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Background: There is emerging evidence which suggests the utility of artificial

intelligence (AI) in the diagnostic assessment and pre-treatment evaluation of

thyroid eye disease (TED). This scoping review aims to (1) identify the extent of

the available evidence (2) provide an in-depth analysis of AI research

methodology of the studies included in the review (3) Identify knowledge gaps

pertaining to research in this area.

Methods: This review was performed according to the 2020 Preferred Reporting

Items for Systematic Reviews and Meta-Analyses statement (PRISMA). We

quantify the diagnostic accuracy of AI models in the field of TED assessment

and appraise the quality of these studies using the modified QUADAS-2 tool.

Results: A total of 13 studies were included in this review. The most common AI

models used in these studies are convolutional neural networks (CNN). The

majority of the studies compared algorithm performance against healthcare

professionals. The overall risk of bias and applicability using the modified Quality

Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool led tomost of the

studies being classified as low risk, although higher deficiency was noted in the

risk of bias in flow and timing.

Conclusions:While the results of the review showed high diagnostic accuracy of

the AI models in identifying features of TED relevant to disease assessment,

deficiencies in study design causing study bias and compromising study

applicability were noted. Moving forward, limitations and challenges inherent

to machine learning should be addressed with improved standardized guidance

around study design, reporting, and legislative framework.

KEYWORDS

Graves’ ophthalmology, Graves orbitopathy, thyroid eye disease, artificial intelligence,
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Introduction

Artificial intelligence (AI) is a term which refers to a branch in

computer sciences that utilizes mathematical algorithms to attempt

to perform tasks which usually require human cognition. In recent

years, AI technology has advanced tremendously due to the

enhancement of computational analytics techniques and the

availability of large datasets. In healthcare, a substantial

proportion of the AI literature is focused on medical imaging,

where sophisticated algorithms are employed to develop models to

improve diagnostic accuracy in medical image interpretation (1).

Thyroid eye disease (TED) is the main extrathyroidal

manifestation of Graves’ disease (GD) which develops in about

25-50% of patients with GD (2). The disease is autoimmune in

etiology and is characterized by inflammation and extensive

remodeling of the soft tissues surrounding the eyes (3). The

pathogenesis of the disease involves loss of self-tolerance to

thyrotropin receptor (TSHR) and insulin-like growth factor-1

receptor (IGF-1R), leading to activation of sub-populations of

orbital fibroblasts which triggers an autoimmune cascade, causing

expansion of retro-orbital fat and enlargement of extraocular

muscles (4). Disease manifestations include redness and swelling

of the conjunctivae and lids, forward protrusion of the globes

(proptosis), ocular pain, debilitating double vision, and even sight

loss due to compressive optic neuropathy or breakdown of the

cornea (5). Known as the “Rundle’s Curve”, TED begins with an

active inflammatory phase which usually lasts for 18 months to 2

years before plateauing to a fibrotic inactive phase (6). The

conventional goal of management is for early detection and

treatment of active TED with immunosuppressive therapy. Late

complications of TED such as compressive optic neuropathy or

exposure keratopathy may not respond to immunosuppression

alone and may require urgent surgical orbital decompression.

Rehabilitative surgeries such as orbital decompression, strabismus,

and eyelid surgeries are usually carried out in a staged fashion when

the disease course becomes inactive. The recent discovery of the

IGF-1 inhibitor shows improvement in proptosis, strabismus, and

vision in active and even inactive TED patients (7, 8). These are

potential harbingers and present a new paradigm for TED

management in the future. Unfortunately, the high cost and

potential risk of permanent hearing loss limit its widespread use

in many countries. Despite advances in treatment, a large

proportion of patients remain undiagnosed before debilitating

symptoms such as diplopia and exposure keratopathy occur, often

leading to impairment of the quality of life despite treatment. Early

diagnosis and treatment of TED thus becomes an important area

of research.

The first step in the diagnosis of TED is a dedicated

ophthalmological examination, then orbital imaging may be

employed in selected clinical situations. Orbital imaging in TED

may be performed for several reasons: 1) Diagnosis of dysthyroid

optic neuropathy (DON): This is a serious complication of TED

which is sight threatening. Early recognition and treatment may

avoid loss of sight 2) Diagnosis of TED with an atypical

presentation: Although the diagnosis of TED is generally

straightforward in a hyperthyroid patient, other differentials may
Frontiers in Endocrinology 02
need to be considered when the patient is euthyroid or hypothyroid

or presents with individual signs such as isolated proptosis (e.g. due

to lymphoma, cavernous sinus fistula), which may occur in 20% of

all TED patients (9) 3) Evaluation of disease activity for prediction

of therapeutic efficacy with anti-inflammatory and monitoring of

treatment response.

There is emerging evidence which suggests the utility of AI in

the diagnostic assessment and pre-treatment evaluation of TED.

This scoping review aims to (1) identify the extent of the available

evidence (2) provide an in-depth analysis of AI research

methodology of the studies included in the review (3) Identify

knowledge gaps pertaining to research in this area (10).
Materials and methods

A literature search was performed by two independent

investigators (CL and SW) from the earliest year of indexing until

February 2023. Disagreements were resolved by consensus. This

review was performed according to the 2020 Preferred Reporting

Items for Systematic Reviews and Meta-Analyses statement

(PRISMA) (11). A systematic literature search was performed in

PubMed, Google Scholar, and Clinicaltrials.gov. The following

terms were connected using Boolean operators “and”, “or” “and/

or”, “thyroid eye disease”, “thyroid orbitopathy”, “thyroid-

associated orbitopathy” , “graves ’ orbitopathy” , “graves ’

ophthalmopathy”, “machine learning”, “deep learning”, “artificial

intelligence”, “convolutional neural network”. The terms were

searched as “Mesh terms” and as “all fields” terms.

The search generated 123 abstracts, 10 of which are repeats, and

the remaining 113 were individually assessed for suitability. Only

full original articles of completed studies published in peer-

reviewed journals that were written in English were included in

this review. 13 artificial intelligence papers met the full inclusion

criteria and were included (Figure 1). 7 papers were based on

radiological scan images, 4 papers were based on external

photographs of patients and 2 papers were based on

clinical parameters.
Tailored Quadas-2 tool for assessment of
the quality of the AI studies

Given the absence of an internationally accepted AI-specific

quality assessment tool for review papers, we adopted and tailored

the QUADAS-2 assessment tool as recommended by the

QUADAS-2 steering committee to improve its applicability in

analyzing AI papers. QUADAS-2 determines the risk of bias and

the applicability of each study in four main areas: patient selection,

index test, reference standard, and flow and timing (12). These

domains were assessed by using signaling questions with yes, no,

and unclear answers. However, given the nature of the machine

learning methods, we found the signaling question under “patient

selection” on whether the study has avoided a case-control design to

be redundant, thus this was assigned as non-applicable. Specific AI-

related signaling questions were added (13, 14) to the domains of
frontiersin.org
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patient selection, index test(s), and reference standard (Table 1).

Two reviewers independently judged the quality of each study.

Disagreements were resolved by consensus with additional input

from the third reviewer from the study team.
Results

A total of 13 studies related to TED assessment for diagnosis

and pre-treatment evaluation were included in this review. A

summary the main clinical and patient demographic features of

the studies is presented in Table 2 and the full study characteristics

are provided in Table 3. The number of patients recruited in the

studies ranges from 108 to 2154 and main patient demographic

details such as age, gender and smoking status were detailed in 8 of

the 13 studies reviewed. The most common AI models used in these

studies are convolutional neural networks (CNN). Three of the

studies validated algorithms on external datasets (18, 23, 26). 12 of

the 13 studies compared algorithm performance against healthcare

professionals, whereas one study utilizes electronic medical records

(EMR) phenotypes (15). Definitions of TED and threshold for

diagnosis were generally based on current accepted clinical

standards for all the studies included in this review. Less than half

of the studies stated the method for internal validation and four

studies described study design with end-user interpretability in

mind (18, 19, 22, 23).
Studies based on diagnostic imaging

There were seven studies that utilizes diagnostic imaging (CT or

MRI orbits) in the diagnosis and severity assessment of TED (18,

24), identification of DON (15, 25), detection of disease activity (20)
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or enlarged extraocular muscles (22) and prediction of therapeutic

response to glucocorticoid therapy (19). The area under the curve

(AUC) of these AI systems ranges from 0.81 to 0.979, sensitivity

(SN) from 75.3% to 94%, specificity (SP) from 85% to 99.5% and

accuracy from 82.6% to 96%.
123 records identified

37 from PubMed

85 from Google Scholar

1 from clinicaltrials.gov

113 records screened

10 duplicates removed

106 full text articles assessed

for eligibility

13 articles included for

analysis

7 excluded

93 papers excluded

2 papers not peer reviewed

5 papers on radiotherapy

1 paper on postoperative assessment

1 paper on AI in TED tissue samples

1 paper on AI in drug treatment of TED

83 papers not related to TED and/or AI

FIGURE 1

PRISMA flow diagram of included studies.
TABLE 1 Additional QUADAS-2 signalling questions tailored for this
review of the AI literature.

DOMAIN 1: PATIENT SELECTION

A. Risk of Bias

Was the data in house or well curated open-source data?

Was the rationale and breakdown in the train, validate and test set described?

Is more than one institution included?

Did the study consider label imbalance if handling a classification problem?

Did the patient sample include an appropriate spectrum of patients to whom the
diagnostic test will be applied in clinical practice?

DOMAIN 2: INDEX TEST(S)

A. Risk of Bias

Was the test evaluated against an external dataset?

Was overfitting avoided?

Was sufficient detail given on the algorithm to allow replication and
independent validation?

Is there a specific design for end-user interpretability, e.g., saliency or
probability maps?

DOMAIN 3: REFERENCE STANDARD

A. Risk of Bias

Was there a good expertise level and is there consensus amongst experts if used
for performance benchmarking?
TABLE 2 Summary of the main clinical and patient demographic
features of the studies.

No Author Main clinical and patient
demographical features

1 Chaganti
et al/
2017 (15)

788 patients in disease cohort, of which 73 had TED vs
1566 controls who had cochlear implants

2 Salvi
et al/2002
(a) (16)

Inactive vs Active TAO: 246 vs 152. No differences in age
between the groups but women with active TAO
were older

3 Salvi
et al/2002
(b) (17)

Inactive vs Active TAO vs normal: 129 vs 113 vs 103
patients. Mean age (yrs): 47.1 ± 1.3 vs 49.5 ± 1.3 vs 48.4 ±
2.1 years. M:F 1:5 vs 1:6.5 vs 1.1. Immunosuppressive
(Inactive vs Active TAO): 2.1% vs 7.1%. Smokers (Inactive
vs Active TAO): 37.2% vs 43.4%.

4 Song
et al/
2021 (18)

TAO vs controls: 193 vs 715

5 Hu et al/
2022 (19)

Training cohort: Steroid responsive vs Steroid
unresponsive: 44 vs 34. Mean age (yrs): 47.6 ± 11.6 49.4 ±

(Continued)
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Song et al. reported an AUC of 0.919, with non-inferiority of the

AI system demonstrated when compared to the resident group in

diagnosing TED (18). The authors demonstrated higher sensitivity

when they compared their 3D-Res Net (28) model to AlexNet and

VGG thereby concluding its effectiveness in TED screening. The

study utilizes class activation mapping (CAM) for transparency of

the CNN. However, >70% of the database were patients with

moderate to severe TED, and the judgment from residents rather

than senior experts were used in this study. Lee et al. developed a

new neural network for the diagnosis and severity assessment of

TED, with a reported AUC of 0.979 for moderate to severe TED and
Frontiers in Endocrinology 04
0.895 for mild TED (24). The performance of the new neural

network was better than that of GoogLeNet, ResNet-50, Visual

Geometry Group-16 (VGG-16), and even three oculoplastic

surgeons, although details were not clear on the exact matrices

that the experts based their decision-making on. In both studies, CT

images were pre-processed via methods such as cropping, rotation

or segmenting based on HU levels targeting extraocular muscles

or fats.

Two studies developed AI models to identify DON (15, 25).

Chaganti et al. showed improvements in the AUC of their AI model

in classifying various optic nerve conditions, including DON in

TED, when electronic medical records (EMR) information was

incorporated into CT imaging data (15). Adding EMR

phenotypes (derived from an EMR-based phenome-wide

associated study (PheWAS) to imaging markers increased the

AUC from 0.81 to 0.85. Wu et al. developed a deep learning

hybrid model which is composed mainly of the double multiscale

and multi-attention fusion module (DMs-MAFM) and a deep

convolutional neural network for predicting suspected DON

using CT orbits (25). The dataset was obtained from 178 patients,

of which only 42 had DON. The model was trained on an

augmented set of coronal views of the orbits at various distances

from the interzygomatic line. The hybrid model reached a high

accuracy rate of 96%, sensitivity of 94%, specificity of 99.5% and

precision of 98.9%.

Lin et al. constructed DL systems based on CNN to distinguish

active and inactive TED using 160 MRI orbit images (20). Network

A inherited from the VGG network (29) and network B was

constructed with the addition of parts of the Residual Neural

Network (28). Both networks achieved high accuracy (network A

0.863 ± 0.055, network B: 0.855 ± 0.018). After modification,

network B improved the sensitivity (0.750 ± 0.136 to 0.821 ±

0.021). The AUC of both networks was 0.922.

Hanai et al. developed a diagnostic software system to evaluate

enlarged extraocular muscles (EEM) in TED patients using the orbital

coronal CT data from 199 patients with EEM and 172 controls with

normal extraocular muscles (22). The system was constructed based

on a deep neural network using ResNet-50 (28) and VGG-16 (29).

Post-hoc explainability was achieved using Score-CAM to construct

heat maps for indicating where images in the convolutional neural

network were focused. The system demonstrated a sensitivity of

92.5%, specificity of 88.6%, and AUC of 0.946.

Hu et al. performed radiomic analysis of MRI T2-weighted

(T2w) coronal orbital images using the eight most identifiable

features, all of which were related to signal intensity or

heterogeneity (19). The study also found that higher minimal

T2w signal intensity of the extraocular muscles, corroborated with

earlier literature findings that they were more responsive to

treatment, presumably due to higher water content. Integration of

radiomics signature and disease duration further improved the

diagnostic performance when compared to radiomics signature

only (AUC of validation set improved from 0.916 to 0.952).

Radiomics feature inputs with clinical value providing

interpretability in these AI models. This study, however, lacked a

test set to verify the model’s applicability to internal or external data

and it only assesses active, moderate-to-severe TED.
TABLE 2 Continued

No Author Main clinical and patient
demographical features

10.6. M/F: 15/29 vs 18/16. Disease duration (months):
5.6 ± 4.4 vs 7.6 ± 5.3. Smokers’ vs Non-smokers: 14/30 vs
15/19. Euthyroid vs Non-euthyroid: 37/7 vs 28/6. CAS
score: 3.6 ± 0.7 vs 3.7 ± 0.9
Validation cohort: Steroid responsive vs Steroid
unresponsive: 18 vs 14. Mean age (yrs): 48.0 ± 13.5 vs
49.9 ± 11.4. M/F: 9/9 vs 6/8. Disease duration (months):
3.9 ± 2.5 vs 6.8 ± 3.4. Smokers vs Non-smokers: 5/13 vs
4/10. Euthyroid vs Non-euthyroid: 15/3 vs 12/2. CAS
score: 4.2 ± 0.9 vs 3.7 ± 1.0

6 Lin et al/
2021 (20)

108 patients with TAO. M/F: 42/66. Patients with active
TAO were treated with immunosuppressives and MRI
orbits of these patients were compared before and
after treatment

7 Huang
et al/
2022 (21)

Active vs Quiescent vs Mild TAO: 487 vs 1073 vs 89.
Moderate vs severe vs very severe TAO: 89 vs 1290 vs 181.
M/F (total): 563/997. Majority of cases were below 50yo:
1055/1560

8 Hanai
et al/
2022 (22)

Enlarged extraocular muscle vs normal extraocular muscle:
199 vs 172. Mean age (yrs): 55.9 ± 13.7 vs 52.6 ± 18.4. M/
F: 56/143 vs 40/132

9 Karlin
et al/
2022 (23)

TED vs controls: 829 vs 1459

10 Lee et al/
2022 (24)

*Mild vs Moderate-to-severe GO vs controls: 99 vs 94 vs
95. Mean age (yrs): 38.4 ± 10.4 vs 47.6 ± 15.0 vs 29.3 ±
8.1. M/F: 13/86 vs 45/49 vs 37/58.

11 Wu et al/
2022 (25)

TAO patients with DON vs TAO patients without TAO vs
controls: 42 vs 49 vs 87

12 Shao
et al/
2022 (26)

TAO vs normal: 74 vs 74. Mean age (yrs): 43.76 ± 13.69 vs
43.28 ± 12.84. M/F: 17/57 vs 17/57. In the TAO group, 38
patients (51.35%) were diagnosed with bilateral TAO, and
36 patients were diagnosed (48.65%) with unilateral TAO.
The TAO group consisted of 67 patients with
hyperthyroidism, 4 patients with euthyroidism, 2 patients
with Hashimoto thyroiditis, and 1 patient with
primary hypothyroidism

13 Moon
et al/
2022 (27)

1020 patients with TAO. Mean age: 45.2 ± 15.4 years. M:
F: 301/719. Mean total CAS score (available for 918/1020
patients): 2.0 ± 1.3. Active TAO (CAS ≥ 3) was observed
in 272 patients (29.6%), and highly active TAO (CAS ≥ 5)
in 34 (3.7%).
*Patient demographics were based on the 288 CT images used for this study. Significant
differences in age and gender of the 3 patient groups.
GO, Graves’ orbitopathy; TAO, Thyroid associated orbitopathy; M/F, Number of males/
Number of females; DON, dysthyroid optic neuropathy.
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TABLE 3 Is a large table, submitted as supplementary materials.

Internal
validation

External
validation

Outcome measures

NA No AUC 0.81
With addition ofEMR phenotype:
AUC 0.85

Hold-out No Classification: SN 86.2%, SP 80.2%
Prediction of progression: SN 75.3%
SP 52.2%
Concordance between clinical
assessment and neural network
prediction: 67%

Hold-out No Correctly classified 78.3% of 115 eyes
(87 patients) and predicted TAO
progression in 69.2% of 39 eyes
(28 patients)

Hold-out Yes AUC 0.919
Accuracy 87%
SN 88%
SP 85%
Accuracy
was 85.67% in the AI group and
84.33% in the resident group in the
non- inferiority experiment

Hold-out No LR achieved the best performance;
Validation set results: AUC 0.916,
Accuracy 87.5%, SN 86.1%, SP 89.3%,
PPV 91.2%, and NPV 83.3%
Integration of radiomics signature
and disease duration: AUC 0.952,
Accuracy 87.5%, SN 91.7%, SP 82.1%,
PPV 86.8%, NPV 88.5%

Hold-out No Network (A): Accuracy 86.3%, SN
75.3%, SP 89.6%, Precision 68%
Network (B): Accuracy 85.5%, SN
82.1%, SP 86.5%, Precision 64%
Both network (A) and (B):
AUC 0.922

Hold-out No The mean AUC of the seven signs of
TED :0.85, mean sensitivity 80%,
mean specificity of 79%

(Continued)
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Study Author/
yr

Aim of study No. patients AI model Image type Reference
standard

1 Chaganti
et al /
2017 (15)

Improve accuracy of AI model
in classifying various optic
nerve conditions with the
addition of EMR phenotypes

2154 Boosted
random forest

CT orbits
CT performed
for cochlear
implants
(controls)

NA

2 Salvi et al /
2002
(a) (16)

Classification and progression
prediction of TED

398 3-layer
neural network

Clinical
ophthalmologic
assessment and
orbital CT
or US

Expert

3 Salvi et al /
2002
(b) (17)

Classification and progression
prediction of TED

345 3-layer
neural network

Clinical
ophthalmologic
assessment and
orbital CT
or US

Expert

4 Song et al
/ 2021 (18)

Screening of TED 908 Modified 3D-
ResNet-18

CT orbit Experts

5 Hu et al /
2022 (19)

Value of T2WI-derived
radiomics for pre-treatment
determination of therapeutic
response to glucocorticoids

110 Logistic regression
(LR), decision tree
(DT), support vector
machine (SVM)

MRI orbits Experts

6 Lin et al /
2021 (20)

Identification of active TED 108 CNNs built with
blocks from VGG
and ResNet

MRI orbit Expert

7 Huang
et al /
2022 (21)

Detect signs of TED based on
facial images

1560 Single-shot multibox
detector(SSD), U-
net, and ResNet-50

Facial images Expert
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TABLE 3 Continued

del Image type Reference
standard

Internal
validation

External
validation

Outcome measures

-50, VGG-16 CT orbit Experts Hold-out No AUC: 0.946
SN 92.5%, SP 88.6%

emble model
ResNet-18

Facial image Experts Hold-out Yes Accuracy 89.2%, specificity: 86.9%,
recall 93.4%, precision 79.7%

built CNN CT orbit Experts Hold-out No Moderate-severe vs normal: AUC
0.979, Accuracy 0.930
Mild TED vs normal: AUC 0.895,
Accuracy 0.826
Moderate-severe vs mild vs normal:
AUC 0.905, Accuracy 0.842

multiscale
lti attention
module
entNetB0

CT orbit Experts Hold-out No Accuracy 96% SN: 94% SP: 99.5%,
Precision: 98.9%

Net Facial images Experts Hold-out Yes Accuracy: 98.5%

ernel SVM
ted with
ernel PCA)

Facial images Experts Hold-out No SN: 72.7% SP 83.2% (entire dataset)
SN: 88.1% SP 86.9% (dataset with
consistent results for the 3
ophthalmologists
SN: 40% SP: 49.9% (combination of
above 2 datasets)
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Study Author/
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Aim of study No. patients AI m

8 Hanai et al
/ 2022 (22)

Detection of enlarged EOM 371 ResNe

9 Karlin et al
/ 2022 (23)

Detect TED using
external photographs

2288 An en
of five

10 Lee et al /
2022 (24)

Diagnosis and severity
assessment of TED

300 custom

11 Wu et al /
2022 (25)

Prediction of DON in TED 178 Doubl
and m
fusion
+ Effic

12 Shao et al /
2022 (26)

Automatic measurement of
eyelid morphology in
TAO patients

148
(separate 30000 images (celebA) to
train eye detection model and 1862
healthy volunteer images to train
eye segmentation model

R2AU

13 Moon et al
/ 2022 (27)

Assess CAS and diagnose
active TAO

1020 linear
(integr
linear

The full study characteristics of the 13 studies in this review. SN, sensitivity; SP, specificity; AUC; area under curve.
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Studies based clinical assessments

Two studies [Salvi et al. (a) and (b)] by the same group utilized

clinical assessments in combination with US or CT orbit in TED

diagnosis and prediction of disease progression (16, 17) of which

only one study provided the sensitivity and specificity of the AI

system (16). Both studies recruited patients already known to have

GD at the ophthalmology clinic in a single institution. It is unclear if

there were appropriate exclusion criteria. Training set data was

provided by an expert clinician (ophthalmologist and

endocrinologist). However, there was no internal or external

validation used for the studies. Concordant classification between

AI and experts occurred in 86.2% and 78.3% and the ability to

predict the progression of disease was 67% and 69.2% respectively,

although the number of patients that progressed in both studies

was small.
Studies based on digital facial images

Four studies utilized facial photos to detect signs of TED (21, 23,

26) or assess disease activity (27). Outcomes assessed were

heterogenous amongst studies: diagnosis of TED (23) presence of

severe signs of TED (21), eyelid morphology in TED (26) and

prediction of CAS score (27).

In the study by Karlin et al, compared to the expert clinician, the

deep learning ensemble model demonstrated higher recall (89% vs

58%) but lower specificity (84% vs 90%) than the pooled expert

cohort in detecting TED using facial images (23). The study utilized

Grad-CAM to perform heatmap analysis of a component neural

network model within the ensemble and found pixels

corresponding to the eye and periocular region most strongly

activate the TED class. Shao et al. developed a fully automatic

computer-based assessment system to measure eyelid morphology

in patients with TED (26). Manual measurement of margin to reflex

distance (MRD) 1 and 2 by experienced ophthalmologists was

compared to this automatic system. The intraclass correlation

coefficients (ICCs) used to assess the agreement between

automatic and manual measurement of MRDs demonstrated ICC

of 0.980 for MRD1 and 0.964 for MRD2 in TED eyes, and ICC of

0.967 for MRD1 and 0.932 for MRD2 in control eyes, with ICC

between repeated automatic measurements of MRDs up to 0.998,

reflecting a strong agreement between the two, with high

repeatability demonstrated in the automatic system. The

diagnostic system for TED developed by Huang et al. accurately

diagnosed TED via multiple task-specific models using facial

images, with the ability to detect several signs of TED (21). The

diagnostic methods used in this study included modules based on

eye location (Module I), ocular dyskinesis (Module II), and other

TED signs (Module III). Module I had an accuracy of 0.98; Module

II had an accuracy of 0.93 for corneal segmentation and 0.87 for

scleral segmentation. For Module III, the area under the receiver-

operating curve (AUROC) for the detection of eyelid edema was

0.90, conjunctival congestion was 0.91 and eye movement disorders

were 0.93. However, the diagnostic accuracy for TED signs that

require auxiliary modalities to aid evaluation, such as chemosis and
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corneal ulcer, were lower (AUROC 0.60 and 0.70, respectively). The

mean AUROC of the seven TED signs evaluated was 0.85, with a

mean sensitivity of 0.80 and specificity of 0.79. Moon et al.

developed an ML-assisted system for predicting CAS and

diagnosing active TED using facial images (27). The system

predicted CAS within 1 point of the reference CAS in 84.6% and

89% of cases when tested using the entire dataset and in the dataset

with consistent results for the three ophthalmologists, respectively.

However, the system showed differences in the performance of

individual inflammatory signs, which could be further improved.
Quality assessment

We performed a quality assessment of the 13 studies using a

modified QUADAS-2 tool. The overall risk of bias and applicability

using the modified QUADAS-2 tool led to most of the studies being

classified as low risk, although higher deficiency was noted in the

risk of bias in flow and timing (Figure 2). For patient selection, 9/13

(69%) studies had a low risk of bias. Most of these studies used in-

house data following clinically established criteria for diagnosis,

avoided inappropriate exclusions, and considered label balance in

classification problems. However, for flow and timing a high or

unclear risk of bias was seen in 11/13 (84.6%) of the studies. This

was largely due to the unknown interval between the index test and

the reference standard and whether all the patients received the

same reference standard. For the reference standard domain, high

or unclear risk was noted in 6/13 (46.2%) of the studies. This was

mainly due to inconsistencies in the reference standard employed

for the studies and concerns regarding the expertise level and level

of consensus amongst experts when used for performance

benchmarking. For the patient selection domain, high or unclear

risk was noted in 4/13 (30.8%) of the studies. This was mainly due to

a lack of description on the rationale for the breakdown of data into

training, validation, and test set and whether pre-processing of data

may significantly change the data set and reduce its applicability in

testing on an external dataset. For the index test domain, high or

unclear risk was noted in 3/11 (27.3%) of the studies, mainly due to

a lack of description of the prespecified threshold settings.
Discussion

Machine learning (ML) is a subdivision of AI that constructs

data analytical algorithms to extract features from data. In medical

applications, input data includes medical images and patient clinical

data, which includes baseline data, disease-specific data, and disease

outcomes. ML algorithms can be broadly divided into two major

categories: unsupervised and supervised learning. Unsupervised

learning is predominantly for feature extraction, while supervised

learning is suitable for predictive modelling through building some

relationships between the patient characteristics (as input) and the

outcome of interest (as output) (30). In general, supervised learning

provides more clinically relevant results; hence AI applications in

healthcare, in medical imaging analysis, supervised learning is most

often used. Traditional ML techniques such as linear regression,
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logistic regression (LR), random forest (RF), decision tree (DT),

support vector machine (SVM), and neural network are feature-

based supervised learning algorithms (31). For instance, Chaganti

et al. employed RF classifiers comprising 100 trees to assess the

diagnostic efficacy of image-derived features, phenotypes derived

from electronic medical records, and clinical visual assessments

(i.e., visual disability scores) in predicting optic nerve pathology

(15). In another study by Hu et al, three machine learning models,

namely LR, DT, and SVM were developed based on selected

features to predict the response to glucocorticoid therapy in TED

patients (19). Furthermore, Moon et al. proposed a submodel using

linear kernel SVM integrated with linear kernel PCA. Subsequently,

five such submodels, along with two consensus models (an

aggregation model and a voting model), were designed for

predicting the clinical activity score in TED (27). Traditional ML

models offer interpretability with transparent decision-making,

simplicity with well-defined theory, lower data requirements

leading to computational efficiency, and robustness to noise due

to explicit feature engineering. These characteristics contribute to

the broad applicability of such models in the field of medical

imaging analysis. However, several initial steps are necessary prior
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to the development of these AI algorithms, such as defining the

image features to be extracted and selecting the region of interest

(ROI), which needs to be done by field experts.

Deep learning (DL) is a subfield of ML and is an extension of

the classical neural network technique whereby a cascade of multi-

layered artificial neural networks for feature extraction and

transformation. DL essentially imitates the neural connections

made in the human brain. In recent years, DL has demonstrated

exceptional performance across various domains, including

computer vision and natural language processing (32). Leveraging

the strong modelling capabilities of DL models, researchers have

started to explore their application in TED-related tasks to achieve

boosted performance. Some studies concentrate on utilizing

Multilayer Perceptron (MLP) models. Notably, in the two studies

by Salvi et al., a three-layer MLP architecture comprising an input

layer, a hidden layer, and an output layer was employed to predict

the progression of TED (16, 17). In both studies, the adoption of

MLP models stems from their advantages over multivariate

statistical analysis, as MLP models do not require explicit

definitions of associations between features during modelling.

Instead, they learned these associations in a data-driven learning
FIGURE 2

Risk of bias and applicability concerns summary about each modified QUADAS-2 domain presented as percentages for the 13 reviewed studies.
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process. Of various DL architectures, convolutional neural networks

(CNN) are commonly applied for image recognition and computer

vision applications because they preserve spatial relationships in 2D

data, and thus outperform other architectures on image pattern

recognition Researchers employ various CNN models to facilitate

TED diagnosis and pre-treatment evaluation. For instance, Song

et al. proposed the 3D-ResNet model (with the original 2D

convolution modified to 3D), which incorporates residual

connections to mitigate performance degradation caused by larger

network depth (18). Lin et al. adopted two CNN models, one

inheriting the VGG network (29) with smaller filters to reduce

complexity, and the other utilizing ResNet (28) to address issues

such as gradient vanishing and exploding (20). Huang et al.

presented a system for TED diagnosis based on facial images,

consisting of three modules: (i) a single-shot multibox detector

for object detection (33), (ii) U-Net for semantic segmentation (34),

and (iii) ResNet50 (28) for detecting TED signs (21). In the Hanai

et al. study, the focus was on leveraging AI models to automatically

detect enlarged extraocular muscles in TED using CT orbits. Their

model combined Residual Network-50 (28) for segmentation and

VGG-16 (29) for classification (22).

In addition to utilizing existing CNN models and techniques,

researchers are actively exploring the development of novel model

architectures tailored to specific application requirements. They aim

to go beyond using off-the-shelf CNN models and techniques,

seeking to address the unique demands of their research

objectives. Karlin et al. introduced a novel approach for making

use of external photographs to detect TED (23). They proposed an

ensemble neural network model consisting of five neural networks,

each employing a ResNet18 (28). The ensemble mechanism selected

the output of the neural network among the five networks, which

assigned the highest prediction probability for TED. Such an

ensemble had a learning strategy that aims to achieve improved

predictive performance while enhancing robustness to noise and

outliers. By leveraging the collective decision-making power of

multiple networks, the proposed ensemble model demonstrated

potential advantages in thyroid eye disease detection. In the study

conducted by Lee et al, the authors focused on improving the

diagnosis and severity assessment of TED by modelling clinically

routine orbital CT scans using neural networks (24). To address the

challenge of incorporating CT images from axial, coronal, and

sagittal views, which conventional CNN models cannot directly

handle, they proposed a multi-view CNN model. This model was

designed to process all three views simultaneously and comprised

three sets of convolutional layers, a fully connected layer, and a

classifier. By leveraging multi-view learning, the model could

capture a comprehensive representation of the input data, leading

to enhanced analytic performance in diagnosing and assessing the

severity of TED. In the work byWu et al, an efficient and convenient

method was introduced for diagnosing DON (25). The authors

proposed a hybrid model that combined the double multiscale and

multi attention fusion module (DMs-MAFM) with EfficientNet B0

(35). The DMs-MAFM was built on the synergy between the

multiscale feature fusion module (Ms-FFM), the multiscale

channel attention aggregation module (MsCAAM), and the

spatial attention module (SAM). This integration enhanced the
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model’s ability to attend to small objects and effectively extract

features. By leveraging the DMs-MAFM and EfficientNet B0, the

proposed hybrid model offered improved performance and

convenience for diagnosing DON. Finally, in the study conducted

by Shao et al, the authors focused on the image analysis of eyelid

morphology in TED (26). They proposed a novel model called

Attention R2U-Net (36), which combined a recurrent residual

convolutional neural network with attention gate connections

based on U-Net. The Attention R2U-Net aimed to achieve more

accurate segmentation of eyelid morphology. The traditional

convolutional block in the model was replaced with a recurrent

convolutional unit to effectively capture low-layer features, resulting

in improved performance and enhanced segmentation accuracy. By

incorporating attention gate connections and leveraging the

recurrent convolutional unit, the Attention R2U-Net model

offered promising advancements in the analysis of eyelid

morphology in TED. A summary of the various AI techniques

used in the studies reviewed in this paper is presented in Table 4.

This review aims to quantify the diagnostic accuracy of AI

models in the field of TED assessment and appraise the quality of

these studies using the modified QUADAS-2 tool. The QUADAS-2

tool is the most used instrument in the quality assessment of

diagnostic accuracy studies (12) and its use is recommended by

current PRISMA 2020 guidance (11). The tool provides

transparency in the rating of the study bias and applicability in

answering its review question. However, QUADAS-2 does not

accommodate for specific terminology encountered in AI-related

diagnostic test accuracy studies, nor does it educate researchers on

the sources of bias found within this class of study (14). As such, we

tailored QUADAS-2 components to better suit the quality

assessment of studies related to TED diagnosis and pre-treatment

evaluation based on the framework proposed by Soundarajah et al.

(14) which addresses the unique potential biases related to AI-

related diagnostic studies (Table 1).

To build a robust AI model, data quality is important. which

requires an appropriately curated source. The data is more reliable if

the data was collected in-house or from a well-curated open-source

database since a poorly curated open-source database runs the risk

of data duplication and erroneous labelling (14). Label imbalance

should be addressed, particularly when identifying a rare disease

(such as TED), to avoid the accuracy paradox problem that can

result in a model with excellent accuracy but is inapplicable

clinically (37). An appropriate spectrum of patients identified and

the inclusion of more than one institution is favorable in building a

model that is reproducible and beneficial to a wider community. For

the assessment of the index test, we took into consideration if the

test was evaluated with an external dataset that would assess its

reliability performance; if solutions to avoid overfitting on the

testing set were mentioned; if there were sufficient details

provided about the algorithm to allow for independent validation,

and specific design for end-user interpretability to see if the model is

assessing the target rather than potential “noise”. In assessing the

study’s reference standard, we evaluated if widely accepted clinical

criteria for diagnosis were used, such as Bartley’s and Gorman (38)

or EUGOGO (39) diagnostic criteria for TED. If benchmarking was

performed against clinicians, we assessed if a suitable domain expert
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level was used. The AI models reviewed by this study have a

relatively high diagnostic accuracy in identifying presence, activity

and severity of TED, using either facial photographs or radiological

images such as those derived from CT or MRI. The ML diagnostic

systems can be used as a screening or diagnostic tool, potentially

reducing barriers to accessing specialist care and contributing to

earlier diagnosis and timely treatment. Clinically, radiological

investigations are generally performed in patients with more

severe TED, hence limiting its utility for TED screening.

Radiological approach via CT or MRI may also be limited by

cost, availability, and the exposure to ionizing radiation. However,

based on the results of the studies included in this review, AI

systems based on radiological investigations has potential use in

early identification of dysthyroid optic neuropathy, active disease

and disease progression, and predicting treatment response. Beyond

screening and diagnosis, AI models utilizing orbital imaging may

also aid in surgical planning, such as predicting appearance change

with orbital decompression surgery (40).

On the other hand, digital facial images-based AI systems have

potential use in TED screening and disease monitoring, which can

be adapted to mobile devices and cloud services, providing

automated and remote diagnostic services for patients with TED.

It may also be used for screening of TED in patients with

autoimmune thyroid diseases. These systems could serve as a

telemedicine screening tool to identify TED in patients with

diverse phenotypical characteristics, irrespective of their care

location. This has important implications in the remote patient

monitoring, enabling early intervention and enhancing patient care.
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However, a greater training set including photographs of patients

with differentials of TED, such as lid retraction (e.g., previous eyelid

surgery) or conjunctival chemosis (e.g., carotid-cavernous fistula)

will be required to improve the specificity of such a model.

Although we remain optimistic that such AI technologies will

eventually be adopted at a large scale to benefit TED patient care,

ML is not without its challenges and controversies. One of the

criticisms of DL models is the black box paradigm, in which the

internal workings of how the output classification, in this case, TED,

is determined by the model is unknown. This is the so-called black

box phenomenon and could eventually lead to a reduced acceptance

of this technology by clinicians (41). There are several strategies

used to help people gain insight into how these models work,

including the use of Class Activation Mapping (CAM) and saliency

map. For example, Song et al. used CAM to highlight areas of the

CT scan deemed important by its model to diagnose TED and it

revealed this to be at the anterior aspect of the orbits. The

prevalence of TED is much lower than other ocular diseases, such

as diabetic retinopathy and cataracts. Thus, the next challenge arises

from the limited small number of available training samples to build

robust models without suffering from overfitting i.e., the predicting

model learns exactly the training set but fails to fit new data from

the test. For example, the ability to distinguish patients other than

moderate-severe TEDmay be challenging in the proposed AI model

by Song et al. due to the smaller dataset of mild TED cases (18).

Similar challenges are faced in AI models developed to detect DON

due to the scarcity of sample data (25). Various strategies have been

described to try to mitigate this challenge (42). In the studies

reviewed in this paper, techniques such as data augmentation and

transfer learning, which is essentially the use of pre-trained

networks (typically on natural images) to circumvent the

(perceived) requirement of large datasets for deep network

training (43). For example, in the study by Shao et al, they

trained the eye detection model using 30,000 facial images with

landmark locations of the eye extracted from the CelebFaces

Attributes Dataset (26) and in the study by Karlin et al, CNN was

pre-trained on ImageNet, a large, labelled collection of low-

resolution color photographs (23). While such strategies reduce

the chance of overfitting the model, its applicability here to an

external test set and clinical setting has yet to be tested. Ethnic

differences exist in TED phenotypes, related to orbital and lid

anatomy, genetic background and autoimmune responses (44).

Hence, AI models trained based on Caucasian data may not be

applicable to Asians, and vice versa. Datasets employed in the

studies in this review were relatively small and detailed patient

demographics and clinical findings were not available for several

studies (Table 2), potentially limiting the generalizability and

reproducibility of the developed ML algorithms to other patient

populations. This underscores the significance of training and

assessing models using extensive and varied datasets through

collaborations and data pooling from multiple institutions and

publicly available datasets to enhance its performance. The

majority of the studies in this review evaluate AI systems in either

imaging or facial images alone. The integration of clinical

assessments, serologic markers and imaging features could be

used to further enhance the reliability of these AI models and
TABLE 4 Categorization of AI models used in TED studies.

AI
Model
Category

AI Model Subcategory TED
Studies

Traditional Machine
Learning Models

Random Forests Chaganti et al.,
2017 (15)

Support Vector Machine, Decision
Tree, Logistic Regression

Hu et al., 2022
(19)
Moon et al.,
2022 (26)

Deep Learning Models Multilayer Perceptron Salvi et al.,
2002 (a) (16)
Salvi et al.,
2002 (b) (17)

Convolutional Neural Networks Song et al.,
2021 (18)
Lin et al., 2021
(20)
Hanai et al.,
2022 (22)
Huang et al.,
2022 (21)
Karlin et al.,
2022 (23)
Lee et al., 2022
(24)
Wu et al.,
2022 (25)
Shao et al.,
2022 (26)
frontiersin.org

https://doi.org/10.3389/fendo.2023.1300196
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chng et al. 10.3389/fendo.2023.1300196
should be explored in future studies. Other limitations inherent to

AI systems using digital facial images highlighted by several

authors’ studies include the influence of imaging environments

on diagnostic accuracy, the need for larger amounts of data to

further improve the performance of the AI platform and inherent

limitations of using 2-dimensional photos. Lastly, ethical and legal

implications need to be considered when implementing AI

solutions in clinical practice. Ethical challenges include (1)

informed consent to use data, (2) safety and transparency, (3)

algorithmic fairness and biases, and (4) data privacy. On the other

hand, legal challenges include (1) safety and effectiveness, (2)

liability, (3) data protection, and privacy, (4) cybersecurity, and

(5) intellectual property law (45). It is therefore crucial that the

relevant stakeholders and regulatory authorities collaborate to

overcome these challenges to ensure successful implementation of

any proposed AI solutions to benefit a wider community.
Conclusion

The application of AI in clinical practice has enormous promise

to improve the care of patients with TED. This review appraised the

quality of the literature and quantified the diagnostic accuracy of AI

models in the field of TED assessment. While the results of the

review showed high diagnostic accuracy of the AI models in

identifying features of TED relevant to disease assessment, several

knowledge gaps in the current research in this area were identified

through this review when the studies were objectively critiqued with

our modified QUADAS-2 tool. Deficiencies in study design causing

study bias such as small datasets, label imbalance and lack of

external validation of the AI models, compromising study

applicability were noted. Moving forward, these limitations and

challenges inherent to ML should be addressed with improved

standardized guidance around study design, reporting, and

legislative framework for successful implementation in

clinical practice.
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