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G protein-coupled receptors
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Cardiovascular and Metabolic Disease, Johnson & Johnson Innovative Medicine Research &
Development, Spring House, PA, United States
G protein-coupled receptors (GPCRs) have emerged as important drug targets

for various chronic diseases, including obesity and diabetes. Obesity is a complex

chronic disease that requires long term management predisposing to type 2

diabetes, heart disease, and some cancers. The therapeutic landscape for GPCR

as targets of anti-obesity medications has undergone significant changes with

the approval of semaglutide, the first peptide glucagon like peptide 1 receptor

agonist (GLP-1RA) achieving double digit weight loss (≥10%) and cardiovascular

benefits. The enhanced weight loss, with the expected beneficial effect on

obesity-related complications and reduction of major adverse cardiovascular

events (MACE), has propelled the commercial opportunity for the obesity market

leading to new players entering the space. Significant progress has beenmade on

approaches targeting GPCRs such as single peptides that simultaneously activate

GIP and/or GCGR in addition to GLP1, oral tablet formulation of GLP-1, small

molecules nonpeptidic oral GLP1R and fixed-dose combination as well as add-

on therapy for patients already treated with a GLP-1 agonist.
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Introduction

G protein-coupled receptors are the largest family of membrane proteins targeted by

approved drugs (1). Ligand binding results in activation of downstream pathways including

G-proteins, b-arrestins and other non-G-protein transducers. Molecules that act by directly

binding GPCRs are either orthosteric (bind in the same pocket as the natural ligand) or

allosteric (bind in a different pocket). Allosteric modulators cooperatively interact with the

natural orthosteric ligand to potentiate or attenuate receptor signaling. b-arrestins
contribute to decreases in the response of the receptor to the respective agonist by

internalization of the receptors. Activated GPCRs can also promote the activation of a

subset of signaling pathways resulting in ‘ligand bias’ with unique cellular responses. Drugs

targeting GPCRs such as GLP-1RA, glucose-dependent insulinotropic polypeptide receptor

(GIPR), and melanocortin-4 receptors (MC4R) have been approved for weight

management and T2D (2, 3).

Obesity is a chronic multifactorial disease (4) increasing the risk of heart disease, diabetes,

liver disease, sleep apnea and certain cancers (5). It is estimated that by 2030 nearly 1 in 2
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1301017/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1301017/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1301017&domain=pdf&date_stamp=2023-12-14
mailto:Alessandro_pocai@yahoo.com
https://doi.org/10.3389/fendo.2023.1301017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1301017
https://www.frontiersin.org/journals/endocrinology


Pocai 10.3389/fendo.2023.1301017
adults will be obese in US (6). In the past 5 years, major therapeutic

advances have been made with multiple mechanisms progressing to

the clinic and the approval of semaglutide, the first GLP-1RA leading

to over 10% weight loss, an amount known to improve many of the

complications associated with obesity (7). Recently semaglutide

demonstrated also cardiovascular benefits (8). The increased

efficacy has reduced the gap with the ~25-30% weight loss achieved

with bariatric surgery during the first 2 years (9–12) and has driven

additional efforts for a weight management market projected to reach

77 billion by 2030 (Weight Loss Drugs Boost Obesity Market Value |

Morgan Stanley). Novel approaches have made significant progress

such as oral tablet formulation of GLP-1, oral small molecules

nonpeptidic GLP1R agonists and peptides dual or tri-agonists.

Additional mechanisms are being developed such as PYY, GIP,

amylin as a potential second activity to be combined with GLP-1RAs.
Glucagon-like peptide-1 receptor
(GLP-1R)

Processing of the preproglucagon precursor by prohormone

convertase 1/3 leads to production of GLP-1, GLP-2,

oxyntomodulin, glucagon and glicentin in a tissue-specific

manner (13–16). GLP-1 is a peptide hormone mainly secreted

from the gut L cells that improve glucose homeostasis and

promote weight loss (Figure 1) (13, 15–19). Liraglutide (Saxenda)

and semaglutide (Wegovy), the first and the second GLP-1RA

approved for weight management, achieved mean weight change

from baseline of -6.4% vs -15.8% respectively in a head-to-head trial

(20–22). In a recent landmark trial (SELECT trial), in over 17,000

overweight or obese non-diabetic adults with established

cardiovascular disease, semaglutide reduced major adverse

cardiovascular events by 20%, compared to placebo (8, 23).
Oral GLP-1

Although the injectable treatments have reached double digit

weight loss, oral therapies are more cost effective and are more likely

to achieve long term efficacy through better compliance and

combination strategies (24). An oral formulation of semaglutide

(14 mg) with the permeation enhancer salcaprozate sodium

(SNAC) (25) has been approved as first-line therapy in adults

with T2D (Rybelsus) and recent data suggest that 50 mg oral

semaglutide results in an efficacy profile comparable to injectable

semaglutide (26). However, to achieve sufficient absorption,

Rybelsus requires food and water restrictions, an absorption

enhancer and is less cost effective due to approximately 1%

absorption (27). Two oral non peptidics small molecule GLP-1RA

have completed phase 2 trials for weight management and T2D:

Once-daily Orforglipron (LY3502970) and twice daily Danuglipron

(PF-06882961). Orforglipron, a biased partial agonist of the GLP-

1R with lower activation of the b-arrestin pathway (28), resulted in

body weight reductions up to 12.6% (placebo adjusted) at 36 weeks

in obese non-diabetic patients (29) while Danuglipron, a GLP-1R
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lowering at 16 weeks in T2D (30, 31).
Glucagon receptor (GCGR)

GCGR is a family B GPCR activated by glucagon mainly

expressed in liver and kidney and, to a lower extent in heart,

adipose tissue, pancreas, gastrointestinal tract and other tissues.

Glucagon suppresses food intake and stimulates energy expenditure

and hepatic glucose production (32–34). Consistently,

administration of GCGR antagonists in patients with T2D

resulted in decreased glucose levels (35) but also increased body

weight providing human support for glucagon receptor agonism

(36). Moreover, oxyntomodulin, a gut peptide co-secreted with

GLP-1 with promising weight-loss and glucose-lowering properties

in humans (37, 38), is a dual agonist at the GLP-1R and GCGR (39–

41). Because GLP-1 improves body weight and glucose metabolism

in humans (42, 43), designing single peptides co-agonists at GLP-1R

and GCGR may produce superior body weight benefits to GLP-1R

agonism alone and could mitigate the effect of glucagon on glucose

production. Two independent papers reported for the first time the

use of GLP1R/GCGR dual agonists as being of enhanced efficacy

relative to pure GLP1R agonists in the treatment of rodent obesity,

with simultaneous improvement in glycemic control (44, 45).

Importantly, rodent models suggest that receptor balance is

critical to optimize efficacy and safety (46). Translational

superiority of GLP-1R/GCGR dual agonism versus GLP-1R on

the body weight benefit was later demonstrated in obese rhesus

monkeys (47, 48) and confirmed by other groups (49). Recently,

Survodutide (BI 456906), a once weekly GLP1/GCGR dual agonist,

showed up to 19% weight loss after 46 weeks in overweight and

obese subjects (50). Other companies have active efforts in this

space such as efinopegdutide (MK-6024) (51), pemvidutide

(Altimmune, ALT-801) and mazdutide (LY3305677, IBI362, 52).
Glucose-dependent insulinotropic
polypeptide receptor (GIPR)

GIP is an incretin hormone secreted from K cells in the proximal

small intestine that promote nutrient-stimulated insulin release

through GIPR (53–56). GIPR activation stimulates glucagon

secretion, lipid accumulation in adipose tissue, bone formation and

modulation of food intake and preference (57–61). Genetic and

pharmacological inhibition of GIP and GIPR in mice protects from

obesity (62–64). These data supported GIPR antagonism for obesity

while GIP receptor agonism was thought to be ineffective for glucose

lowering in T2D patients and potentially deleterious for body weight

(65, 66). However, following the demonstration of superior

pharmacology of GLP-1R and Glucagon receptor co-agonism to

GLP-1RA (44, 45), it was discovered that also GIPR agonism can

bring synergistic efficacy when combined with GLP-1 agonism (67–

70). This effort resulted in the approval of Tirzepatide for T2D

(Mounjaro) and obesity (Zepbound) (71–74; www.fda.gov/news-
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events/press-announcements/fda-approves-new-medication-

chronic-weight-management). Tirzepatide favors GIPR over GLP-1R

activity and it is biased for cAMP over b-arrestin recruitment at GLP-

1R (74–76).

Following the initial reports of pharmacological and genetic

deletion of GIPR, Killion et al. showed that an antagonist mAb to

the GIPR resulted in food intake and body weight reduction in

obese non-human primates and that the combination of GLP-1

agonist and GIPR antagonism resulted in additive weight loss (68,

77). This directionality was also supported by rare variants in GIPR

that contribute independently to a lower body weight (78). This

approach is being explored by Amgen with Maridebart cafraglutide

(formerly AMG 133) which is formed by two GLP-1 agonist
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peptides conjugated to an anti-GIP antibody backbone (79).

Killion recently reported that chronic GIP agonism desensitizes

and inhibits the activity of GIPR at least in adipose tissue potentially

reconciling the similar body weight directionality observed with

agonists and antagonists (69).
GLP1R/GIPR/GCGR – TRI-agonists

The advancement of dual agonists for GLP-1/GIP and GLP-1/

GCGR has also reinvigorated the development of triagonist

peptides at the GLP-1R, GIP and GCGR (80–82). The results of a

phase 2 trial of the triple agonist LY3437943 (Retatrutide) showed
FIGURE 1

G-protein coupled receptors (GPCRs) and peptides discussed. The anorexigenic hormones (blue) are released from various organs mostly in the
gastrointestinal system and pancreas and modulate GPCRs leading to food intake suppression, reduced gastric emptying and increased energy
expenditure. Inset. GPCR signaling: Balanced agonists activate both the G protein- and b-arrestin-dependent signaling pathway while biased
agonists selectively activate the GPCR-dependent signaling pathway affecting cellular response through second messenger activation or the b-
arrestin-dependent signaling pathway. Glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), gastric inhibitory polypeptide (GIP), peptide YY (PYY),
cannabinoid receptor 1 (CB1R), Leap-2 (Liver-expressed antimicrobial peptide 2), melanocortin 4 receptor (MC4R), amylin receptor (AmR), 5-
hydroxytryptamine receptor 2C (5-HT2CR). AgRP (Agouti-Related Protein), POMC (proopiomelanocortin); NTS, nucleus tractus solitarius; ARC,
Arcuate nucleus; PVN, paraventricular nucleus.
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24.2% weight loss at the highest dose (12 mg) in 48 weeks (23, 83).

Eli Lilly recently announced initiation of 3 large phase 3 studies

(TRIUMPH) of retatrutide. Multiple triple-agonists are in

development including HM15211, NN9423, SAR441255.
Amylin receptor

The amylin receptor (AmR) is a GPCR composed of the

calcitonin receptor (CTR) complexed with different receptor

-activity -modifying proteins (RAMP) 1 or RAMP3. Amylin is a

neuropeptide co-secreted with insulin by pancreatic beta-cells which

slows gastric emptying, and decreases food intake (84, 85).

Pramlintide is an injectable amylin analogue dosed three times a

day as an adjunct for the management of T1D and T2D resulting in

modest weight loss, smaller meal size and less binge eating episodes

(86). CagriSema is a once-weekly injection of semaglutide and the

long-acting amylin analogue cagrilintide (AM833, 87, 88) leading to

nearly 16% reduction in body weight (89, 90). Recently Novo Nordisk

announced the initiation of REDEFINE 4, a phase 3 trial comparing

CagriSema 2.4 mg with Lilly’s Zepbound 15 mg evaluating weight

loss after 72 weeks in 800 obese patients non-diabetic and is expected

to be completed by October 2025 (NCT06131437). Amycretin

(NNC0487-0111) is an oral formulated GLP-1 and amylin peptide

being tested in phase 1 (NCT06049329). Other approaches include

GUC17 (Gubra), ZP8396 (91–93), KBP-066A (94).
Neuropeptide Y receptor type 2 (Y2R)

Peptide YY (PYY) is secreted post-prandially by the L-cells of

the gut together with GLP-1 (95). Secreted as PYY(1–36), it is then

cleaved by the enzyme dipeptidyl peptidase 4 into PYY(3–36). PYY

(3–36) activates Y2 receptors in the hypothalamus leading to

appetite reduction and food reward regulation (96, 97). Bariatric

surgery results in increased secretion of GLP-1 and PYY and co-

infusion of PYY3–36 and GLP-1 elicit at least additive anorectic

effect with ~30% reduction in food intake exceeding the 15%–20%

reduction predicted to sustain a weight loss ≥10% in one year (98–

101). PYY-based therapeutic development remains challenging due

to emesis and low stability (102). Recent progress includes an

antibody NPY2R agonist with infusion-like exposure resulting in

reduction of food intake without emesis (101), Y14, a zinc-based

extended-release selective Y2 receptor agonist, that demonstrated

preliminary efficacy and tolerability in human subjects (103), and BI

1820237, a long acting NPY2 receptor agonist that showed

decreased energy intake and delayed gastric emptying in

overweight or obese men (104). Additional companies active in

this space include Carmot Therapeutics and Cinfina Pharma.
Melanocortin 4 receptor (MC4R)

MC4R have been involved in food intake, metabolism, sexual

behavior, and male erectile function (105, 106). Small molecules and

peptide agonists of MC4R have been evaluated for obesity including
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MK-0493, LY2112688, MC4-NN-0453, PF-00446687 and AZD2820

and failed due to HR and BP changes, lack of human efficacy or

tolerability (106). Setmelanotide (Imcivree) received FDA approval in

2020 for chronic weight management in obesity caused by genetic

defects and did not result in obvious undesirable cardiovascular

effects. In 2022 setmelanotide was also approved for patients with

Bardet-Biedl Syndrome. Receptor selectivity, differential brain

penetration and biased signaling may explain the differential profile

(107, 108). Protective MC4R variants identified in the UK Biobank

exhibited signaling bias toward b-arrestin recruitment and increased

MAPK pathway activation suggesting that b-arrestin-biased MC4R

signaling may represent an effective strategy for weight loss (109,

110). Setmelanotide has a higher potency for cAMP and a weaker

effect on ERK1/2 phosphorylation when compared to alpha-MSH

indicating biased agonism (110, 111).
Cannabinoid receptor 1 (CB1R)

The CB1R is a G-protein coupled receptor highly expressed in

the central nervous system. CB1R antagonist/inverse agonist,

rimonabant, was approved for the treatment of obesity but it was

withdrawn from the market due to neuropsychiatric adverse effects

(112). Multiple strategies have been proposed to circumvent the

neuropsychiatric adverse effects including biased signaling,

allosteric modulators, neutral antagonists, and peripherally

restricted ligands since several metabolic processes appear to

benefit from peripheral blockade of CB1 (113–115). Recently

Novo Nordisk announced the acquisition of INV-202, an oral

CB1 inverse agonist designed to preferentially block CB1R in

peripheral tissues. INV-202 administration for 28 days to adult

subjects resulted in an average weight loss of 3.3% (vs 0.5% gain for

placebo) (https://www.novonordisk.com/news-and-media/news-

and-ir-materials/news-details .html?id=166304). Zizzari

demonstrated that CB1 and GLP-1 receptors modulate food

intake and body weight via reciprocal functional interactions

achieving greater reduction in body weight than each individual

monotherapy (116).
Other GPCR targeted for the
regulation of energy homeostasis

5-hydroxytryptamine receptor 2C
(5-HT2CR)

Rodent studies have demonstrated that 5-HT2CR mediates

most of the food intake and body weight effects of d-fenfluramine

and sibutramine, but it was withdrawn from clinical use due to

increased heart rate and blood pressure (117). Lorcaserin is a 5-

HT2CR agonist approved for weight management, but it was

withdrawn in 2020 due to a numerical imbalance in the cancers

occurring in an over 12,000-participant clinical trial (118). Since

then, progress has been made in 5-HT2CR research with the

identification of allosteric modulators (119) acting on specific site

of the receptor (120). Recently, Wagner et al. demonstrated that
frontiersin.org
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PPG neurons in the brainstem mediate the reduction of food intake

by lorcaserin and that the combination of lorcaserin with GLP-1RA

resulted in additive effects on food intake potentially providing a

strategy to increase the therapeutic margin of future 5-HT2CR

agonists (121).
Ghrelin receptor (GHSR)

Ghrelin administration stimulates feeding, whereas GHSR

antagonists inhibit feeding (122–125). Considering the high

constitutive activity of GHSR, antagonists or inverse agonists of the

GHSR have been proposed as potential approaches (126). Since the

GHSR system also modulates other physiological functions such as GH

secretion, it is necessary to expand understanding of the pathways

involved and develop biased ligands to modulate only the

therapeutically relevant signaling pathway (127). LEAP-2 (Liver-

expressed antimicrobial peptide 2) has been characterized as an

endogenous competitive antagonist of ghrelin and proposed as a

potential therapeutic target for obesity (128, 129). In a small

randomized, double-blind, placebo-controlled, crossover trial, LEAP2

infusion reduced postprandial glucose excursions, growth hormone

concentrations and ad libitum food intake in healthy men (130).
G protein-coupled receptor
40 (GPR40)

The orthosteric partial GPR40 agonist TAK-875 (fasiglifam)

resulted in glucose improvement in T2D patients (131) but the

development was halted in Phase III due to potential liver toxicity

(132). Recently, GPR40 AgoPAM agonists have been identified

resulting in body weight lowering and improvement of glycemic

control by stimulating the secretion of insulin, glucagon, and gut

peptides (133–136). Following the initial GPR40 AgoPAMs

triggering rebound hyperglycemia at high doses, compounds were

discovered with improved aqueous solubility that did not result in

this side effect (137).
Weight loss and fat free mass

One concern among new generation drugs is the rapid weight

loss and its impact on muscle mass. Sarcopenia is common among

older adults with obesity and NASH patients with cirrhosis leading
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to increased risk for lower bone density, decreased strength and

mortality. A subgroup of participants treated with Tirzepatide

underwent DEXA at basel ine and at week 72 in the

SURMOUNT-1 trial. Tirzepatide treatment resulted in -33.9%

reduction in total body fat mass (vs -8.2% placebo) and reduced

lean mass by -10.9% (vs -2.6% placebo). While the percent

reduction in fat mass was approximately three times greater than

the reduction in lean mass, the reduction in lean mass reported is

typically observed over a decade or more in elderly patients (138).

Moreover, dual and triple agonists such as Retatrutide lead to

chronic glucagon receptor activation that can theoretically

contribute to whole-body protein catabolism (139–141). Recently

Lilly announced acquisition of Versanis’ lead obesity candidate

bimagrumab, a monoclonal antibody targeting activin type II

receptors to inhibit atrophy and to increase muscle mass (142–

144). In a 48-week phase 2 trial, intravenous bimagrumab conferred

approximately a 20% reduction in fat mass and a 4.4% increase in

lean mass (143). A phase 2 study is ongoing to assess if bimagrumab

in addition to semaglutide is able to preserve/increase muscle

mass (NCT05616013).
Discussion

The therapeutic landscape for anti-obesity medications has

drastically changed in the last few years with the approval of

treatments for monogenic forms of obesity and a new generation

of anti-obesity medications (Figure 2) (2, 108). These new anti-

obesity medications are associated with over 10% body weight loss

known to improve many of the complications associated with

obesity. The published data on tirzepatide suggest that second-

and third-generation dual agonists and tritagonists, nicknamed

“double G” or “triple G”, have the potential to be superior to

semaglutide in obese patients (71, 145, 146). A head-to-head trial of

tirzepatide vs. semaglutide in adults with overweight or obesity

(SURMOUNT-5) was initiated in April 2023 and is expected to be

completed in November 2024 (NCT05822830). Thanks to major

advancements on GPCR signaling in regulating energy homeostasis,

we have a better understanding of the multi-state model where the

ligands’ binding affects specific downstream pathways resulting in

efforts targeting selective signaling pathways (biased signaling).

Interestingly, biased agonism at the GLP-1R favoring cAMP

generation over b-arrestin recruitment could be involved in the

efficacy of tirzepatide resulting in less receptor internalization. The

clinical success of tirzepatide has revamped the attention toward
FIGURE 2

Timeline and discoveries discussed in this minireview with therapeutic relevance in obesity.
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GLP-1R/GCGR dual agonists and tri-agonists GLP-1R/GCGR/

GIPR in which the identification of an ideal receptor balance is

required to maximize efficacy and mitigate safety concerns. An

important consideration for dual and tri-agonist peptides, is to

monitor and clarify the clinical consequences on the cardiovascular

system, especially the heart rate increase (147, 148). GLP-1R

agonism causes a small rise (usually 2–3 bpm) in heart rate (149),

GIP infusion increases heart rate in humans (60) and GCGR

agonism appears to have a positive chronotropic and inotropic

action on the heart (150). Clinical data so far have shown that

retatrutide dose-dependently increases heart rate up to 6.7 bpm at

24 weeks and declined thereafter (83) while pulse rate increased

with increasing doses of tirzepatide peaking (6.6. bpm) at 20 weeks

and then declining (151).

Importantly, in the SELECT trial, differences in rates of

cardiovascular events between semaglutide and placebo began to

emerge within the first few months suggesting that weight loss alone

may not account for the full benefits (8). SURMOUNT-MMO, an

event-driven cardiovascular efficacy trial evaluating tirzepatide in

adults with obesity, is expected to be completed in October

2027 (NCT05556512).

On the co-morbidities front, GLP-1R is not expressed in the

liver and the data generated with semaglutide in NASH patients

seems to support a lack of a direct antifibrotic effect (152). Hence,

GLP-1 therapeutics that target glucagon (and GIP) may have

advantages over selective GLP-1RA for liver diseases. Recently,

the kidney outcome trial FLOW evaluating semaglutide in T2D

and chronic kidney disease (NCT03819153; 153), was stopped early

for efficacy and it is expected to read out during the first half of

2024 (154).

There is also tremendous activity in the development of non

peptidic small molecules targeting the incretin system to produce

drugs that are orally available. Some oral GLP-1R agonists have

achieved impressive weight loss results in phase 2 but appears to

have a higher rate of discontinuation due to nausea and vomiting

despite an onerous titration. As with all systemic small molecules

there is also the potential for off-target toxicities and drug-drug

interactions that need to be evaluated. In addition to confirm

comparable efficacy to injectables, oral small molecules need to

show the beneficial cardiovascular effects seen with semaglutide. In

the future it will be interesting to see whether a single small

molecule can target multiple family B GPCR receptors. Major

progress has been made in the GLP-1 combination front with
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long-acting amylin analogues and a better understanding of the

tolerability events that have limited development of PYY

therapeutics. Interestingly, GIPR agonism blocks PYY (155) and

GLP-1 receptor mediated emesis and illness behaviors in preclinical

species (156). Addressing the translatability and the mechanism(s)

involved in the anti-emetic actions of GIP, may lead to next

generation therapeutics without the onerous titration and the

tolerability issues of current therapeutics.

Despite the impressive results achieved, weight reduction is still

considerably lower than bariatric surgery leaving important unmet

medical needs and opportunities for obesity treatments. Differences

in receptor balance and signaling, tissue distribution and

penetration together with a greater understanding of pathways

involved in body weight regulation and tolerability leave vast

opportunities available to improve upon current therapeutics.
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