary outcome, neonatal outcomes were not evaluated. Follow-up

studies assessing perinatal outcomes are essential. Incorporating

additional predictive factors could enhance the discriminative

ability and clinical utility of the model.
Conclusion

In summary, this study demonstrated that post-PGT transfer of

euploid D5 blastocysts maximized chances of pregnancy and live

birth compared to D6 embryos. Blastocyst quality, blastocyst

development days, endometrial preparation, and number of

blastocysts available also impacted success rates. The predictive

model provided individualized assessment to counsel patients,

select embryos, and optimize clinical management. Further

refinement and validation of the nomogram will support broader

clinical application to guide treatment decisions and improve

outcomes of frozen embryo transfer cycles.
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